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Abstract: Light-emitting diodes (LEDs) are considered to be the most promising energy-saving
technology for future lighting and display. Two-dimensional (2D) materials, a class of materials
comprised of monolayer or few layers of atoms (or unit cells), have attracted much attention in recent
years, due to their unique physical and chemical properties. Here, we summarize the recent advances
on the applications of 2D materials for improving the performance of LEDs, including organic light
emitting diodes (OLEDs), quantum dot light emitting diodes (QLEDs) and perovskite light emitting
diodes (PeLEDs), using organic films, quantum dots and perovskite films as emission layers (EMLs),
respectively. Two dimensional materials, including graphene and its derivatives and transition metal
dichalcogenides (TMDs), can be employed as interlayers and dopant in composite functional layers
for high-efficiency LEDs, suggesting the extensive application in LEDs. The functions of 2D materials
used in LEDs include the improved work function, effective electron blocking, suppressed exciton
quenching and reduced surface roughness. The potential application of 2D materials in PeLEDs is
also presented and analyzed.

Keywords: organic light emitting diodes; quantum dot light emitting diodes; perovskite light emitting
diodes; two-dimensional materials

1. Introduction

Light-emitting diodes (LEDs) are considered to be the most promising energy-saving technology
for future lighting and display. The appropriate use of LEDs can lower the world’s electricity use
for lighting significantly. LED is a semiconductor light source operating through an effect called
electroluminescence (EL). In detail, electrons and holes recombine in the semiconductor emitter,
accompanied with the releasing of energy in the form of photons. The wavelength (or color) of the
generated light depends on the energy band gap of the semiconductors employed in LEDs. By utilizing
several kinds of semiconductors corresponding to different colors or the additive of light-emitting
phosphor, white light can be generated. Compared with incandescent light sources, LEDs have many
advantages, including longer lifetime, lower energy consumption and smaller size. Up to now, several
types of LEDs have been studied and commercialized in the last decades.
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Ideal LEDs are characterized by several factors, including high efficiency, stability, purity
and tunability of color. Furthermore, solution-processable manufacturing technology of LEDs will
be favorable to obtain the LEDs with reduced energetic and economic cost, which is essential
to the commercialized manufacturing of LEDs. To achieve this purpose, the optimized research
and development of emitter materials is of great importance to increase radiative recombination
and light extraction efficiency, as well as reduce the losses caused by non-radiative recombination.
Although inorganic LEDs based on III–V semiconductors such as GaN and InGaN have made
semiconductor solid state lighting popular, accompanied with the significant saving of energy,
the high-temperature, expensive vacuum-based manufacturing process employed to fabricate these
semiconductors restricts their widespread application. The substitutes of inorganic LEDs contain
organic light emitting diodes (OLEDs) [1–14], quantum dot light emitting diodes (QLEDs) [15–17] and
perovskite light emitting diodes (PeLEDs) [18–25], which take advantage of the high photoluminescence
quantum efficiency (PLQE), solution processability, good purity and tunability of color. For these new
types of LEDs, high-efficiency and stable devices are still the objectives of research works.

Two-dimensional (2D) materials, a class of materials comprised of monolayer (ML) or a few
layers of atoms (or unit cells), have attracted much attention in recent years, due to their excellent
physical and chemical properties, which are originated from their unique structure and morphology.
Excellent electrical, optical and other properties have been found in many conventional 2D materials
including graphene and its derivatives, transition metal dichalcogenides (TMDs) such as MoS2, WS2,
MoSe2, WSe2, as shown in Figure 1 [26–34]. These 2D materials have been widely used as functional
layers for optoelectronic devices. For example, some graphene derivatives such as solution-processable
graphene oxide (GO) and reduced graphene oxide (rGO) can be utilized as efficient electron or hole
transport layers for optoelectronic devices, such as solar cells, photodetectors and LEDs.
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hydrophilic, suggesting that they can be dispersed in water. Therefore, the graphite oxide can be 
easily exfoliated in water to obtain single or few-layer graphene, which is the so-called GO, exactly a 
few-layer graphite oxide. GO behaves as an electrical insulator with a large band gap of ~3.6 eV due 
to the disruption of its sp2 bonding networks. The further reduction of GO can increase the electrical 
conductivity of GO, leading to the reduced GO (rGO) with improved electrical conductivity. 
However, because most of the oxygen functional groups are removed in the reduction process, rGO 
is more difficult to disperse in water because it tends to aggregate. 

Transition metal dichalcogenides (TMDs), a class of 2D materials with the similar characteristics 
to graphene, have the chemical formula MX2, in which M is a transition metal such as molybdenum 
(Mo) and X is a chalcogen such as sulfur (S), selenium (Se) and tellurium (Te). TMDs possess layered 
structure, which is composed of one layer of metal atoms between two layers composed of chalcogen 
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By treating graphite with strong oxidizers, graphite oxide can be obtained, which is a compound
of carbon, hydrogen and oxygen. Oxygen functional groups are introduced in the graphite structure
during the oxidation process, which expands the distance between layers and makes the material
hydrophilic, suggesting that they can be dispersed in water. Therefore, the graphite oxide can be
easily exfoliated in water to obtain single or few-layer graphene, which is the so-called GO, exactly
a few-layer graphite oxide. GO behaves as an electrical insulator with a large band gap of ~3.6 eV
due to the disruption of its sp2 bonding networks. The further reduction of GO can increase the
electrical conductivity of GO, leading to the reduced GO (rGO) with improved electrical conductivity.
However, because most of the oxygen functional groups are removed in the reduction process, rGO is
more difficult to disperse in water because it tends to aggregate.

Transition metal dichalcogenides (TMDs), a class of 2D materials with the similar characteristics to
graphene, have the chemical formula MX2, in which M is a transition metal such as molybdenum (Mo)
and X is a chalcogen such as sulfur (S), selenium (Se) and tellurium (Te). TMDs possess layered structure,
which is composed of one layer of metal atoms between two layers composed of chalcogen atoms.
Metal/chalcogen atoms in each layer are bonded strongly, while the bonding of atoms from adjacent
layers is weak. Therefore, TMDs can be easily exfoliated into atomically thin layers through different
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technologies and exhibit optical and electrical properties which are dependent on the layer number.
These unique properties determine their wide application in optoelectronics and nanoelectronics.

Here, we summarize the recent advances on the application of 2D materials for improving the
performance of LEDs, including OLEDs, QLEDs and PeLEDs, using organic films, quantum dots
and perovskite films as emission layers (EMLs), respectively. Several conventional 2D materials such
as graphene and its derivatives and TMDs are employed as interlayers and dopant in functional
layers such as hole transport layer (HTL)/hole injection layer (HIL) to enhance the hole injection
and transport, reduce the exciton quenching existing at HTL/EML interfaces, improve the surface
roughness of substrate. The recent progress of LEDs base on 2D materials is reviewed and the inherent
physical mechanism is discussed. The potential application of 2D materials in PeLEDs is also presented
and analyzed.

2. Two-Dimensional (2D) Materials in Organic Light Emitting Diodes (OLEDs)

OLEDs, in which EML is an organic material such as Tris-(8-hydro-xyquinoline)aluminum
(Alq3), have attracted intensive interest because of their excellent properties such as low cost, high
brightness and flexibility [1–14]. The organic material employed in OLEDs is an organic semiconductor,
which contains small organic molecules and organic polymers. The OLEDs can be used in the
commercialization of low-cost displays with low driving voltage, high contrast, wide viewing angle
and color gamut. In OLEDs, 2D materials have been introduced as anode, HTL, HIL, electron injection
layer (EIL) and dopant in functional layers such as composite HTL/HIL in order to obtain the enhanced
performance of devices [35–57]. Figure 2 shows some related structures of OLED devices based on 2D
materials. The device parameters of OLEDs with 2D materials interlayers were summarized in Table 1.
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Figure 2. Schematic structures of organic light emitting diodes (OLEDs), in which organic materials
such as emission layers (EML) and 2D materials such as (a) hole transport layer (HTL), (b) hole injection
layer (HIL), (c) dopant in HTL.

Table 1. Summary of the device parameters of OLEDs with 2D materials interlayers.

2D Materials Device Structure Lmax (cd/m2) CEmax (cd/A) EQEmax (%) References

rGO ITO/rGO/super yellow/LiF/Al 8300 5.0 1.8 [35]
GO ITO/GO/super yellow/LiF/Al 39,000 19.1 6.7 [35]
GO ITO/GO/TPD/Alq3/LiF or Li3N/Al 53,635 22.13 2.27 [36]
GO ITO/GO/NPB/Alq3/LiF/Al - - 0.62 [37]
GO ITO/GO/NPB/Alq3/LiF/Al 15,770 4.4 - [38]
GO ITO/GO/NPB/Alq3:C545T/BCP/Alq3/Al 20,000 11.4 - [39]
GO ITO/GO/NPB/Alq3/Bphen/LiF/Al 14.99 4.9 2.0 [40]

MoS2 ITO/MoS2/NPB/Alq3:C545T/BCP/Alq3/Al 23,000 11.95 - [39]
MoS2 ITO/MoS2/NPB/Alq3/Bphen/LiF/Al 8003 7.0 - [41]

Graphene PET/Graphene/PEDOT:PSS/NPB/Alq3/LiF/Al - 1.09 - [42]
MoS2:GO ITO/MoS2:GO/NPB/Alq3:C545T/BCP/Alq3/Al 20,500 11.38 - [39]

MoS2 ITO/MoS2/NPB/Alq3:C545T/BCP/Alq3/LiF/Al 18,900 12.01 - [43]
WS2 ITO/WS2/NPB/Alq3:C545T/BCP/Alq3/LiF/Al 19,300 12.44 - [43]
TaS2 ITO/TaS2/NPB/Alq3:C545T/BCP/Alq3/LiF/Al 18,400 12.66 - [43]
MoS2 ITO/MoS2/NPB/Alq3:C545T/BCP/LiF/Al 16,700 9.44 - [44]
WS2 ITO/WS2/NPB/Alq3:C545T/BCP/LiF/Al 19,000 10.82 - [44]
MoS2 ITO/MoS2/NPB/Alq3:C545T/BCP/Alq3/LiF/Al 21,100 11.3 - [45]
WS2 ITO/WS2/NPB/Alq3:C545T/BCP/Alq3/LiF/Al 23,300 14.7 - [45]
MoS2 ITO/MoS2/Bphen:Cs2O3/Bphen/AND:DSA-ph/NPB/MoO3/Al 9141 14.8 7.3 [46]
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2.1. 2D Materials as Interlayers

2.1.1. 2D Materials as Hole Transport Layer (HTL)

Lee presented polymer LEDs (PLEDs) with a solution-processed GO/rGO HTL, as shown in
Figure 3a [35]. The GO and rGO films with different thicknesses (0, 2.0 nm, 2.6 nm, 4.3 nm, 5.2 nm) were
studied to substitute poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) as
HTL. Optimal PLEDs with a 4.3 nm GO HTL showed maximum luminance (Lmax) of 39,000 cd/m2,
maximum current efficiency (CEmax) of 19.1 cd/A and maximum external quantum efficiency (EQEmax)
of 6.7%, exhibiting an enhancement of 15%, 120% and 91% compared with the reference PLED
with PEDOT:PSS HTL, respectively. The improved performance can be attributed to two factors.
Firstly, as shown in Figure 3b, the GO layer with a wide band gap blocks electrons moving from
EML to indium tin oxide (ITO) and thus restricts more electrons in the EML region, suggesting the
increased recombination of electrons and holes in EML and correspondingly the enhanced performance
of PLEDs. Besides, as shown in Figure 3c, exciton quenching, existing at PEDOT:PSS/EML interface,
can be suppressed by replacing PEDOT:PSS with the GO HTL. These results indicate that GO can be
an excellent HTL to substitute PEDOT:PSS.
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locating between ITO anode and TPD HTL, as shown in Figure 3d [36]. The transmittances of ITO/GO 
substrates with low concentration GO are near-identical, suggesting that the introduction of low-
concentration GO HIL does not impede the light emission. The device with 0.1 mg/mL GO obtained 
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Figure 3. (a) Schematic structure and (b) energy level diagram of polymer light emitting diodes
(PLEDs) with a Graphene Oxide (GO) HTL; (c) Photoluminescence (PL) spectra of SY films on different
substrates, reprinted with permission from [35], American Chemical Society, 2012; (d) Schematic
structure of OLEDs with a GO HIL, reprinted with permission from [36], Royal Society of Chemistry,
2013; (e) Schematic structure of OLEDs using TMDs as HILs, reprinted with permission from [43], Wiley,
2015; (f) Schematic structure of OLEDs with a graphene anode, reprinted with permission from [42],
Elsevier, 2014.

2.1.2. 2D Materials as Hole Injection Layer (HIL)

Shi reported fluorescent OLEDs with a simple device structure of ITO/GO/TPD/Alq3/LiF or
Li3N/Al, in which GO with different concentration (0.02, 0.1, 0.4 mg/mL) was introduced as an
HIL locating between ITO anode and TPD HTL, as shown in Figure 3d [36]. The transmittances of
ITO/GO substrates with low concentration GO are near-identical, suggesting that the introduction
of low-concentration GO HIL does not impede the light emission. The device with 0.1 mg/mL GO
obtained a maximum luminance of 53,635 cd/m2, maximum CE of 22.13 cd/A and maximum EQE
of 2.27%, showing an enhancement of 110%, 44% and 44% compared with the reference device
without GO HIL, respectively. Because the work function of GO (4.9 eV) is higher than that of ITO
(4.7 eV), the hole injection barrier can be reduced effectively, leading to the improved hole injection.
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Furthermore, the large band gap of GO hinders the electron transport from EML to ITO, acting as
an effective electron blocking layer, which also induce the improved hole-electron recombination in
the EML [35]. Guo reported the improved performance of OLEDs with a simple device structure of
ITO/GO/NPB/Alq3/LiF/Al, in which GO (0, 1.8, 2.4, 3.2, 3.6, 4.0, 4.8, 5.4 nm) was introduced as HIL [38].
The maximum luminance of 15,770 cd/m2 and CE of 4.4 cd/A were achieved in OLED with an optimal
3.6 nm GO HIL, which are higher than the values of 4735 cd/m2 and 1 cd/A in reference device without
GO HIL, respectively. It should be noted that the surface roughness of the ITO anode can also be
reduced after the introduction of GO HIL [38]. The improvement of devices’ performance can be
attributed to the smooth ITO surface after the introduction of GO HIL and the reduced hole-injection
barrier due to the high work function of GO. We also found the similar result in green OLED devices
with the structure of ITO/GO/NPB/Alq3/LiF/Al [37].

TMDs can be also employed as HILs in OLEDs [39,41,43–45]. Kim reported OLEDs with a
structure of ITO/TMDs/NPB/Alq3:C545T/BCP/Alq3/LiF/Al, in which MoS2, WS2 and TaS2 nanosheets
were used as HILs, as shown in Figure 3e [43]. After UVO treatment, the work function of the MoS2,
WS2 and TaS2 nanosheets increases from 3.9, 4.9, 4.4 eV to 4.9, 5.1, 4.9 eV, respectively. These TMDs
have similar work function comparable with PEDOT:PSS. The modification of work function leads
to the reduced energy barrier for hole injection and the improved efficiency close to the device with
PEDOT:PSS HIL, suggesting that TMDs are promising HILs in OLEDs. Besides, the devices with
UVO-treated TMD nanosheet HILs showed longer lifetime than that with PEDOT:PSS HIL because of
their nonacidic and stable properties. Similar results can be found in other literatures [44,45].

2.1.3. 2D Materials as Electron Injection Layer (EIL)

Guo reported OLEDs with a structure of ITO/MoS2/Bphen:Cs2CO3/Bphen/AND:DSA-
ph/NPB/MoO3/Al, in which MoS2 was used as EIL [46]. Maximum CE of 14.8 cd/A and maximum EQE
of 7.3% were found in OLED with MoS2 EIL, showing an enhancement of 45% and 40% compared with
the reference device without MoS2 EIL, respectively. The insertion of MoS2 reduced the energy barrier
at the ITO/Bphen interface and improved the electron injection from ITO to EML. Ohisa reported OLEDs
with a structure of ITO/PEDOT:PSS/TFB/F8BT/Ca2Nb3O10/Al, in which two-dimensional Ca2Nb3O10

(CNO) nanosheets were used as EIL [47]. Devices with CNO nanosheets showed better performance
compared with those with conventional Liq EILs, in which the uniform coverage, thicknesses and
work function of CNO were important factors. These results suggest that 2D materials can be good
candidates for EILs in high-performance OLEDs.

2.1.4. 2D Materials as Anode

Wu reported OLEDs with a two-layer graphene/PEDOT:PSS conductive film, in which graphene is
an anode and PEDOT:PSS is a HTL, as shown in Figure 3f [42]. The flexible green OLEDs based on the
graphene/PEDOT:PSS conductive film showed a stable green emission during bending test. The device
with a (graphene/PEDOT:PSS):DIW:DMSO (4:6:0.5) HIL exhibited the maximum CE of 1.09 cd/A due to
the smooth surface and the low sheet resistance of the graphene/PEDOT:PSS conductive film. As seen,
the excellent conductivity and appropriate work function of 2D materials determine their function as
anode in OLEDs.

2.2. Composite Layers Based on 2D Materials

Composite layers based on 2D materials have also been widely studied due to the combined
effects caused by their unique structure and morphology. OLEDs with composite layers of PEDOT:PSS
doped with GO, rGO, graphene, MoS2, as well as MoOx doped with GO, MoS2 have been reported.
The device parameters of OLEDs with 2D materials based composite layers were summarized in
Table 2.
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Table 2. Summary of the device parameters of OLEDs with composite layer doped with 2D materials.

2D Materials Device Structure Lmax (cd/m2) CEmax (cd/A) EQEmax (%) References

GO ITO/GO:PEDOT:PSS/TPD/CBP:Ir(ppy)3/BPhen/LiQ/Ca/Al 103,500 52 - [49]
GO PEN or Glass/GO:PEDOT:PSS/NPB/Alq3/Bphen/Bphen:CsCO3/Al - 2.7 [50]

Graphene PET/Graphene:PEDOT:PSS/PEDOT/TPD/Alq3/LiF/Al 33 3.9 - [51]
GO ITO/GO:PEDOT:PSS/MEH-PPV/LiF/Al 725.6 - - [52]
GO Glass/GO:PEDOT:PSS/NPB/Alq3/LiF/Al - 5.71 - [53]
GO Glass/ITO/GO:PEDOT:PSS/NPB/Alq3/LiF/Al 17,939 3.72 - [54]
GO ITO/GO:PEDOT:PSS/ADS231BE/Cs2CO3/Al - 0.156 0.102 [55]
GO ITO/GO:MoOx/NPB/Alq3/Bphen/LiF/Al 27,185 8.6 3.5 [40]

MoS2 ITO/MoS2:PEDOT:PSS/NPB/Alq3/Bphen/LiF/Al 24,064 8.1 - [41]
MoS2 ITO/MoO3:MoS2/NPB/Alq3/LiF/Al - 4.36 - [56]

graphene ITO/NPB/Alq3/Cs2CO3:graphene/Al 7690 2.02 - [57]

2.2.1. Composite Anode Based on 2D Materials

PEDOT:PSS doped with 2D materials can be introduced as an anode to substitute ITO, which
facilitates the implementation of ITO-free OLEDs. Liu demonstrated ITO-free OLEDs with improved
performance by doping PEDOT:PSS with GO (0:1, 5:1, 15:1, 25:1, 35:1, 1:0) as a composite anode,
as shown in Figure 4a [53]. The OLED with PEDOT:PSS/GO (15:1) composite anode showed the
maximum CE of 5.71 cd/A, which is 55% higher than that with pure PEDOT:PSS anode. It can be
explained by the enhanced hole injection, because the PEDOT:PSS/GO composite anode exhibits
a higher work function compared with the pure PEDOT:PSS anode. Moreover, composite anode
possesses high transmittance and good surface morphology similar to that of the pure PEDOT:PSS
film. Wu reported a highly transparent and conductive film by doping PEDOT:PSS with GO and
sodium dodecyl benzene sulfonate (SDBS) [50]. The conductivity of PEDOT:PSS/GO composite anode
increases because the weakened coulombic attraction between PEDOT and PSS by functional groups
in GO nanosheets, accompanied with the expanded conductive network by linking PEDOT chains
with GO nanosheets. Using the optimized composite film as an anode, ITO-free OLEDs showed
better performance than that with conventional ITO anode, suggesting that PEDOT:PSS:GO:SDBS
hybrid films are promising alternatives to ITO for flexible OLEDs. Chang prepared flexible OLEDs
with a graphene/PEDOT:PSS composite anode, namely graphene composite electrode (GCE) [51].
The conductivity and transparency of GCE are comparable with the ITO anode and the performance of
two kinds of devices are also at the same level. Compared with ITO with a work function of ~4.7 eV,
GCE may have a higher work function between 4.7 eV and 5.2 eV, suggesting the smaller energy barrier
for hole injection, which would lead to an enhanced hole-electron recombination. As for composite
anode based on 2D materials, the excellent conductivity and transparency of composite films based on
2D materials make them a promising constituent of ITO. Meanwhile, the composite anode may exhibit a
higher work function compared with that without 2D materials, leading to the enhanced hole injection
from the anode into the organic layer and correspondingly the improved performance. According to
these reports, the solution-processable PEDOT:PSS/GO composite film represents a promising anode
for OLEDs and other organic optoelectronic devices which require smooth and transparent anode.
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poly(3,4-ethylenedioxythiophene) (PEDOT:PSS)/Graphene Oxide (GO) composite anode, reprinted
with permission from [53], Elsevier, 2015; (b) Schematic structure of PLEDs with a PEDOT:PSS:GO
composite HTL, reprinted with permission from [52], Royal Society of Chemistry, 2014; (c) Schematic
structure of OLEDs with a GO:MoOx composite HTL, reprinted with permission from [40], Wiley, 2018;
(d) Schematic structure and (e) energy level diagram of OLEDs with different HILs, reprinted with
permission from [56], AIP Publishing LLC, 2018; (f) Energy level diagram of ITO/MoS2:PEDOT:PSS/NPB
interface, reprinted with permission from [41], Royal Society of Chemistry, 2019.

2.2.2. Composite HTL Based on 2D Materials

Dehsari reported PLEDs with ultra large GO (UL-GO) sheet (0–0.08 wt.%)/PEDOT:PSS composite
HTL, in which the average lateral size of UL-GO sheets is more than 20 µm, as shown in Figure 4b [52].
The improved conductivity of PEDOT:PSS:GO HTL leads to the enhanced injection and transport of
holes. Moreover, it can effectively block electrons from EML to ITO because of the optimized work
function. The optimal PLEDs with a PEDOT:PSS:GO (0.04 wt.%) composite HTL show a maximum CE
of 725.6 cd/m2, which is improved by ~11% compared with the reference device without the doping
of GO. Diker reported blue OLEDs with PEDOT:PSS:GO composite HTL [55]. All the devices with
PEDOT:PSS:GO composite HTLs showed better performance compared with the reference device with
the pure PEDOT:PSS HTL. The maximum CE and EQE values of the device containing PEDOT:PSS:GO
(0.1 mg/mL) HTL are 0.156 cd/A and 0.102%, which are 120% and 50% higher than that of the reference,
respectively. As for OLEDs with 2D materials doped HTLs, the performance of device may be enhanced
from several aspects including the improved work function, effective electron blocking and reduced
surface roughness of ITO.

2.2.3. Composite HIL Based on 2D Materials

Park reported OLEDs with composite HILs comprised of two types of 2D materials (MoS2,
GO) [39]. MoS2 was prepared by an intercalation method with the lateral size between a few hundreds
of nanometers and 1 µm, while GO was prepared by a modified Hummers method with the size ranging
from 400 nm to a few micrometers. On increasing the GO concentration, the MoS2-GO composite
showed improved coverage on the ITO surface accompanied with the reduced surface roughness,
which can be ascribed to the large particle size of GO. The OLED with pure GO HIL showed very
high power efficiency (PE, 4.94 lm/W) because of the high surface coverage and high work function of
GO facilitating the hole injection. The OLED with pure MoS2 HIL also showed high PE of 3.12 lm/W,
suggesting the suitability of the MoS2 HIL. The optimal OLED with MoS2:GO (6:4) composite HIL
showed the maximum PE of 3.77 lm/W, indicating that the MoS2:GO composites can be employed to
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construct HILs for OLEDs. Besides, the OLEDs with GO HIL show better stability than those with
PEDOT:PSS HIL.

Da Silva demonstrated phosphorescent OLEDs based on GO-doped PEDOT:PSS HILs [49].
The GO:PEDOT:PSS-based OLEDs show better performance with maximum CE of 52 cd/A, which is
27% higher than that with PEDOT:PSS HIL. The introduction of GO resulted in enhanced performance
of the OLEDs because of a reduced hole injection barrier at the ITO/PEDOT:PSS interface. Yang prepared
OLEDs with the structure of ITO/PEDOT:PSS:GO/NPB/Alq3/LiF/Al using GO doped PEDOT:PSS as
a HIL, in which the GO concentration is 0~1 wt.% [54]. High luminance and CE with a low turn-on
voltage observed in OLEDs using PEDOT:PSS:GO composite HIL can be attributed to the enhanced
hole injection ability, conductivity and transparency compared with the OLED with a pure PEDOT:PSS
HIL. A maximum luminance of 17939 cd/m2 and maximum CE of 3.74 cd/A was observed in the
OLED with PEDOT:PSS:GO (0.8 wt.%) composite HIL, showing an enhancement of 46.6% and 67.6%
compared with the reference OLED, respectively. Zheng studied Alq3-based OLEDs using GO:MoOx

composite HILs with the ratios of 1:0, 1:6, 1:8, 1:10, 0:1, as shown in Figure 4c [40]. The OLED device
with the ratio of 1:8 showed maximum CE of 8.6 cd/A and EQE of 3.5%, which have been enhanced
by 41.0% (75.5%) and 40.0% (75.0%) compared with the control device using individual MoOx (GO)
HIL, respectively. The improved device performance can be attributed to the promoted hole injection,
which was caused by the improved film morphology and work function of GO:MoOx composite HILs.

Besides, Liu demonstrated OLEDs using MoO3 nanoparticle-modified MoS2 nanosheets
(MoS2:MoO3) as HILs, as shown in Figure 4d [56]. The device performance is greatly improved by
employing the MoS2:MoO3 composite HIL compared with the devices with conventional PEDOT:PSS
HIL or MoO3 nanoparticle HIL. As shown in Figure 4e, the work function of the MoS2:MoO3 film is
4.9 eV, which is at the same level with that of PEDOT:PSS (5.0 eV) and higher than that of MoS2 (4.3 eV).
The surface roughness of MoS2:MoO3 thin film is comparable with PEDOT:PSS film and better than
MoO3 nanoparticle film. The improved performance can be attributed to the good surface morphology
of the MoS2:MoO3 composite HIL and the excellent conductivity of the MoS2, which facilitate hole
transport in the device and reduce the sheet resistance. Moreover, the stability of OLED devices
employing MoS2:MoO3 HILs is better than that of the device with PEDOT:PSS HIL. Zhang reported
Alq3-based OLEDs with HILs of MoS2, ultraviolet/ozone-treated MoS2 (MoS2-UVO) and MoS2-doped
PEDOT:PSS (MoS2:PEDOT:PSS), as shown in Figure 4f [41]. Alq3 OLEDs using MoS2 HILs with
different concentration (0.1, 0.3, 0.5 mg/mL) were introduced. The maximum EQE of Alq3 device
with 0.3 mg/mL MoS2 is 7.0 cd/A, showing a 52% enhancement compared with the control device
without HIL. Higher CE of 8.1 cd/A was observed in Alq3 OLED with MoS2:PEDOT:PSS (2:1) composite
HIL. The hole-injection capacity of three HILs was tested to meet the relation: MoS2 < MoS2-UVO <

MoS2:PEDOT:PSS. The improved performance can be ascribed to the increased conductivity and hole
injection ability of MoS2:PEDOT:PSS composites.

2.2.4. Composite EIL Based on 2D Materials

Gao reported OLEDs with a device structure of ITO/NPB/Alq3/Cs2CO3:graphene/Al, in which a
Cs2CO3:graphene composite was utilized as electron injection layer (EIL) [57]. Maximum luminance
and CE of the OLEDs with Cs2CO3:graphene composite EIL are 7690 cd/m2 and 2.02 cd/A, which are
2.07 and 2.59 times higher than those of the reference device with conventional LiF EIL, respectively.
The improved performance can be attributed to the enhanced electron injection capacity after the
doping of graphene.

3. Two-Dimensional Materials in Quantum Dot Light Emitting Diodes (QLEDs)

QLEDs, in which EML is composed of quantum dots (QDs) such as CdSe@ZnS QDs, have
attracted much attention because of their superior properties such as tunable emission wavelengths
manipulated by the particle size of QDs, high color purity, solution processability compatible with
flexible substrates [15–17]. Many strategies have been explored to improve the performance of QLEDs,
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including synthesizing high-quality QDs and engineering QLED device structures, in which the energy
band structure among functional layers is essential for the achievement of high efficiency devices.

Solution processable PEDOT:PSS is widely used as HIL/HTL in QLEDs, which can reduce the
surface roughness of ITO and lower the energy barrier at ITO/EML interface. However, an energy
barrier at the PEDOT:PSS/EML interface and exciton quenching may also exist. Therefore, an interlayer
or modified HTL is required to optimize the structure and performance of QLEDs. 2D materials are
promising candidates to replace or modify PEDOT:PSS. In QLEDs, 2D materials have been introduced
as HTL, HIL and dopant in composite HIL/HTL to enhance the performance of devices [58–61]. Figure 5
shows some related structures of QLED devices based on 2D materials. The device parameters of
QLEDs based on 2D materials were summarized in Table 3.
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Table 3. Summary of the device parameters of QLEDs incorporating 2D materials.

2D Materials Device Structure Lmax (cd/m2) CEmax (cd/A) EQEmax (%) References

GO ITO/GO/ CdSe-ZnS QDs/TPBi/LiF/Al 165 - 0.125 [58]
GO ITO/GO/PVK:TCTA/CdSe@ZnS core-shell QDs/ZnO/Al 1309 0.6 0.77 [59]
GO ITO/GO/PEDOT:PSS/PVK:TCTA/CdSe@ZnS core-shell QDs/ZnO/Al 6741 1.34 1.61 [59]
GO ITO/GO:PEDOT:PSS/TFB/ZnCdSeS QDs /TiO2/Al 4200 - - [60]
GO ITO/GO/PVK/CdSe@ZnS QDs/ZnO/Al 7119 7.08 1.98 [61]
rGO ITO/rGO/PVK/CdSe@ZnS QDs/ZnO/Al 11,820 14.99 4.23 [61]

Wang reported QLEDs with the structure of ITO/GO/QDs/TPBi/LiF/Al utilizing GO HTL, as shown
in Figure 6a [58]. A maximum luminance of 165 cd/m2 was found in the QLED device consisting of the
2 ML QDs EML and 2 nm GO HTL. In addition to the role of HTL, the thin GO films can also act as the
electron blocking layer in the QLED devices. Chen reported a QLED using GO doped PEDOT:PSS
(PEDOT:PSS:GO, 0.23–1.5wt.%) composite HIL to optimize the energy barrier at HTL/EML interface,
as shown in Figure 6b [60]. On increasing the doping concentration of GO, the valence band edge of
the PEDOT:PSS:GO shifts downwards by 0.53–0.66 eV, which is close to that of the QDs. The QLEDs
with PEDOT:PSS:GO (1.0 wt.%) composite HILs showed a maximum luminance of 4200 cd/m2, which
is six times higher than that of the control device without GO. The improved performance can be
attributed to the enhanced hole injection, while a reduced turn-on voltage can be explained by the
direct exciton recombination within the QDs.

Song inserted a GO HIL between ITO and PEDOT:PSS to improve the hole injection ability of
QLED devices, as shown in Figure 6c [59]. The QLED device with the GO HIL exhibited a maximum
luminance of 6741 cd/m2, CE of 1.34 cd/A and EQE of 1.61, which are 282%, 60% and 39% higher than
those of the control device without GO HIL. Besides, a turn-on voltage of 5.35 V was obtained, which is
lower than the value of 8.35 V for the device without GO HIL. The improved performance was ascribed
to the energy step after the insertion of GO HIL between ITO and PEDOT:PSS. In detail, the work
function of the GO layer is measured to be 4.98 eV, which reduces the energy barrier between ITO and
PEDOT:PSS from 0.49 eV to 0.22 eV, as shown in Figure 6d. Song further investigated the performance
of QLEDs with a GO/rGO HIL and found that the hole current in reduced GO (rGO) HIL is one order of
magnitude larger than that in GO HIL mainly originated from the increased conductivity of rGO [61].
The enhanced hole injection leads to the maximum CE and EQE of 14.99 cd/A and 4.23%, which are
112% and 114% compared with the control device with GO HIL, respectively. According to these
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results, the function of 2D materials in QLEDs is similar to those in OLEDs. However, there are only a
few reports in this field and more related work can be expected.
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4. Two-Dimensional Materials in Perovskite Light Emitting Diodes (PeLEDs)

Perovskite materials refer to a type of crystalline materials possessing an ABX3 configuration.
At present, the perovskite molecule applied in optoelectronic devices is a long-range ordered structure
and A, B and X represent monovalent organic cations (CH3NH3

+, NH2CH = NH2
+, Cs+), divalent

metal cations (Pb2+, Sn2+) and halogen anions (Cl−, Br−, I−), respectively [22]. Because of many unique
properties such as high photoluminescence quantum efficiency (PLQE), excellent charge mobility and
good color purity, perovskite materials have been widely used in solution-processed LEDs, although
the related reports are much less compared with perovskite solar cells. The EQE value of PeLEDs
increased rapidly from 0.1% to exceeding 20% in the past few years [18–25,62]. Although PeLEDs have
obtained the high EQE comparable with OLEDs and QLEDs, many problems also exist for the future
commercialization, including efficiency and stability of PeLEDs.

As reported, PeLEDs can be fabricated according to two typical structures including p-i-n and
n-i-p, as shown in Figure 7. For the p-i-n structure shown in Figure 7a, the LED device is prepared
on top of a p-type HTL such as PEDOT:PSS and covered by an n-type electron transport layer (ETL),
which is the typical structure of OLEDs. While for the n-i-p structure shown in Figure 7b, the LED is
constructed on top of an n-type ETL such as ZnO and TiO2 and covered by a p-type HTL, which is
similar to the structure of planar perovskite solar cells. The preparation of high-quality, pinhole-free
perovskite films is of great importance for the achievement of high-efficiency PeLEDs. Among these
two structures, the p-i-n configuration is employed more frequently due to the better coverage of
perovskite films on PEDOT:PSS compared with those on TiO2 or ZnO. In p-i-n PeLEDs, solution
processable PEDOT:PSS is widely used as HIL/HTL, which can reduce the surface roughness of ITO
and lower the energy barrier at ITO/perovskite interface. However, an energy barrier and exciton
quenching may also exist at the PEDOT:PSS/perovskite interface. Therefore, an interlayer or modified
HTL is required to optimize the performance of PeLEDs.
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Figure 7. Schematic structures of LEDs with a (a) p-i-n and (b) n-i-p configuration.

Conventional 2D materials such as graphene, GO and MoS2 have been widely used in
photodetectors and solar cells based on perovskite materials [23,63]. Referred to the results in
OLEDs and QLEDs, 2D materials are promising candidates to replace or modify PEDOT:PSS through
constructing the device structures partly shown in Figure 8. In detail, 2D materials are expected to
enhance the performance of PeLEDs through functionalizing as anode, HIL, HTL, EIL and dopant in
these functional layers. However, there are only a few reports about their application in PeLEDs [64–66].
The device parameters of PeLEDs based on 2D materials were summarized in Table 4. Seo developed
ITO-free PeLEDs, in which four-layer graphene was employed as an anode, as shown in Figure 9a,b [64].
The graphene-based device exhibited the maximum CE of 18 cd/A and EQE of 3.8%, which are higher
than those (10.6 cd/A and 2.2%) of ITO-based device. It can be attributed to the reduced exciton
quenching by using the chemically inert graphene anode, as shown in Figure 9c. Zhang reported
perovskite quantum dot (PQD) and nanocrystal (NC) LEDs with a two-layer graphene/PEDOT:PSS
conductive film, in which monolayer graphene is an anode and PEDOT:PSS is a HTL, as shown in
Figure 9d [65,66]. The graphene-based PQD device with MAPbBr3 QDs EML exhibited the maximum
CE of 2.12 cd/A and EQE of 0.67%, which are comparable with the values of 3.0 cd/A and 0.96%
observed in the ITO device. It can be attributed to the smooth surface and the low sheet resistance of
the graphene/PEDOT:PSS:Triton X-100:DMSO conductive film. These results suggest that graphene is
a promising anode to substitute ITO in PeLEDs.
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Figure 8. Schematic structures of perovskite light emitting diodes (PeLEDs), in which perovskite
materials as EML and 2D materials as (a) HTL, (b) HIL, (c) dopant in HTL.

Table 4. Summary of the device parameters of PeLEDs incorporating 2D materials.

2D Materials Device Structure Lmax(cd/m2) CEmax(cd/A) EQEmax(%) References

Graphene Graphene/Buf-HIL/MAPbBr3/TPBi/LiF/Al - 18 3.8% [64]
Graphene Graphene/PEDOT:PSS/poly-TPD/MAPbBr3 QDs/TPBi/LiF/Al 91 0.39 0.14 [65]
Graphene Graphene/PEDOT:PSS:Triton X-100: DMSO/poly-TPD/MAPbBr3 QDs/TPBi/LiF/Al 446 2.12 0.67 [65]
Graphene Graphene/PEDOT:PSS/poly-TPD/FA0.8Cs0.2PbBr3 NCs/TPBi/LiF/Al 801 1.35 0.31 [66]
Graphene Graphene/PEDOT:PSS:Triton X-100:DMSO/poly-TPD/FA0.8Cs0.2PbBr3 NCs/TPBi/LiF/Al 5358 11.37 2.58 [66]
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5. Conclusions

In conclusion, the application of 2D materials in OLEDs, QLEDs and PeLEDs were demonstrated
and discussed. 2D materials, including graphene and its derivatives and TMDs, can be introduced
as interlayers and dopant in composite functional layers for high-efficiency LEDs, suggesting the
extensive application in LEDs.

Firstly, 2D materials can be introduced as interlayers in LEDs, including anode, HTL, HIL and EIL.
The excellent conductivity and appropriate work function of 2D materials determine their function as
anode in OLEDs. For LEDs with 2D material HTL/HIL, 2D materials may enhance the performance
of devices from several aspects including the improved work function, effective electron blocking,
suppressed exciton quenching and reduced surface roughness of ITO. Secondly, composite layers
based on 2D materials have also been widely studied due to the combined effects caused by their
unique structure and morphology and can act as anode, HTL, HIL and EIL. As for composite anode
based on 2D materials, the excellent conductivity and transparency of composite films based on 2D
materials make them promising substitute to ITO. Meanwhile, the composite anode may exhibit an
appropriate work function, leading to the excellent hole injection from anode into the organic layer.
As for LEDs with composite HTL/HIL based on 2D materials, the performance of device may be
enhanced from several aspects including the improved work function, effective electron blocking and
reduced surface roughness of ITO. These results indicate that doping 2D materials in HTL/HIL can
improve the performance of LEDs by increasing the hole injection, blocking the electron transport and
reducing the surface roughness of ITO, which guarantee more holes and electrons recombining in EML.
Besides, 2D materials can be introduced as dopant in EIL to enhance the electron injection ability.

As seen, there is great progress for improving the charge injection and transport of LEDs based on
2D materials. However, there are also some problems in this field. Several factors such as thickness and
doping concentration affect the performance of devices, suggesting that the appropriate introduction
of 2D materials is essential for the improved efficiency and stability of LED devices. Besides, there
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are only a few reports about their application in PeLEDs. It is expected that the introduction of 2D
materials in PeLEDs and related design of device structures could obtain the enhanced performance
similar to those in OLEDs and QLEDs. We believe that LEDs based on 2D materials will develop
sustainably in the future.
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