
applied  
sciences

Article

Table Recognition for Sensitive Data Perception in an
IoT Vision Environment

Jin Zhang 1, Yanmiao Xie 2, Weilai Liu 2 and Xiaoli Gong 1,*
1 College of Cyber Science, Nankai University, Tianjin 300350, China; nkzhangjin@nankai.edu.cn
2 College of Computer Science, Nankai University, Tianjin 300350, China;

nkxieyanmiao@mail.nankai.edu.cn (Y.X.); New.Future@microsoft.com (W.L.)
* Correspondence: gongxiaoli@nankai.edu.cn

Received: 18 June 2019; Accepted: 16 September 2019; Published: 4 October 2019
����������
�������

Abstract: Internet of Things (IoT) technology allows us to measure, compute, and decide about the
physical world around us in a quantitative and intelligent way. It makes all kinds of intelligent IoT
devices popular. We are continually perceived and recorded by intelligent IoT devices, especially
vision devices such as cameras and mobile phones. However, a series of security issues have
arisen in recent years. Sensitive data leakage is the most typical and harmful one. Whether we
are just browsing files unintentionally in sight of high-definition (HD) security cameras, or internal
ghosts are using mobile phones to photograph secret files, it causes sensitive data to be captured by
intelligent IoT vision devices, resulting in irreparable damage. Although the risk of sensitive data
diffusion can be reduced by optical character recognition (OCR)-based packet filtering, it is difficult
to use it with sensitive data presented in table form. This is because table images captured by the
intelligent IoT vision device face issues of perspective transformation, and interferences of circular
stamps and irregular handwritten signatures. Therefore, a table-recognition algorithm based on a
directional connected chain is proposed in this paper to solve the problem of identifying sensitive
table data captured by intelligent IoT vision devices. First, a Directional Connected Chain (DCC)
search algorithm is proposed for line detection. Then, valid line mergence and invalid line removal
is performed for the searched DCCs to detect the table frame, to filter the irregular interferences.
Finally, an inverse perspective transformation algorithm is used to restore the table after perspective
transformation. Experiments show that our proposed algorithm can achieve accuracy of at least 92%,
and filter stamp interference completely.

Keywords: IoT photographing leakage; sensitive data security; directional connected chain; table
recognition; table recognition metrics

1. Introduction

The Internet of Things (IoT) is a huge network consisting of various information-sensing devices
on the Internet to connect people, machines, and objects at any time and any place [1]. The development
of IoT technology allows us to perceive and understand the states and laws of the world, to measure,
compute, and decide on various issues around us in a quantitative and intelligent way. It makes
a twinned digital space corresponding to the physical world, which makes people’s lives more
convenient and intelligent.

The deployment and application of IoT devices is the cornerstone of the IoT [1,2].
Today, the number of intelligent IoT devices has exceeded 4 billion [3]. These IoT devices are generally
embedded in sensors, and scattered throughout the physical world, to be used to sense the external
environment and collect data. We are continually perceived and recorded by intelligent IoT devices,
especially vision devices such as cameras and mobile phones.
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However, while these intelligent IoT devices have made our lives more intelligent and convenient,
a series of data security issues have arisen [4–7]. Sensitive data leakage is the most typical and harmful
one. Whether we are just browsing files unintentionally in sight of HD security cameras, or internal
ghosts are using mobile phones to photograph secret files, it causes sensitive data to be captured
by intelligent IoT vision devices, resulting in irreparable damage. At present, there are some ways
to prevent sensitive data from leaking by using intelligent IoT vision devices. For example, optical
character recognition (OCR)-based packet filtering reduces the risk of sensitive data spreading through
the IoT. However, such methods do not work well for sensitive data presented in table form [8,9].
For plaintext documents, the contents of words or sentences in a captured image are indeed of users’
interest. However, in a table document, for a more accurate and sensitive data perception, we should
extract the table structure, and obtain the data in every table cell, because each table cell represents
a different meaning. In particular regarding financial data, a set of numbers recognized by OCR is
meaningless and useless: only after the table structure is recognized can we know what the numbers
represent. However, table images captured by the intelligent IoT vision devices face the issue of
perspective transformation, which causes table-frame lines to be tilted, and the original parallel
relationships and vertical relationships of the table frame lines to be broken, as shown in Figure 1. In
addition, there are circle stamps and irregular handwritten signatures that may also exist in the table.
These have a bad effect on the results of OCR.

Figure 1. Table with perspective transformation and interferences.

Therefore, a table-recognition algorithm based on the ruling-line feature is proposed in this
paper to solve the problem of identifying sensitive table data captured by intelligent IoT vision
devices. A table frame is made up of some vertical and horizontal ruling lines. The table frame
can be detected while the ruling lines are detected. In this paper, a novel image structure element
named “Directional Connected Chain (DCC)” is used to detect diagonal lines (See in Section 3.1). Then,
the algorithm (see Section 3) based on DCC is proposed for recognition of the table by intelligent IoT
vision device images.

Table recognition lacks an evaluation metric at present. Most research incorporates accuracy
and recall, which regard all table cells and error types as the same, as evaluation metrics, but this
is unreasonable. An evaluation metric that takes table-cell importance degree and error types into
consideration is put forward in this paper.

A dataset [10] labeled with table-cell importance degree is also proposed, and classified into nine
categories according to perspective transformation angles.
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To evaluate our algorithm, a prototype system is implemented. Experiments are conducted
based on the benchmark and dataset proposed. Experiments show that our proposed algorithm
can achieve accuracy of at least 92%, higher than the existing method by 10%, and filter stamp
interference completely.

The rest of the paper is arranged as follows. Section 2 describes the ideas and limitations of past
works. Section 3 shows the details of our proposed work. Section 4 presents the experimental results
and discussions. Finally, the concluding remarks are given in Section 5.

2. Related Works

2.1. Table-Recognition Methods

An important and primary step in table recognition is table detection. At present, most research
on table recognition is aimed at scanned documents. Table features, such as text blocks [11,12], word
spacing [13,14], column spacing [15], junctions [16], and ruling lines [17] are used to detect tables in
scanned document images. All the above methods assume that the text lines and table boundaries are
parallel, but they are not parallel in intelligent IoT vision device-captured images due to perspective
transformation [18,19].

There is a small amount of research on table recognition in intelligent IoT vision device-captured
images, all of which is based on the junction detection method [20–22]. These methods match the
corners of table cells to labels which include connectivity information between junctions. However,
junction miss and junction error are common in these methods and the performance is unsatisfactory.

The ruling-line feature is considered in order to achieve table recognition in intelligent IoT
vision device-captured images in our method. Zheng et al. [23] presented a structure named
directional single connected chain (DSCC), which can be used to search diagonal lines in scanned
documents. Because ruling lines in intelligent IoT vision device-captured tables, which are subject to
perspective transformation, are diagonal, DSCC can be referenced to recognize intelligent IoT vision
device-captured tables. However, the DSCC search algorithm that Zheng et al. [23] proposed will
make too many broken lines, which affects the performance of table-frame detection. Therefore, a new
chain-search algorithm, which has more resistance to line breakage, is proposed. The chain searched
by our algorithm is named the directional connected chain (DCC), because it is not singly connected,
while DSCC is singly connected. Then, the table-recognition method is proposed based on DCC.

2.2. Table-Recognition Evaluation Metric

There are various types of tables, and the table-recognition evaluation metric should be different,
as the focus is different. Li et al. [24] analyzed error types that occurred during table recognition,
and proposed the overlapping areas between the detected table area and reference table area as an
evaluation metric. Wang et al. [25] proposed the ratio of intersection between detected table area
and reference table area to the ratio of these two tables, respectively. Kasar et al. [26] proposed area
precision and area recall. However, these metrics, based on area, do not reflect the error type effect
on the recognition result. Silva [27] proposed Completeness (C) and Purity (P), using C to represent
miss error and split error of table cell, and P to represent merge error and false error. Although
Silva considered error types, he did not notice the difference of the severe degree in these errors.
Hu et al. [28] proposed a random graph probing to compare the results returned by the recognition
system and the ground truth. However, all the above studies do not take the important element of
table cells into consideration.

3. Recognition Method Design

The table-recognition process we propose is divided into five steps based on DCC. As Figure 2
shows, it preprocesses the image, searches DCCs in an intelligent IoT vision device-captured image,
detects the table frame by five techniques based on DCC, restores the table by inverse perspective
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transformation to get a table where the ruling lines are parallel, and extracts the table cells and contents
for sensitive data analysis.

Figure 2. Table-recognition process. DCC: Directional Connected Chain.

Since the techniques of image preprocessing are quite mature, the discussion of them will be
very brief here. The intelligent IoT vision device-captured image usually suffers from uneven lighting
and light noise, which will have a negative effect on table recognition. Therefore, to reduce these
interferences, the intelligent IoT vision device-captured image is processed as a binary image by
Gaussian weighted local threshold binarization and morphological denoising and enhancement for
further processing [29,30].

The following table-recognition steps are discussed in detail in the next section. In addition,
to make the paper more easily understandable, Table 1 shows the symbols that will be used in
next sections.

Table 1. The notations of symbols.

Symbol Notation Symbol Notation

R run length Tdis the threshold of overlapped distance
k theslopeo f l endix the x-coordinate of the end point of li
l the fitting line startix x-coordinate of the starting point of li

Wk the weight of k Ml ine the threshold of the length of run length
b the intercept of l dPL((x, y), C) the distance from the point (x, y) to C

len(Ci) the length of Ci di f fo(C1, C2) overlapped deviation between C1 and C2
C directional connected chain GapT(C1, C2) threshold of interval distance between l1 and l2
A perspective transformation matrix p(Ci, x) y-coordinate predicted by Ci when x-coordinate is x

dLL(C1, C2) overlapped distance D(C1, C2) distance between l1 and l2 on horizontal direction
Tdi f f the threshold of overlapped mistake

3.1. Directional Connected Chain (DCC)

DCC is a novel image structure element and is made up of run lengths. The definition of a run
length and Directional Connected Chain (DCC) are explained in this section. Run length includes
horizontal run length and vertical run length. Vertical run length is a black continuous pixel segment
in the vertical direction and the segment width is only one pixel. Correspondingly, horizontal run
length is a black continuous pixel segment in the horizontal direction and the segment length is only a
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pixel. Figure 3 is an image consisting of pixels, in which R1 is a vertical run length, R3 is a horizontal
run length, and R2 can represent both a horizontal run length and a vertical run length.

Figure 3. Run length.

DCC is a series of adjacent run lengths. It includes horizontal DCC and vertical DCC. Horizontal
DCC is made up of a series of adjacent vertical run lengths, and it is used to detect horizontal lines and
diagonal lines whose angles are less than 45◦. Correspondingly, vertical DCC is made up of a series of
adjacent horizontal run lengths, and it is used to detect vertical lines and diagonal lines whose angles
are larger than 45◦.

DCC can go in any direction by connecting run lengths. Therefore, DCC can be used to represent
a diagonal line. As Figure 4 shows, the vertical run lengths through which the red line passes make up
a horizontal DCC.

Figure 4. Searching a horizontal DCC.

Perspective transformation makes table ruling lines become diagonal lines of different diagonal
angles. In addition, most stamps and signatures are in an irregular shape, which are easy to distinguish
from long straight lines in tables. Therefore, DCC is used in this paper to achieve table recognition.

DCC can represent the straight line of a table, so the DCC search is a key step in table recognition.
As Figure 4 shows, DCC search can be divided into two steps: determining the direction of a DCC,
and predicting the run lengths that should be on the DCC.

The first step is to determine the direction of DCC. DCC is made up of adjacent run lengths,
but adjacent run lengths can be either singly connected or non-singly connected. For a run length,
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if there is only one adjacent run length on each side, such as R2, or one side has no run length and one
side has only one connected run length, such as R1, it is singly connected. Otherwise, it is non-singly
connected, such as R12. The DCC will create branches and goes to several directions if there is a
non-singly connected run length. In addition, the first Tn run lengths will determine the direction of a
DCC. Therefore, when searching a DCC, the Tn adjacent single connected run lengths should be found
first. However, if the number of searched adjacent singly connected run length is less than Tn, these
searched run lengths make up a DCC, and the DCC search ends, which need not go to the next process
in the first step and second step. If Tn adjacent singly connected run lengths are found, they become a
part of a new DCC, and then we get a line l by the least-square method of fitting for mid-points of
these Tn adjacent singly connected run lengths [31]. The fitting line can be represented as Equation (1).

y = kx + b (1)

where k represents slope, and b represents intercept. As Figure 4 shows, R1, R2, · · · , R11 are the single
connected run lengths that were searched for in first step, and l is the fitting line.

The second step is to predict the run lengths, which appear after Tn in the first step, and determine
whether they should be included in the DCC. The fitting line l obtained from the first step is used
to predict the y-coordinate of the run length at the next x-coordinate. If there is indeed a run length
at the predicted position, then the run length is appended to the DCC. It means we should add the
run lengths on the extension of l to the DCC. As Figure 4 shows, the run lengths on the dashed line
are appended to the DCC in this prediction step. R14 and R17 are removed because they are not on
extension of l. Although the first Tn run lengths are singly connected in the first step, the run lengths
appended during prediction step need not be singly connected, and the chain that was searched by
above the algorithm is known as the DCC.

The following should be noted: (1) The run length whose length is longer than threshold Mline
should be skipped in DCC fitting, such as R4 (we call it as abnormal run length, and Mline is the largest
width of the lines in a photograph); (2) Once a run length is appended in the prediction process, the line
l should be refitted; (3) In the prediction process, the miss of two run lengths is allowed in order to
avoid line breaks caused by pixel miss. As Figure 5a shows, different colors represent different DCCs,
which are generated from Figure 1.
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(a) DCC searching (b) Abnormal DCC
remove

(c) Broken DCC
mergence

(d) Short DCC remove (e) DCC extension

(f) Overlapped DCC
Mergence

(g) Outermost frame (h) Restoration table (i) Table-cell
extraction

Figure 5. Recognition result of each step.

3.2. Table-Frame Detection

A DCC represents a line, and thus a ruling-line of the table should be a single DCC. But the
searched DCCs in Section 3.1 may be broken by pixel miss. In addition, other interferences such
as stamps and characters, which not belong to the table frame, will also be searched as a series of
DCCs. To detect the table, these valid broken DCCs should be merged, and invalid interference DCCs
should be removed. By the following five techniques, the table can be detected successfully with
the elimination of invalid DCCs and the detection of table ruling lines. These five techniques are:
removing abnormal DCC, merging broken DCC, removing short DCC, extending incomplete DCC,
and merging overlapped DCCs. In addition, during the detecting process, stamp interference and
irregular handwritten signature can be filtered while removing abnormal DCCs and short DCCs.

Since removing short DCCs and extending incomplete DCCs are relatively simple compared to
other tasks, a brief introduction to them is given here. There is text, light noise, etc. existing in the
intelligent IoT vision device-captured image. The lines comprising them are also recognized as DCCs.
To recognize a table, these interferences should be removed. By observation, the lengths of them are
short, so that the lines comprising them are usually searched for as short DCCs. We can remove them
by filtering DCCs, whose length is shorter than Tlength, as shown in the following equation.

Tlength = βs
∑n

i=0 len(C[i])
n

(2)

where len(C[i]) represents the length of DCC C[i], n is the number of total DCCs, βs is a coefficient. AS
Figure 5c shows, different colors mean different DCCs, and there are many short DCCs that compose
characters and light noise. It can be seen clearly that those interference DCCs are removed with this
technique, as shown in Figure 5d.

A non-singly connected run length cannot be the start of a DCC, and some separate run lengths
are not appended to a DCC, which means that the searched-for DCC cannot represent a complete
ruling-line of a table. As shown in Figure 5d, there are several incomplete ruling lines in the middle
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region, such as the blue one, the yellow one, the red one and so on. These DCCs should be extended to
both sides by the prediction method introduced in Section 3.1. Figure 5e shows the extension result of
Figure 5d. Those incomplete DCCs are completed successfully by this technique in Figure 5e, such as
the blue one, the yellow one, the red one and so on.

The following are the details for removing abnormal DCC, merging broken DCC, and merging
overlapped DCC. In addition, the techniques used in the stamp interference process are also introduced.

3.2.1. Abnormal DCC Removal

By statistical analysis on 603 intelligent IoT vision device-captured tables photographed by
ourselves, it is found that concentration of the slopes of DCCs is to a certain slope in every photograph,
and is approximate to Gaussian distribution, be they horizontal DCCs or vertical DCCs. The reason for
this is that though the table ruling lines become skew lines in the course of perspective transformation,
the sloping angle is not large. Based on this feature, the abnormal DCC will be removed by creating
a statistic for the frequency of slopes and retaining the DCC, whose slope is close to the maximum.
Figure 6 shows the slope distribution of horizontal DCCs in Figure 5b. It can be seen clearly that those
abnormal DCCs, such as the dark green DCC and grass green DCC at the upper left part of Figure 5a,
are removed with this technique, as shown in Figure 5b.

Figure 6. Slope distribution of horizontal DCC.

In summary, this section demonstrates that the DCCs belonging to the table should have
approximative slopes, and how to find this slope to remove the abnormal DCCs.

3.2.2. Broken DCC Mergence

A ruling-line in a table should be recognized as a DCC, but sometimes it will be recognized as
several broken DCCs because of missing pixels. As shown in Figure 5b, the four borders of the table are
broken to several DCCs, which should be merged to recognize a complete table frame. Given that there
are two DCCs, C1 and C2, the fitting lines of them respectively are l1 and l2, and the representations of
them are Equation (3).

y1 = k1x + b1

y2 = k2x + b2
(3)

where k1 and k2 respectively represents slopes of l1 and l2, and b1 and b2 respectively represent intercept
of l1 and l2.
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Interval distance and fitting deviation are first defined here. As Figure 7 shows, interval distance
is the distance between l1 and l2 in a horizontal direction. It can be computed by Equation (4)

D(C1, C2) = start2x − end1x (4)

where start2x represents the x-coordinate of the starting point on l2, end1x represents the x-coordinate
of the end point on l1

Figure 7. Broken line.

A fitting deviation is the deviation of mutual prediction between l1 and l2. It can be computed by
Equation (5):

p(Ci, x) = kix + bi

di f fm(C1, C2) = |p(C1, start1)− p(C2, start1)|+
|p(C1, end2)− p(C2, end2)| (5)

where p(Ci, x) represents the y-coordinate predicted by Ci when the x-coordinate is x. start1x
represents the x-coordinate of the starting point on l1. end2x represents the x-coordinate of the
end point on l2.

As a result, if l1 and l2 satisfy Equation (6), then they will be merged.
|k1 − k2| < Gapk;

|b1 − b2| < Gapb;

D(C1, C2) < GapT(C1, C2);

di f fm(C1, C2) < βm.

(6)

where Gapk represents the threshold of slope difference, Gapb represents the threshold of intercept
difference, and GapT(C1, C2) represents threshold of interval distance between l1 and l2. Given
that len(C1) and len(C1) are respectively used to represent the length of C1 and the length of C2,
GapT(C1, C2) is computed by Equation (7):

GapT(C1, C2) =


len(C1)

10 , len(C1) ≥ len(C2);
len(C2)

10 , len(C1) < len(C2);

20, GapT(C1, C2) > 20.

(7)

As Figure 5c shows, it is the broken DCC mergence result of Figure 5b. It is clear that the broken DCCs
are merged successfully, such as those four broken boundaries of the table in Figure 5b.

In summary, this section demonstrates that two broken DCCs should be merged when they satisfy
Equation (6) to find the table frame.
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3.2.3. Overlapped DCC Mergence

Overlapped DCCs will appear after broken DCC mergence and DCC extension, such as the
DCCs in the middle region of Figure 8. They may belong to the same ruling-line, but have now
become overlapped because of the mistake during slope computing, and thus they should be merged.
Before that, overlapped distance and overlapped deviation are defined. Given that C represents a DCC,
and dPL((x, y), C) represents the distance from the point (x,y) to C, overlapped distance will be the
larger one between dPL((strat2x, start2y), C1) and dPL((end1x, end1y), C2). In addition, the overlapped
deviation between C1 and C2 is:

di f fo(C1, C2) =
dPL(start2, C1) + dPL(end1, C2)

end1x − start2x
, (8)

C1 and C2 are merged, if they satisfy Equation (9),
|k1 − k2| < Tk;

|b1 − b2| < Tb;

dLL(C1, C2) < Tdis;

di f fo(C1, C2) < Tdi f f .

(9)

where Tk represents the threshold of slope difference, Tb represents the threshold of intercept difference,
dLL(C1, C2) represents overlapped distance, Tdis represents the threshold of overlapped distance,
and Tdi f f represents threshold of overlapped mistake. Figure 5f shows the result of Figure 5e by this
technique, and the overlapped DCCs in the middle region in Figure 5e are merged successfully.

Figure 8. Overlapped line.

In summary, this section demonstrates that two DCCs may overlap, which makes a table become
several lines. Therefore, if two DCCs satisfy Equation (9), they should be merged.

3.2.4. Stamp and Handwritten Signature Interference Processing

It is found that a stamp will be searched for as a series of short DCCs with various slopes to form
a circle, by observing and analyzing lots of tables with stamps, as shown in Figure 5a. Therefore, the
stamp can be filtered by abnormal DCC remove and short DCC removal, as mentioned above.

First, the abnormal DCC removal is introduced here. There are great differences between slopes
of DCCs in a stamp and those of a table. In addition, table ruling lines generally are the long DCCs,
as shown in Figure 5a. Based on the above features, when calculating the frequency of DCC slopes,
the length of DCCs is also considered to be a parameter for the weight of the slopes, so that slopes in a
stamp can be filtered. The weight of a DCC slope can be computed in Equation (10),

WK(c) =
base + len(c)

base
(10)
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where base represents a threshold, and the DCC whose length is smaller than it will have little effect
on slope frequency statistic. There is obvious stamp interference in Figure 5a, and it is clear that a part
of the stamp is filtered in Figure 5b by abnormal DCC remove.

Figure 5d shows the result of Figure 5c after short DCC remove, and clearly the stamp is
filtered completely.

In addition, a handwritten signature belongs to the category of character interference, so it can be
removed like other characters during recognition using the above five techniques. As Figure 5f shows,
the handwritten signature is removed completely.

This section demonstrates that interference such as circle stamps and irregular handwritten
signatures can be searched for as a series of short DCCs with various slopes. Therefore, those
interferences can be filtered by abnormal DCC removal and short DCC removal.

3.3. Table Restoration and Table-Cell Extraction

To analyze the data in every table cell, we should restore the table by inverse perspective
transformation, and extract the table cells.

3.3.1. Table Restoration by Inverse Perspective Transformation

The perspective transformation table can be restored easily by inverse perspective transformation
using Equations (11) and (12).

[x′, y′, w′] = [u, v, w]× A

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (11)

x =
x′

w′
=

a11u + a21v + a31

a13u + a23v + a33

y =
y′

w′
=

a12u + a22v + a32

a13u + a23v + a33

(12)

In the equations, (x, y) is the coordinate in perspective transformation image, (u, v) is the corresponding
coordinate in restoration image, and A is the perspective transformation matrix.

From the above equations, it can be seen that the critical problem of inverse perspective
transformation is computing a perspective transformation matrix, which requires four points in
the perspective transformation table and four corresponding points in the restoration table. The
four points selected are the vertexes of the outermost frame of the table, because it can hold most
the table information. To get the matrix, we first determine the outermost frame in the perspective
transformation table, then compute coordinates of its four vertexes based on the intersection of the
edges, and finally compute the corresponding coordinates of those four vertexes in the restoration table.

Determining a table’s outermost frame is important in computing the matrix. There are
still some interference DCCs beyond the table’s outermost frame. Therefore, a table’s outermost
frame-determination algorithm is proposed to remove these interferences and determine the outermost
frame. Ruling lines in a table generally are long, so the DCCs, which are shorter than a certain threshold
both in the horizontal direction and vertical direction, are first filtered. Furthermore, the outermost
frame is a quadrilateral, so its horizontal edges can cover both vertical edges. Based on this feature,
as Figure 9 shows, vertical DCCs can be used to determine the range of horizontal DCCs in a table.
Correspondingly, horizontal DCCs can be used to determine the range of vertical DCCs in a table. It
means that the leftmost x-coordinate of vertical DCCs is the left boundary on horizontal direction of a
table, and the rightmost x-coordinate of vertical DCCs is the right boundary on horizontal direction
of the table. After that, DCCs that are out of the boundary are filtered. In addition, the leftmost
vertical DCC, the rightmost vertical DCC, the topmost horizontal DCC and the bottommost DCC are
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selected as the outermost frame of the table. Algorithm 1 shows this Table outermost border detection
algorithm. Figure 5g shows the outermost frame of the table in Figure 1 by this algorithm.

Figure 9. Outermost frame determination.

After determining the outermost frame of the table, the intersection points of its edges will be
computed as its four vertexes, which can be represented as

Vtrans f orm = {(xlb, ylb), (xrb, yrb), (xrt, yrt, (xlt, ylt))}.
In addition, given that the length of the longer horizontal edge is We, and the length of the longer

vertical edge is He, we should restore the table, instead of the whole image, so the corresponding
vertexes of Vtrans f orm in restoration image is

Vrestoration = {(0, 0), (We, 0), (He, We), (0, He)}.
These eight coordinates are put into Equations (11) and (12), then the perspective transformation

matrix will be computed, and the table is restored by inverse perspective transformation.
In summary, this section demonstrates that a perspective transformation table should be restored

by inverse perspective transformation. To implement it, the perspective transformation matrix is
computed by obtaining the four vertexes of the table outermost frame. Algorithm 1 shows how to
detect table outermost frame.
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Algorithm 1 Table outermost border detection.

Input: verticalDCCs, horizontalDCCs
Output: The four point of the table outermost border: p1, p2, p3, p4

1: h← max(len(c) f orcinverticalDCCs)
2: w← max(len(c) f orcinhorizontalDCCs)
3: horizontalDCCs← [c f orcinhorizontalDCCsi f len(c) > w/3]
4: verticalDCCs← [c f orcinverticalDCCsi f len(c) > h/3]
5: le f t = right← min(verticalDCC[0].start.x, verticalDCC[0].end.x)
6: for line in verticalDCCs do
7: start, end← line.start.x, line.end.x
8: if start > end then
9: start, end← end, start

10: end if
11: if start < le f t then
12: le f t← start
13: end if
14: if end > right then
15: right← end
16: end if
17: end for
18: bottom = top← min(horizontalDCC[0].start.y, horizontalDCC[0].end.y)
19: for line in horizontalDCCs do
20: start, end← line.start.y, line.end.y
21: if start > end then
22: start, end← end, start
23: end if
24: if start < bottom then
25: bottom← start
26: end if
27: if end > top then
28: top← end
29: end if
30: end for
31: horizontalDCCs← [c f orcinhorizontalDCCsi f c.start >= le f tandc.end <= right]
32: verticalDCCs← [c f orcinverticalDCCsi f c.start >= bottomandc.end <= top]
33: while len(horizontalDCCs) > 0 and j < len(horizontalDCC[0]) < w/2 do
34: del horizontalDCC[0]
35: end while
36: while len(horizontalDCCs) > 0 and j < len(horizontalDCC[−1]) < w/2 do
37: del horizontalDCC[−1]
38: end while
39: while len(verticalDCCs) > 0 and len(verticalDCCs[0])) < h/2 do
40: del horizontalDCC[0]
41: end while
42: while len(verticalDCCs) > 0 and len(verticalDCCs[−1])) < h/2 do
43: del horizontalDCC[−1]
44: end while
45: if len(horizontalDCCs) < 2 or len(verticalDCCs) < 2 then
46: returnFalse
47: end if
48: p1← crossPoint(horizontalDCCs[0], verticalDCCs[0])
49: p2← Point(horizontalDCCs[0], verticalDCCs[−1])
50: p3← crossPoint(horizontalDCCs[−1], verticalDCCs[0])
51: p4← crossPoint(horizontalDCCs[−1], verticalDCCs[−1])
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3.3.2. Table-Cell Extraction

In the restoration table, to analyze the data in every table cell, the table cells must be extracted,
and the table contents should be recognized.

For table-cell extraction, the important step is to detect the table frame. The method of table-frame
detection was discussed in Section 3.2. First, the DCCs are searched for in the restoration table by the
method introduced in Section 3.1, and then the table frame is detected by the methods mentioned in
Section 3.2. After that, the vertexes of all the table cells will be obtained by computing intersection points
of horizontal ruling lines and vertical ruling lines. Figure 5i shows the table frame recognized in the end.

For table contents, the recognition method is quite mature [32,33], and thus it will not be discussed
in this paper.

By the above steps, the whole table recognition can be recognized, and then the data can be
analyzed to determine if sensitive data exists.

4. Experiments and Analysis

4.1. Evaluation Metric and Dataset

It is difficult to determine an accurate evaluation metric for table recognition at present [34]. This
paper proposes a more comprehensive metric which takes table-cell importance degrees and error
types into consideration.

First, all table cells are not the same because the content importance degree of table cells are
different. Table cells can be divided into fixed fields and entry fields. Entry fields aim at collecting
information while fixed fields aim at recoding fixed contents, like the item that tells you what should
be collected. If entry fields occur error during the table-recognition process, the major table information
will be missed, and the table will be meaningless. Therefore, errors occurring in entry fields will be
more severe than that in the fixed fields. As Figure 1 shows, the table cells labeled in blue belong to
entry fields, and table cells labeled in yellow belong to fixed fields. Because of the different roles that
the two fields play, different weights should be given to them during the computing accuracy stage.
The weights can be manually labeled by observing features of the dataset, and they can be computed
by Equation (13),

ω1 =
n1

n

ω2 =
n2

n

(13)

where ω1 and ω2 represent the weights of the non-local region and local region, respectively, n1 and n2

represent the number of table cells in non-local region and local region, respectively, and n represents
the total number of table cells.

Secondly, errors occurring in table recognition include miss, fault, merge, and split at the table-cell
level [9], and they should be taken into consideration during evaluation process, too. Miss means
miss of cells in a table. Fault means wrong recognition of objects that are not in the table. Merge
means mergence of several table cells. Split means division of a table cell. Merge and split are the most
common errors because they themselves are table cells. But miss and fault are the more severe errors,
because table cells at fault are themselves not table cells, and miss means cells in a table completely
disappear. Therefore, different penalty coefficients should be given to these errors in evaluation.

Based on the above two considerations, a more comprehensive evaluation metric is proposed
as below:

F′ = ω1F1 + ω2F2

F1 = max((1−
4

∑
n=1

θin1i
n1

)× 100%, 0) (14)



Appl. Sci. 2019, 9, 4162 15 of 20

F2 = max((1−
4

∑
n=1

θin2i
n2

)× 100%, 0)

where θi represents penalty coefficient of error i, n1i represents the number of table cells with error i in
the non-local region, and n2i represents the number of table cells with error i in the local region.

Because of the lack of a relevant dataset, this paper proposes a dataset with 603 intelligent IoT
vision device-captured tables which are in Chinese, English, or with stamps. In addition, the non-local
region and local region are labeled in the proposed dataset, and they are classified by the angles of
perspective transformation. According to the rotation angle when capturing using the intelligent IoT
vision device [35], perspective transformation [36] can be classified into three categories:

1. The general rotation made by rotating the intelligent IoT vision device around the z-axis only;
2. The table becomes trapezoid by rotating the intelligent IoT vision device around x-axis or y-axis;
3. The table becomes an arbitrary quadrilateral by rotating the intelligent IoT vision device around

both x-axis and z-axis, or y-axis and z-axis;

Furthermore, each category mentioned above can also be divided into three cases: slight, obvious,
and serious.

4.2. Experiment Setup

To evaluate the proposed algorithm, we implement a prototype with Python 3.7. A series of
experiments are conducted on the testbed server equipped with IBM X3400, 16GB memory, and the
operating system Ubuntu Server 16.04 (IBM, Beijing, China). We make comparison with the method
proposed in [21,23].

In the experiments, the program is fed with the images from the dataset and the table cells are
recognized as rectangles. To rate the result, the recognition output and ground truths are normalized
to the same size, and the top-left corner of the table is regarded as the origin of the coordinates. By
matching of the relative position between the corresponding rectangles from the results and the ground
truth, the error type is determined. Finally, the accuracy is computed by the above benchmark method.

4.3. Perspective Transformation Analysis

405 tables with 15,597 table cells in total are taken from the dataset, in which 11,250 table cells
belong to entry fields, and 4347 belong to fixed fields. Based on these data, and the proposed evaluation
metric, our method of table recognition is compared to Yuan’s method [22] and Zheng’s method [23]
to analyze the recognition results.

As shown in Table 2, the accuracy of our method is higher than Yuan’s [22] and Zheng’s [23],
no matter in what kind of perspective transformation. Among them, our method works best in the
case of rotation. This is because the ruling lines in the table keep the parallel relationships and vertical
relationships after rotation, resulting in only a few DCCs belonging to the table being filtered in
the abnormal DCC removal step that was introduced in Section 3.2.1. In addition, no matter what
the rotation angle is, the accuracy of our method is over 92%, which implies our method can solve
the traditional rotation problem effectively that generally occurs with a scanned document. For
the perspective transformation of trapezoids and quadrilaterals, there is little difference in accuracy
between the slight case and the obvious case, and all are over 92%. This is for the following two
reasons. First, the DCC used in our method can search diagonal lines effectively, which allows the
ruling lines of table occurring through perspective transformation to be found successfully. Secondly,
the five techniques proposed in Section 3.2 (abnormal DCC remove, broken DCC mergence, short
DCC remove, incomplete DCC extension, overlapped DCC mergence) allow the complete ruling lines
to be detected, and interference such as irregular handwritten signatures and stamps to be filtered.
Therefore, slight and obvious perspective transformation can be solved effectively with our method.
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Table 2. Accuracy of various perspective transformation.

Method
Rotation Trapezoid Quadrangle

Slight Obvious Serious Slight Obvious Serious Slight Obvious Serious

Our method 94.84% 96.51% 92.46% 94.42% 93.66% 79.62% 94.41% 93.66% 84.11%
Yuan’s method 89.22% 28.38% 5.60% 81.12% 84.91% 70.74% 92.73% 78.50% 69.34%

Zheng’s method 84.94% 82.65% 68.90% 81.86% 77.93% 62.98% 83.39% 78.21% 70.00%

However, the accuracy is not ideal in the case of serious perspective transformation, whether it
becomes a trapezoid or a quadrilateral. This is because severe perspective transformation causes the
table ruling lines not to be covered by the determined boundary in the outermost frame-determining
step introduced in Section 3.3.1, which makes the method fail when finding the table’s outermost
frame, and the table cells are all missing. In addition, the accuracy of the trapezoid is lower than that
of the quadrilateral in the case of severe perspective transformation. This is because the range of table
ruling-line slope will change more widely when transforming to trapezoid, and exceed the threshold
that we set in experiments, resulting in the DCC belonging to the table to be filtered.

4.4. Error Type Analysis

The obvious cases of trapezoid and quadrilateral are used to analyze the error types occurring in
our method, because these perspective transformation cases are most common. There are 45 tables
in every case in this experiment with 1250 table cells of entry fields and 483 table cells of fixed fields.
Tables 3 and 4 show the error types of our method, Yuan’s method, and Zheng’s method in trapezoid
and quadrilateral, respectively. From the total number of error table cells, there is a lower error
table-cell number in our method compared with other methods, no matter whether in the case of
trapezoid or quadrilateral. Furthermore, in every error type, the error number of our method is also
less than Yuan’s method, except for split error, which implies our method will have more split error,
which is because text or stamp interference is not filtered completely by the short DCC removal and
abnormal DCC removal, or the short DCC is extended so long in the DCC extension step that table
cells are split. However, there is less split error in our method compared to Zheng’s, because Zheng’s
method will merge the DSCCs when their added length is close to the table cell’s. In addition, Zheng’s
method has more miss error than our method, because the strict DSCC search algorithm causes more
breakage. The above two points are the reasons for the low accuracy of Zheng’s method. The miss
error and merge error are more frequent in our method, which implies that the removal techniques,
such as abnormal DCC remove and short DCC removal, filter excessively. Meanwhile, there is no fault
error in our method, which implies the outermost frame of the table is exactly determined.

Table 3. Numbers of every Error types in obvious case of trapezoid.

Method
Entry Fields Fixed Fields

Miss Fault Merge Split Total Miss Fault Merge Split Total

Our method 15 0 23 14 52 14 0 4 1 19
Yuan’s method 60 0 10 0 70 30 0 5 0 35

Zheng’s method 110 0 29 50 189 37 0 3 19 59

Table 4. Numbers of every Error types in obvious case of quadrilateral.

Method
Entry Fields Fixed Fields

Miss Fault Merge Split Total Miss Fault Merge Split Total

Our method 41 0 36 8 85 5 0 14 7 26
Yuan’s method 257 0 5 0 262 58 0 7 0 65

Zheng’s method 126 0 31 41 198 37 0 3 19 59
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4.5. Stamp Interference Analysis

198 tables with stamp in dataset are taken from dataset for this experiment, and it is found that
the stamp interference can be removed completely by our method, while Yuan’s method and Zheng’s
method cannot do this. Figure 10 shows the removal result of our method and Yuan’s.

(a) Our method (b) Yuan’s method (c) Zheng’s method

Figure 10. Recognition result of table with stamp interference.

In addition, to explore whether stamp interference will affect accuracy or not, 198 tables with
stamps and 198 tables without stamps are taken from the dataset. These tables have 17,676 table cells
in total, of which 11,322 tables cells belong to entry fields, and 6354 table cells belong to fixed fields.
As Table 5 shows, no matter in what kind of perspective transformation, there is little difference in
accuracy between tables with stamps and tables without stamps, which implies that stamp interference
has no effect on our method. This is because the stamp is searched as a series of short DCCs with
various slopes in our method, as shown in Figure 5a. These DCCs can be removed by the abnormal
DCC removal step and short DCC removal step introduced in Section 3.2.4. As Figure 5b shows, a part
of the DCCs consisting of the stamp are filtered by the abnormal DCC removal. In addition, the stamp
interference is removed completely by the next, following the short DCC removal step, as shown in
Figure 5d.

Table 5. Accuracy of stamp.

Method
Rotation Trapezoid Quadrangle

Slight Obvious Serious Slight Obvious Serious Slight Obvious Serious

with stamp 95.17% 95.79% 92.83% 95.63% 94.41% 85.01% 94.56% 94.92% 88.60%
without stamp 95.53% 95.72% 92.45% 95.17% 94.48% 82.91% 93.84% 94.80% 87.30%

4.6. Threshold Analysis

There are some thresholds to our method. To evaluate the effect of the method, the accuracies of
different thresholds are tested. Table 6 shows the threshold in experiments. Experiments show that Tb,
Tdis, Tdi f f , βs will affect the table-recognition results with different values, while other thresholds have
little effect on the recognition accuracy with different values. Figure 11 shows how those four thresholds
effect table-recognition accuracy. As shown in Figure 11c, with Tdis increases, the table-recognition
accuracy first increases rapidly, then increases slowly, and finally stays stable. Table 6 shows the
optimal value of each threshold when the table-recognition accuracy is optimal.
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Table 6. Tested thresholds.

Threshold Notation Optimal Value

Gapk the threshold of slope difference in Equation (6) 2
Gapb the threshold of intercept difference in Equation (6) 0

βm the threshold of fitting deviation in Equation (6) 2
Tk the threshold of slope difference in Equation (9) 1
Tb the threshold of intercept difference in Equation (9) 0.4

Tdis the threshold of overlapped distance in Equation (9) 40
Tdi f f the threshold of mistake in Equation (9) 0.4

βs the coefficient in in Equation (2) 0.1

(a) The accuracy of different Tk (b) The accuracy of different Tdi f f

(c) The accuracy of different Tdis (d) The accuracy of different βs

Figure 11. The effect of different threshold.

Finally, a system of intelligent IoT vision device-captured table recognition is designed and
implemented based on our proposed algorithm, and has been integrated into a WeChat service
product. Users can upload intelligent IoT vision device-captured tables via WeChat and tables will be
recognized to analyze if there exists sensitive data on the server side. So far, this system has served
over 267,000 people.

5. Conclusions

To prevent sensitive table data from leaking by analyzing photographed table data, this paper
proposes an intelligent IoT vision device-captured table-recognition algorithm based on DCC, and
solves the perspective transformation problem successfully, removing interferences such as the stamps
and irregular handwritten signatures. In addition, a more comprehensive evaluation metric, which
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takes table-cell importance degree and error type into consideration, is proposed. Furthermore, a public
dataset is provided. Finally, a system of intelligent IoT vision device-captured table recognition is
designed and implemented, and our proposed algorithm is integrated into it. Experiments show that
our proposed method can solve the perspective transformation problem, and remove interference
such as stamps successfully. However, our method only addresses cases of images with a single table,
and multiple table recognition in an intelligent IoT vision device-captured image requires further study.
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