Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases
Abstract
:1. Introduction
- Non ideality of the working fluids, resulting in entropy loss (high exhaust temperature);
- Adiabatic loss owing to moving machinery;
- A pressure ratio that cannot be optimized to recover all the heat present in the working fluid in the Brayton cycle;
- High excess air to combustors because of the metallurgical temperature limit.
2. Conceptual Design
- Choosing a fluid with better exergy than the combustion mixture;
- As the PCGT working fluid does not have any water of combustion, its dew point will be much higher. This will practically make it possible to lower the exhaust temperature of the flue gases, resulting in better cycle efficiencies.
3. Model Description
3.1. Heat Transfer and Efficiency Relationship
3.2. Pressure/Temperature Ratios for the Brayton Cycle
3.3. Pressure/Temperature Ratios for the Rankine Cycle
3.4. Heat Transfer Rates in Combustion Chamber
4. Result and Discussion
4.1. Temperature and Viscosity Profiles
4.2. Heat Capacity Rates
4.3. Entropy (Second Law) and Density Profiles
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdallah, H.; Facchini, B.; Danes, F.; de Ruyck, J. Exergetic Optimization of Intercooled Reheat Chemically Recuperated Gas Turbine. Energy Convers. Manag. 1999, 40, 1679–1686. [Google Scholar] [CrossRef]
- Abdallah, H.; Harvey, S. Thermodynamic Analysis of Chemically Recuperated Gas Turbines. Int. J. Therm. Sci. 2001, 40, 372–384. [Google Scholar] [CrossRef]
- Usama, A.; Kim, C.; Zahid, U.; Lee, C.J.; Han, C. Integration of IGCC and Methane Reforming Process for Power Generation with CO2 Capture. Chem. Eng. Process. Process Intensif. 2017, 111, 14–24. [Google Scholar] [CrossRef]
- Barzegar Avval, H.; Ahmadi, P.; Ghaffarizadeh, A.R.; Saidi, M.H. Thermo-Economic-Environmental Multiobjective Optimization of a Gas Turbine Power Plant with Preheater Using Evolutionary Algorithm. Int. J. Energy Res. 2011, 35, 389–403. [Google Scholar] [CrossRef]
- Bassily, A.M. Enhancing the Efficiency and Power of the Triple-Pressure Reheat Combined Cycle by Means of Gas Reheat, Gas Recuperation, and Reduction of the Irreversibility in the Heat Recovery Steam Generator. Appl. Energy 2018, 85, 1141–1162. [Google Scholar] [CrossRef]
- Beér, J.M.; Chigier, N.A. Combustion Aerodynamics; Elsevier: New York, NY, USA, 1972. [Google Scholar]
- Bergman, T.L.; Incropera, F.P. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bolland, O.; Stadaas, J.F.F. ComparativeEvaluation of Combined Cycles and Gas-Turbine Systems with Water Injection, Steam Injection, and Recuperation. ASME J. Eng. Gas Turbines Power-Trans. 1995, 117, 138–145. [Google Scholar] [CrossRef]
- Yue, C.; Ren, J.; Sang, Y.; Dai, Y. Thermodynamic Analysis and Optimization of a Gas Turbine and Cascade CO2 Combined Cycle. Energy Convers. Manag. 2017, 144, 193–204. [Google Scholar]
- Carapellucci, R. A Unified Approach to Assess Performance of Different Techniques for Recovering Exhaust Heat from Gas Turbines. Energy Convers. Manag. 2009, 50, 1218–1226. [Google Scholar] [CrossRef]
- Carapellucci, R.; Milazzo, A. Repowering Combined Cycle Power Plants by a Modified STIG Configuration. Energy Convers. Manag. 2007, 48, 1590–1600. [Google Scholar] [CrossRef]
- De Hemptinne, J.C.; Behar, E. Thermodynamic Properties of Acid Gas Containing Systems: Literature Review. Oil Gas Sci. Technol. 2000, 55, 617–637. [Google Scholar] [CrossRef]
- De Paepe, M.; Dick, E. Technological and Economical Analysis of Water Recovery in Steam Injected Gas Turbines. Appl. Therm. Eng. 2001, 21, 135–156. [Google Scholar] [CrossRef]
- De Paepe, W.; Sayad, P.; Bram, S.; Klingmann, J.; Contino, F. Experimental Investigation of the Effect of Steam Dilution on the Combustion of Methane for Humidified Micro Gas Turbine Applications. Combust. Sci. Technol. 2016, 188, 1199–1219. [Google Scholar] [CrossRef] [Green Version]
- Donohoe, N.; Heufer, K.A.; Aul, C.J.; Petersen, E.L.; Bourque, G.; Gordon, R.; Curran, H.J. Influence of Steam Dilution on the Ignition of Hydrogen, Syngas and Natural Gas Blends at Elevated Pressures. Combust. Flame 2015, 162, 1126–1135. [Google Scholar] [CrossRef]
- Durante, A.; Pena-Vergara, G.; Curto-Risso, P.L.; Medina, A.; Hernández, A.C. Thermodynamic Simulation of a Multi-Step Externally Fired Gas Turbine Powered by Biomass. Energy Convers. Manag. 2017, 140, 182–191. [Google Scholar] [CrossRef]
- El-Masri, M.A. A Modified, High-Efficiency, Recuperated Gas Turbine Cycle. J. Eng. Gas Turbines Power 1988, 110, 233. [Google Scholar] [CrossRef]
- Gogoi, T.K. A Combined Cycle Plant with Air and Fuel Recuperator for Captive Power Application, Part 1: Performance Analysis and Comparison with Non-Recuperated and Gas Turbine Cycle with Only Air Recuperator. Energy Convers. Manag. 2014, 79, 771–777. [Google Scholar] [CrossRef]
- Gogoi, T.K.; Das, R. A Combined Cycle Plant with Air and Fuel Recuperator for Captive Power Application. Part 2: Inverse Analysis and Parameter Estimation. Energy Convers. Manag. 2014, 79, 778–789. [Google Scholar] [CrossRef]
- Goulas, A.; Donnerhack, S.; Flouros, M.; Misirlis, D.; Vlahostergios, Z.; Yakinthos, K. Thermodynamics Cycle Analysis, Pressure Loss, and Heat Transfer Assessment of a Recuperative System for Aero-Engines. J. Eng. Gas Turbines Power 2015, 137, 41205. [Google Scholar] [CrossRef]
- Haase, F.; Koehne, H. Design of Scrubbers for Condensing Boilers. Progress Energy Combust. Sci. 1999, 25, 305–337. [Google Scholar] [CrossRef]
- Ryouhei, H.; Fushimi, C. Thermal Efficiency of Advanced Integrated Coal Gasification Combined Cycle Power Generation Systems with Low-Temperature Gasifier, Gas Cleaning and CO2 Capturing Units. Fuel Process. Technol. 2017, 164, 80–91. [Google Scholar] [CrossRef]
- Jansohn, P.; Griffin, T.; Mantzaras, I.; Marechal, F.; Clemens, F. Technologies for Gas Turbine Power Generation with CO2 Mitigation. Energy Procedia 2011, 4, 1901–1908. [Google Scholar] [CrossRef]
- Jonsson, M.; Yan, J. Humidified Gas Turbines—A Review of Proposed and Implemented Cycles. Energy 2005, 30, 1013–1078. [Google Scholar] [CrossRef]
- Kayadelen, H.K.; Ust, Y. Thermodynamic, Environmental and Economic Performance Optimization of Simple, Regenerative, STIG and RSTIG Gas Turbine Cycles. Energy 2017, 121, 751–771. [Google Scholar] [CrossRef]
- Kerr, N.M.; Fraser, D. Swirl Part 1: Effect on Axisymmetrical Turbulent Jets. J. Inst. Fuel 1695, 38, 519. [Google Scholar]
- Kerr, N.M. Swirl Part II: Effect on Flame Performance and the Modeling of Swirling Flames. J. Inst. Fuel 1965, 38, 527–538. [Google Scholar]
- Hoon Kyoung, K.; Giman, K. Thermodynamic Performance Assessment of Steam-Injection Gas-Turbine Systems. World Acad. Sci. Eng. Technol. 2010, 44, 1147–1153. [Google Scholar]
- In Hun, K.; No, H.C. Physical Model Development and Optimal Design of PCHE for Intermediate Heat Exchangers in HTGRs. Nucl. Eng. Design 2012, 243, 243–250. [Google Scholar]
- Korlu, M.; Pirkandi, J.; Maroufi, A. Thermodynamic Analysis of a Gas Turbine Cycle Equipped with a Non-Ideal Adiabatic Model for a Double Acting Stirling Engine. Energy Convers. Manag. 2017, 147, 120–134. [Google Scholar] [CrossRef]
- Lanzini, A.; Kreutz, T.; Martelli, E.; Santarelli, M. Energy and Economic Performance of Novel Integrated Gasifier Fuel Cell (IGFC) Cycles with Carbon Capture. Int. J. Greenh. Gas Control. 2014, 26, 169–184. [Google Scholar] [CrossRef]
- Lee, J.J.; Jeon, M.S.; Kim, T.S. The influence of water and steam injection on the performance of a recuperated cycle microturbine for combined heat and power application. Appl. Energy 2010, 87, 1307–1316. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Gao, G.; Pei, G.; Su, Y.; Ji, J.; Ye, B. Modeling and optimization of solar-powered cascade Rankine cycle system with respect to the characteristics of steam screw expander. Renew. Energy 2017, 112, 398–412. [Google Scholar] [CrossRef]
- Li, Q.; Flamant, G.; Yuan, X.; Neveu, P.; Luo, L. Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers. Renew. Sustain. Energy Rev. 2011, 15, 4855–4875. [Google Scholar] [CrossRef]
- Mathioudakis, K. Evaluation of steam and water injection effects on gas turbine operation using explicit analytical relations. Proc. Inst. Mech. Eng. Part A J. Power Energy 2002, 216, 419–431. [Google Scholar] [CrossRef]
- Mokhtari, H.; Ahmadisedigh, H.; Ameri, M. The optimal design and 4E analysis of double pressure HRSG utilizing steam injection for Damavand power plant. Energy 2017, 118, 399–413. [Google Scholar] [CrossRef]
- Nadir, M.; Ghenaiet, A. Steam turbine injection generator performance estimation considering turbine blade cooling. Energy 2017, 132, 248–256. [Google Scholar] [CrossRef]
- Nakagaki, T.; Ozeki, T.; Watanabe, Y. ES2011-54 Exergy Recuperation of Mid and Low Quality Heat. In Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Parts A, B, and C, Washington, DC, USA, 7–10 August 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Neises, T.; Turchi, C. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications. Energy Procedia 2014, 49, 1187–1196. [Google Scholar] [CrossRef] [Green Version]
- Nishida, K.; Takagi, T.; Kinoshita, S. Regenerative steam-injection gas-turbine systems. Appl. Energy 2005, 81, 231–246. [Google Scholar] [CrossRef]
- Olumayegun, O.; Wang, M.; Kelsall, G. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR). Appl. Energy 2017, 191, 436–453. [Google Scholar] [CrossRef]
- Poullikkas, A. An overview of current and future sustainable gas turbine technologies. Renew. Sustain. Energy Rev. 2005, 9, 409–443. [Google Scholar] [CrossRef]
- Promes, E.; Woudstra, T.; Schoenmakers, L.; Oldenbroek, V.; Thattai, A.T.; Aravind, P. Thermodynamic evaluation and experimental validation of 253 MW Integrated Coal Gasification Combined Cycle power plant in Buggenum, Netherlands. Appl. Energy 2015, 155, 181–194. [Google Scholar] [CrossRef]
- Rovira, A.; Sánchez, C.; Muñoz, M. Analysis and optimisation of combined cycles gas turbines working with partial recuperation. Energy Convers. Manag. 2015, 106, 1097–1108. [Google Scholar] [CrossRef]
- Saebea, D.; Authayanun, S.; Patcharavorachot, Y.; Arpornwichanop, A. Effect of anode–cathode exhaust gas recirculation on energy recuperation in a solid oxide fuel cell-gas turbine hybrid power system. Energy 2016, 94, 218–232. [Google Scholar] [CrossRef]
- Salpingidou, C.; Misirlis, D.; Vlahostergios, Z.; Donnerhack, S.; Flouros, M.; Goulas, A.; Yakinthos, K. Investigation of the Performance of Different Recuperative Cycles for Gas Turbines/aero Engine Applications. Chem. Eng. Trans. 2016. [Google Scholar] [CrossRef]
- Sayyaadi, H.; Aminian, H.R. Design and optimization of a non-TEMA type tubular recuperative heat exchanger used in a regenerative gas turbine cycle. Energy 2010, 35, 1647–1657. [Google Scholar] [CrossRef]
- Sayyaadi, H.; Mehrabipour, R. Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger. Energy 2012, 38, 362–375. [Google Scholar] [CrossRef]
- Seo, J.-W.; Kim, Y.-H.; Kim, D.; Choi, Y.-D.; Lee, K.-J. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers. Entropy 2015, 17, 3438–3457. [Google Scholar] [CrossRef]
- Sheikhbeigi, B.; Ghofrani, M.B. Thermodynamic and environmental consideration of advanced gas turbine cycles with reheat and recuperator. Int. J. Environ. Sci. Technol. 2007, 4, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Ekkad, S. Effects of Rotation on Heat Transfer due to Jet Impingement on Cylindrical Dimpled Target Surface. In Proceedings of the ASME Turbo Expo, 5B–2016:V003T20A002, Seoul, Korea, 13–17 June 2016. [Google Scholar] [CrossRef]
- Smith, I.K.; Stosic, N.; Kovacevic, A. Power Recovery from Low-Grade Heat by Means of Screw Expanders; Chandos Publishing (Elsevier): Oxford, UK, 2014; 272p, ISBN 978-1-78242-189-4. [Google Scholar]
- Taimoor, A.A.; Muhammad, A.; Saleem, W.; Zain-Ul-Abdein, M. Humidified exhaust recirculation for efficient combined cycle gas turbines. Energy 2016, 106, 356–366. [Google Scholar] [CrossRef]
- Thattai, A.T.; Oldenbroek, V.; Schoenmakers, L.; Woudstra, T.; Aravind, P. Experimental model validation and thermodynamic assessment on high percentage (up to 70%) biomass co-gasification at the 253MWe integrated gasification combined cycle power plant in Buggenum, The Netherlands. Appl. Energy 2016, 168, 381–393. [Google Scholar] [CrossRef]
- Thattai, A.T.; Oldenbroek, V.; Schoenmakers, L.; Woudstra, T.; Aravind, P. Towards retrofitting integrated gasification combined cycle (IGCC) power plants with solid oxide fuel cells (SOFC) and CO2 capture—A thermodynamic case study. Appl. Therm. Eng. 2017, 114, 170–185. [Google Scholar] [CrossRef]
- Traverso, A.; Massardo, A.F. Thermoeconomic analysis of mixed gas–steam cycles. Appl. Therm. Eng. 2002, 22, 1–21. [Google Scholar] [CrossRef]
- Tsuzuki, N.; Kato, Y.; Ishiduka, T. High performance printed circuit heat exchanger. Appl. Therm. Eng. 2007, 27, 1702–1707. [Google Scholar] [CrossRef]
- Wang, L.; Jia, Y.; Kumar, S.; Li, R.; Mahar, R.B.; Ali, M.; Unar, I.N.; Sultan, U.; Memon, K. Numerical analysis on the influential factors of coal gasification performance in two-stage entrained flow gasifier. Appl. Therm. Eng. 2017, 112, 1601–1611. [Google Scholar] [CrossRef]
- Watanabe, H.; Ahn, S.; Tanno, K. Numerical investigation of effects of CO2 recirculation in an oxy-fuel IGCC on gasification characteristics of a two-stage entrained flow coal gasifier. Energy 2017, 118, 181–189. [Google Scholar] [CrossRef]
- Gang, X.; Yang, T.; Liu, H.; Ni, D.; Ferrari, M.L.; Li, M.; Luo, Z.; Cen, K.; Ni, M. Recuperators for Micro Gas Turbines: A Review. Appl. Energy 2017. [Google Scholar] [CrossRef]
- Xue, R.; Hu, C.; Sethi, V.; Nikolaidis, T.; Pilidis, P. Effect of steam addition on gas turbine combustor design and performance. Appl. Therm. Eng. 2016, 104, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.H.; Choi, J.H.; Kim, T.S. Comparative evaluation of viable options for combining a gas turbine and a solid oxide fuel cell for high performance. Appl. Therm. Eng. 2016, 100, 840–848. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Chi, J.-L.; Xiao, Y.-H. Performance analysis of a partial oxidation steam injected gas turbine cycle. Appl. Therm. Eng. 2015, 91, 622–629. [Google Scholar] [CrossRef]
- Zheng, L.; Furimsky, E. ASPEN simulation of cogeneration plants. Energy Convers. Manag. 2003, 44, 1845–1851. [Google Scholar] [CrossRef]
Parameters | Upper Limit | Mean Operating Conditions | Lower Limit |
---|---|---|---|
Gas Turbine Output (MW) | 577 | 564 | 551 |
Air Intake (kg/h) × 10−6 | 3.342 | 3.51 | 3.695 |
Fuel Intake (kg/h) × 10−3 | 89.57 | 92.93 | 96.650 |
Gas Turbine Exhaust Temperature (°C) | 608 | 630 | 652 |
Air Compressor work (MW) | 410 | 444 | 482 |
Rankine cycle out Put (MW) | 178 | 191 | 204 |
Overall Efficiency (%) | 61.8 | 59.57 | 57.27 |
Gas | Argon | Nitrogen | Hydrogen | Carbon Dioxide | Air | |||||
---|---|---|---|---|---|---|---|---|---|---|
Equipment | Compressor | Turbine | Compressor | Turbine | Compressor | Turbine | Compressor | Turbine | Compressor | Turbine |
dCp/dT (×10−4) | 0.0103 | 0.0221 | 1.92 | 1.35 | 13.7 | 16.4 | 7.29 | 1.75 | 2.17 | 1.24 |
dCp/dP (×10−4) | 0.00209 | 0.0139 | 0.485 | 0.522 | 3.96 | 6.39 | 1.28 | 0.444 | 0.542 | 0.476 |
Proportional Difference (w.r.t T) | 1.16 | −0.29 | 0.20 | −0.76 | −0.43 | |||||
Proportional Difference (w.r.t P) | 5.64 | 0.08 | 0.61 | −0.65 | −0.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taimoor, A.A.; Siddiqui, M.E.; Abdel Aziz, S.S. Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases. Appl. Sci. 2019, 9, 4190. https://doi.org/10.3390/app9194190
Taimoor AA, Siddiqui ME, Abdel Aziz SS. Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases. Applied Sciences. 2019; 9(19):4190. https://doi.org/10.3390/app9194190
Chicago/Turabian StyleTaimoor, Aqeel Ahmad, Muhammad Ehtisham Siddiqui, and Salem S. Abdel Aziz. 2019. "Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases" Applied Sciences 9, no. 19: 4190. https://doi.org/10.3390/app9194190
APA StyleTaimoor, A. A., Siddiqui, M. E., & Abdel Aziz, S. S. (2019). Thermodynamic Analysis of Partitioned Combined Cycle using Simple Gases. Applied Sciences, 9(19), 4190. https://doi.org/10.3390/app9194190