Comparative Evaluation of Flexural Strength and Flexural Modulus of Different Periodontal Splint Materials: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
- Group 1 (control): composite block without splinting material
- Group 2 (test): composite with F-splint-Aid®
- Group 3 (test): composite with ligature wire
- Group 4 (test): composite with InFibra®
- Group 5 (test): composite with Ribbond®
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Durrani, F.; Galohda, A.; Rai, S.K.; Singh, N.K.; Verma, R.; Yadav, D.S.; Karthickraj, S.M. Evaluation and comparison of stress distribution around periodontally compromised mobile teeth splinted with different materials: Three-dimensional finite element analysis. Indian J. Dent. Res. 2019, 30, 97–101. [Google Scholar] [PubMed]
- Hassan, M.W.; Andersson, L.; Lucas, P.W. Stiffness characteristics of splints for fixation of traumatized teeth. Dent. Traumatol. 2016, 32, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Von, A.T.; Filippi, A.; Lussi, A. Comparison of a new dental trauma splint device (TTS] with three commonly used splinting techniques. Dent. Traumatol. 2001, 17, 266–274. [Google Scholar]
- Hamilton, R.S.; Pons, P.T. The efficacy and comfort of full-body vacuum splints for cervical-spine immobilization. J. Emerg. Med. 1996, 14, 553–559. [Google Scholar] [CrossRef]
- Max, J.P. A systematic approach to the interpretation of tooth mobility and its clinical implications. Dent. Clin. N. Am. 1980, 24, 177–193. [Google Scholar]
- Andersson, L.; Andreasen, J.O.; Day, P.; Heithersay, G.; Trope, M.; DiAngelis, A.J.; Kenny, D.J.; Sigurdsson, A.; Bourguignon, C.; Flores, M.T.; et al. International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: 2. Avulsion of permanent teeth. Dent. Traumatol. 2012, 28, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Ikarinen, K. Functional fixation for traumatically luxated teeth. Endod. Dent. Traumatol. 1987, 3, 224–228. [Google Scholar] [CrossRef]
- Mosedale, R.F. Current indications and methods of periodontal splinting. Dent. Update. 2007, 34, 168–180. [Google Scholar] [CrossRef]
- Kathariya, R.; Devanoorkar, A.; Golani, R.; Shetty, N.; Vallakatla, V.; Bhat, M.Y. To splint or not to splint: The current status of periodontal splinting. J. Int. Acad. Periodontol. 2016, 18, 45–56. [Google Scholar]
- Tarnow, D.P.; Fletcher, P. Splinting of periodontally involved teeth: Indications and contraindications. N. Y. State Dent. J. 1986, 52, 24–25. [Google Scholar]
- Sonnenschein, S.K.; Betzler, C.; Rütters, M.A.; Krisam, J.; Saure, D.; Kim, T.S. Long-term stability of splinted anterior mandibular teeth during supportive periodontal therapy. Acta Odontol. Scand. 2017, 75, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Berthold, C.; Auer, F.J.; Potapov, S.; Petschelt, A. Rigidity evaluation of quartz-fiber splints compared with wire-composite splints. Dent. Traumatol. 2012, 28, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Berthold, C.; Thaler, A.; Petschelt, A. Rigidity of commonly used dental trauma splints. Dent. Traumatol. 2009, 25, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Kumbuloglu, O.; Saracoglu, A.; Ozcan, M. Pilot study of unidirectional E-glass fibre-reinforced composite resin splints: Up to 4.5-year clinical follow-up. J. Dent. 2011, 39, 871–887. [Google Scholar] [CrossRef] [PubMed]
- Graetz, C.; Ostermann, F.; Woeste, S.; Sälzer, S.; Dörfer, C.E.; Schwendicke, F. Long-term survival and maintenance efforts of splinted teeth in periodontitis patients. J. Dent. 2019, 80, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Ashby, M.F.; Cebon, D. Materials selection in mechanical design. J. Phys. IV 1993, 3, C7-1–C7-9. [Google Scholar] [CrossRef]
- Trevor, B.A. Why choose magnesium? Mater. Sci. Forum 2009, 618, 3–6. [Google Scholar]
- Mazzoleni, S.; Meschia, G.; Cortesi, R.; Bressan, E.; Tomasi, C.; Ferro, R. In vitro comparison of the flexibility of different splint systems used in dental traumatology. Dent. Traumatol. 2010, 26, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Berthold, C.; Holst, S.; Schmitt, J.; Goellner, M.; Petschelt, A. An evaluation of the periotest method as a tool for monitoring tooth mobility in dental traumatology. Dent. Traumatol. 2010, 26, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Narva, K.K.; Lassila, L.V.J.; Vallitu, P.K. Fatigue and stiffness of glass fiber-reinforced urethane dimethacrylate composite. J. Prosthet. Dent. 2004, 91, 158–163. [Google Scholar] [CrossRef]
- Ellakwa, A.E.; Shortall, A.C.; Shehata, M.K.; Marquis, P.M. Influence of bonding agent composition on flexural properties ofan ultra-high molecular weight polyethylene fiber-reinforced composite. Oper. Dent. 2002, 27, 184–191. [Google Scholar] [PubMed]
- Sujeetha, M.; Rajaram, V.; Mahendra, J. Stabilizing teeth with nonsurgical treatment—A report of two splinting cases. Int. J. Recent. Sci. Res. 2018, 9, 27616–27618. [Google Scholar]
- Hoeppner, M.G.; Fonseca, R.B.; Pfau, E.A.; Justo, F.R.; Fávero, A.; Bremm, L.L. Rehabilitation of periodontally compromised teeth with fiber-reinforced composite resin: A case report. Quintessence Int. 2011, 42, 113–120. [Google Scholar] [PubMed]
- Kemaloglu, H.; Pamir, T.; Tezel, H. A 3-year randomized clinical trial evaluating two different bonded posterior restorations: Amalgam versus resin composite. Eur. J. Dent. 2016, 10, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yapp, R.; Powers, J.M. Flexural Strength and Modulus of Several Splinting Products. Dent. Advisor 2011, 38, 12. [Google Scholar]
- Kemaloglu, H.; Emin, K.M.; Turkun, M.; Micoogullari, K.S. Effect of novel restoration techniques on the fracture resistance of teeth treated endodontically: An in vitro study. Dent. Mater. J. 2015, 34, 618–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahler, B.; Hu, J.Y.; Marriot-Smith, C.S.; Heithersay, G.S. Splinting of teeth following trauma: A review and a new splinting recommendation. Aust. Dent. J. 2016, 61, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, L.C.; Koganti, V.P.; Shankar, B.R.; Gopinath, A. A comparative study of temporary splints: Bonded polyethylene fiber reinforcement ribbon and stainless steel wire + composite resin splint in the treatment of chronic periodontitis. J. Contemp. Dent. Pract. 2011, 12, 343–349. [Google Scholar]
- Junior, G.; de Aquino, A.; Lopes, M.W.; Gaspar, G.D.; Braz, R. Comparative study of flexural strength and elasticity modulus in two types of direct fiber-reinforced systems. Braz. Oral. Res. 2009, 23, 236–240. [Google Scholar] [CrossRef]
- Juloski, J.; Beloicab, M.; Goraccic, C.; Chieffid, N.; Giovannettie, A.; Vichif, A. Shear bond strength to enamel and flexural strength of different fiber-reinforced composites. J. Adhes. Dent. 2012, 14, 1–8. [Google Scholar]
- Chaudhary, V.; Shrivastava, B.; Bhatia, H.P.; Aggarwal, A.; Singh, A.K.; Gupta, N. Multifunctional ribbond—A versatile tool. J. Clin. Pediatr. Dent. 2012, 325–328. [Google Scholar] [CrossRef]
- Foek, D.L.S.; Yetkiner, E.; Özcan, M. Fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro. Korean J. Orthod. 2013, 43, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Purayil, T.P.; Chakravarthy, A.; Ginjupalli, K.; Ballal, N.V. Evaluation of bond strength of splinting materials to the teeth using three adhesive systems—An in vitro study. Saudi J. Oral. Sci. 2015, 2, 94–98. [Google Scholar] [CrossRef]
- Meiers, J.C.; Freilich, M.A. Conservative anterior tooth replacement using fiber-reinforced composite. Oper. Dent. 2000, 25, 239–243. [Google Scholar] [PubMed]
- Goldberg, A.J.; Burstone, C.J. Flexural properties and fiber architecture of commercial fiber reinforced composites. J. Dent. Res. 1998, 77, 226. [Google Scholar]
- Soares, P.B.; Fernandes, N.A.J.; Magalhães, D.; Versluis, A.; Soares, C.J. Effect of bone loss simulation and periodontal splinting on bone strain: Periodontal splints and bone strain. Arch. Oral. Biol. 2011, 56, 1373–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayab, T.; Shetty, A.; Kayalvizhi, G. The Clinical Applications of Fiber Reinforced Composites in all Specialties of Dentistry: An Overview. Int. J. Compos. Mater. 2015, 5, 18. [Google Scholar]
Name | Composition | Company |
---|---|---|
Ribbond™ (4 mm) | Fiber reinforced ribbons | Ribbond Inc., Seattle, Washington, USA. |
F-splint-Aid™ (4 mm) | Fiber-glass band soaked in bonding agent | PolydentiaSA, Mezzovico-Vira, Switzerland. |
InFibra™ (4 mm) | Crystalized polyethylene fiber | BiolorenS.r.l, Saronno (VA)-Italy. |
Morelli™ Ligature | 0.2 mm, CrNi ligature wire | Morelli, Sao Paulo, Brazil. |
Filtek™ Z350 XT (flow- able A1 Shade) | Bis-GMA, UDMA and BIS-EMA with zircon and silica | 3M ESPE, Dental Products, St. Paul, USA. |
Sample Distribution | Maximum Load Applied (N) | Flexural Strength (MPa) | Flexural Modulus (GPa) | |
---|---|---|---|---|
Group No. | Sample size | Mean ± SD | Mean ± SD | Mean ± SD |
Group 1 | n = 15 | 74.24 ± 8.08 | 89.15 ± 9.70 | 4.310 ± 0.912 |
Group 2 | n = 15 | 109.96 ± 13.73 | 131.95 ± 16.48 | 5.366 ± 1.042 |
Group 3 | n = 15 | 94.13 ± 7.26 | 122.95 ± 8.72 | 4.629 ± 0.962 |
Group 4 | n = 15 | 84.59 ± 12.46 | 101.51 ± 15.31 | 5.040 ± 0.788 |
Group 5 | n = 15 | 143.06 ± 30.73 | 168.04 ± 45.95 | 5.861 ± 0.501 |
Group Comparisons | Mean Difference (%) between Group | P-Value |
---|---|---|
Group 1 v Group 2 | 42.80 (48.0%) ↓ | 0.001*** |
Group 1 v Group 3 | 33.80 (37.90%) ↓ | 0.080* |
Group 1 v Group 4 | 12.36 (13.80%) ↓ | 0.999* |
Group 1 v Group 5 | 78.89 (88.14%) ↓ | 0.001*** |
Group 2 v Group 3 | 09.00 (6.80%) ↑ | 0.315* |
Group 2 v Group 4 | 30.44 (23.0%) ↑ | 0.009** |
Group 2 v Group 5 | 36.09 (27.30%) ↓ | 0.013** |
Group 3 v Group 4 | 21.44 (17.40%) ↑ | 0.999* |
Group 3 v Group 5 | 45.09 (36.60%) ↓ | 0.001*** |
Group 4 v Group 5 | 66.53 (65.54%) ↓ | 0.001*** |
Group Comparisons | Mean Difference (%) between Group | P-Value | |
---|---|---|---|
Group 1 v Group 2 | 1.05 (24.0%) ↓ | 0.236* | |
Group 1 v Group 3 | 0.31 (6.60%) ↓ | 0.999* | |
Group 1 v Group 4 | 0.73 (16.10%) ↓ | 0.999* | |
Group 1 v Group 5 | 1.55 (35.0%) ↓ | 0.079* | |
Group 2 v Group 3 | 0.73 (14.0%) ↑ | 0.963* | |
Group 2 v Group 4 | 0.32 (6.40%) ↑ | 0.999* | |
Group 2 v Group 5 | 0.49 (8.80%) ↓ | 0.999* | |
Group 3 v Group 4 | 0.41 (8.80%) ↓ | 0.999* | |
Group 3 v Group 5 | 1.23 (26.59%) ↓ | 0.291* | |
Group 4 v Group 5 | 0.82 (16.28%) ↓ | 0.999* |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saquib, S.; Abdullah, A.; Gotam, D.; Talib, N.; Muhammad, S.; Sultana, A. Comparative Evaluation of Flexural Strength and Flexural Modulus of Different Periodontal Splint Materials: An In Vitro Study. Appl. Sci. 2019, 9, 4197. https://doi.org/10.3390/app9194197
Saquib S, Abdullah A, Gotam D, Talib N, Muhammad S, Sultana A. Comparative Evaluation of Flexural Strength and Flexural Modulus of Different Periodontal Splint Materials: An In Vitro Study. Applied Sciences. 2019; 9(19):4197. https://doi.org/10.3390/app9194197
Chicago/Turabian StyleSaquib, Shahabe, AlQarni Abdullah, Das Gotam, Naqash Talib, Sibghatullah Muhammad, and AlHaid Sultana. 2019. "Comparative Evaluation of Flexural Strength and Flexural Modulus of Different Periodontal Splint Materials: An In Vitro Study" Applied Sciences 9, no. 19: 4197. https://doi.org/10.3390/app9194197
APA StyleSaquib, S., Abdullah, A., Gotam, D., Talib, N., Muhammad, S., & Sultana, A. (2019). Comparative Evaluation of Flexural Strength and Flexural Modulus of Different Periodontal Splint Materials: An In Vitro Study. Applied Sciences, 9(19), 4197. https://doi.org/10.3390/app9194197