Addressable Refraction and Curved Soliton Waveguides Using Electric Interfaces
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Critical Angle and Generalized Snell Law
3.2. Waveguiding and Propagation Losses
3.2.1. Straight Propagation
3.2.2. Curved Propagation
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Segev, M.; Crosignani, B.; Yariv, A.; Fischer, B. Spatial solitons in photorefractive media. Phys. Rev. Lett. 1992, 68, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Duree, G.; Shultz, J.L.; Salamo, G.; Segev, M.; Yariv, A.; Crosignani, B.; Di Porto, P.; Sharp, E.; Neurgaonkar, R.R. Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 1993, 71, 533–536. [Google Scholar] [CrossRef]
- Shih, M.; Segev, M.; Valley, G.C.; Salamo, G.; Crosignani, B.; Di Porto, P. Observation of two-dimensional steady-state photorefractive screening solitons. Electron. Lett. 1995, 31, 826–827. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons—From Fibres to Photonic Crystals; Academic Press: San Diego, CA, USA, 2003; ISBN 0-12-410590-4. [Google Scholar]
- De La Fuente, R.; Barthelemy, A.; Froehly, C. Spatial-soliton-induced guided waves in a homogeneous nonlinear Kerr medium. Opt. Lett. 1991, 16, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Fazio, E.; Renzi, F.; Rinaldi, R.; Bertolotti, M.; Chauvet, M.; Ramadan, W.; Petris, A.; Vlad, V.I. Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides. Appl. Phys. Lett. 2004, 85, 2193–2195. [Google Scholar] [CrossRef]
- Fazio, E.; Ramadan, W.; Petris, A.; Chauvet, M.; Bosco, A.; Vlad, V.I.; Bertolotti, M. Writing single-mode waveguides in lithium niobate by ultra-low intensity solitons. Appl. Surf. Sci. 2005, 248, 97–102. [Google Scholar] [CrossRef]
- Coda, V.; Chauvet, M.; Pettazzi, F.; Fazio, E. 3-D integrated optical interconnect induced by self-focused beam. Electron. Lett. 2006, 42, 463–465. [Google Scholar] [CrossRef]
- Fazio, E.; Chauvet, M.; Vlad, V.I.; Petris, A.; Pettazzi, F.; Coda, V.; Alonzo, M. 3-D Integrated Optical Microcircuits in Lithium Niobate Written by Spatial Solitons. In Ferroelectric Crystals for Photonic Applications; Ferraro, P., Grilli, S., De Natale, P., Eds.; Springer Series on Material Sciences Volume 91; Springer: Berlin/Heidelberg, Germany, 2014; pp. 101–134. ISBN 978-3-662-50111-5. [Google Scholar]
- Chauvet, M.; Coda, V.; Maillotte, H.; Fazio, E.; Salamo, G. Large self-deflection of soliton beams in LiNbO3. Opt. Lett. 2005, 30, 1977–1979. [Google Scholar] [CrossRef]
- Jäger, R.; Gorza, S.P.; Cambournac, C.; Haelterman, M. Sharp waveguide bends induced by spatial solitons. Appl. Phys. Lett. 2006, 88, 061117. [Google Scholar] [CrossRef] [Green Version]
- Chauvet, M.; Coda, V.; Maillotte, H.; Fazio, E.; Jäger, R.; Gorza, S.P.; Cambournac, C.; Haeltereman, M. Complex waveguide trajectory induced by spatial soliton in LiNbO3. Trends Opt. Photonics Ser. 2005, 99, 494. [Google Scholar]
- Assanto, G.; Peccianti, M.; Conti, C. Nematicons: Optical Spatial Solitons in Nematic Liquid Crystals. Opt. Photonics News 2003, 14, 44–48. [Google Scholar] [CrossRef]
- Peccianti, M.; Dyadyusha, A.; Kaczmarek, M.; Assanto, G. Tunable refraction and reflection of self-confined beams. Nature 2006, 2, 737–742. [Google Scholar] [CrossRef]
- Jost, B.M.; Al-Rashed, A.A.R.; Saleh, B.E.A. Observation of Goos-Hänchen effect in a phase-conjugated mirror. Phys. Rev. Lett. 1998, 81, 2233–2235. [Google Scholar] [CrossRef]
- Sanchez-Curto, J.; Chamorro-Posada, P.; McDonald, G.S. Giant Goos-Hänchen shifts and radiation-induced trapping of Helmholtz solitons at nonlinear interfaces. Opt. Lett. 2011, 36, 3605–3607. [Google Scholar] [CrossRef]
- Aceves, A.B.; Moloney, J.V.; Newell, A.C. Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface. Phys. Rev. A 1989, 39, 1809–1827. [Google Scholar] [CrossRef]
- Alonzo, M.; Soci, C.; Chauvet, M.; Fazio, E. Solitonic waveguide reflection at an electric wall. Opt. Express 2019. under review. [Google Scholar]
- Alonzo, M.; Moscatelli, D.; Bastiani, L.; Belardini, A.; Soci, C.; Fazio, E. All-Optical Reinforcement Learning in Solitonic X-Junctions. Sci. Rep. 2018, 8, 5716. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, D.; Hu, W.; Zheng, Y.; Gao, X.; Guo, Q. Propagation of optical beams in strongly nonlocal nonlinear media. Phys. Lett. A 2010, 374, 4007–4013. [Google Scholar] [CrossRef]
- Fazio, E.; Petris, A.; Bertolotti, M.; Vlad, V.I. Optical bright solitons in lithium niobate and their applications. Roman. Rep. Phys. 2013, 65, 878–901. [Google Scholar]
- Fazio, E.; Belardini, A.; Bastiani, L.; Alonzo, M.; Chauvet, M.; Zheludev, N.; Soci, C. Novel paradigm for integrated photonics circuits: Transient interconnection network. Proc. SPIE 2017, 10130, 1013006. [Google Scholar] [CrossRef]
- Fazio, E. A road towards the photonic hardware implementation of artificial cognitive circuits. J. Ment. Health Clin. Psychol. 2018, 2, 1–5. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazio, E.; Alonzo, M.; Belardini, A. Addressable Refraction and Curved Soliton Waveguides Using Electric Interfaces. Appl. Sci. 2019, 9, 347. https://doi.org/10.3390/app9020347
Fazio E, Alonzo M, Belardini A. Addressable Refraction and Curved Soliton Waveguides Using Electric Interfaces. Applied Sciences. 2019; 9(2):347. https://doi.org/10.3390/app9020347
Chicago/Turabian StyleFazio, Eugenio, Massimo Alonzo, and Alessandro Belardini. 2019. "Addressable Refraction and Curved Soliton Waveguides Using Electric Interfaces" Applied Sciences 9, no. 2: 347. https://doi.org/10.3390/app9020347
APA StyleFazio, E., Alonzo, M., & Belardini, A. (2019). Addressable Refraction and Curved Soliton Waveguides Using Electric Interfaces. Applied Sciences, 9(2), 347. https://doi.org/10.3390/app9020347