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Abstract: Wind-induced damage during the construction process and the evolution of damage
over time are important reasons for the wind-induced destruction of large cooling towers. In fact,
wind vibration coefficient and stability performance will evolve with the construction height and
material properties over time. However, the existing studies generally ignore the impact of wind
load and structural performance during the construction period. In this study, we built the 3D
physical model separately for all eight construction stages a super large cooling tower which is being
currently constructed and stands 210 m. The dynamic characteristics of the cooling tower were
analyzed in each stage. First, the flow field information and 3D time history of aerodynamic forces
were obtained for the whole construction process using large eddy simulation (LES). Full transient
dynamic finite element analysis was used to calculate the dynamic responses of the tower under the
real-time changes of wind loads during the whole construction process. Five calculation methods
were used to trace the evolution of wind vibration coefficient during the whole construction process
of the super large cooling tower. Then the formula for wind vibration coefficient changing with the
construction height was fitted. The differential values of wind vibration coefficient during the whole
construction process of the cooling tower were discussed by taking the meridional axial force as the
objective function. On this basis, the influence and working mechanism of wind vibration coefficient,
concrete age, construction load, geometric nonlinearity, internal suction force on buckling stability,
and ultimate bearing capacity of the cooling towers were investigated. This research provides an
enhanced understanding on the evolution of wind-induced stability performance in super large
cooling towers and a methodology to prevent wind-induced damage during the construction process.

Keywords: super large cooling tower; whole construction process; wind vibration coefficient; buckling
stability; ultimate bearing capacity

1. Introduction

After Ferrybridge Cooling Tower failures in the UK in 1965 [1], the international wind engineering
circle began to conduct studies in the following topics: influence of tower group and surrounding
structures on wind pressure distribution on the surface of the tower body [2,3], buckling stability, and
ultimate bearing capacity of the tower body under wind load [4,5], finite element analysis of responses
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of large cooling towers considering the tower defect and soil–structure interaction [6,7], and random
dynamic responses of tower body induced by pulsating wind pressure [8]. Wind-induced damage and
subsequent evolution of the damage during the construction process are considered [9] responsible
for the collapse of three cooling towers (at Ardeer Power Station in Scotland in 1973, power plant in
Bouchain, Franch in 1979, and Fiddlers Ferry Power Station in 1984). This is closely related to the wind
loads, concrete performance, and crack evolution during the construction process of the cooling tower.
We have also found through the overall and local stability performance of China’s tallest exhaust
cooling tower during the construction process that the wind vibration coefficient changes with the
construction height and evolution of material properties. Moreover, dynamic wind pressure inside the
cooling tower also has a non-negligible impact on the wind-induced stability performance during the
construction process.

In China, the height of newly built thermal and nuclear power plants has far exceeded the upper
limit of standard or broken the world’s record. This directly leads to substantial 3D dynamic wind
load effect [10,11]. The construction period of the main structure and the construction difficulty also
increase [12]. For the template of the cooling tower, the concrete strength may be insufficient before
the concrete pouring of the cooling tower is complete. The concrete, though having a relatively low
strength during the construction process, is subjected to dead load, wind load, and construction load.
The strength and modulus of elasticity of concrete will increase with the construction height, which
results in the constant evolution of stiffness and stress performance of the overall tower. Changes in
the morphology and mechanical performance of the cooling tower during this process will further
lead to alterations of static and dynamic wind pressure distribution on tower surface, wind-induced
response, and wind vibration coefficient. As a result, the calculation of internal force of the structure
and analysis of stability performance and ultimate bearing capacity will be also affected. In light of this,
it is of high importance to discuss the evolution and non-linear influence of wind-induced stability of
super large cooling towers during the construction process.

Few studies have been devoted to the wind-induced stability performance of large cooling towers
during the construction process so far. In one literature report [13], buckling failure and ultimate
bearing capacity of cooling tower during the whole construction process were analyzed based on
secondary development of the ANSYS and wind tunnel test. Ke employed self-written preprocessing
and post-processing programs for checking computation of the local and overall ultimate bearing
capacity of the exhaust cooling tower. The variation of critical wind speed with construction height
was also discussed [14].

In this study, we focused on a 210 m super large cooling tower under construction, the tallest tower
ever built in the world. We built the 3D physical model separately for all eight construction stages.
The dynamic characteristics of the cooling tower were analyzed in each stage. First, the flow field
information and 3D time history of aerodynamic force were obtained for the whole construction process
using large eddy simulation. The wind pressure distributions of the constructed tower were compared
against the standard and measured curves to validate the numerical simulation. Full transient dynamic
finite element analysis was used to calculate the dynamic responses of the tower under the real-time
changes of wind load during the whole construction process. Five calculation methods were used to
trace the evolution of wind vibration coefficient during the whole construction process of the super
large cooling tower. Then the formula for wind vibration coefficient changing with the construction
height was fitted. The differential values of wind vibration coefficient during the whole construction
process of the cooling tower were discussed by taking the meridional axial force as the objective
function. On this basis, the influence and working mechanism of wind vibration coefficient, concrete
age, construction load, geometric nonlinearity, and internal suction force on buckling stability and
ultimate bearing capacity of the cooling tower were investigated.
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2. An Illustrative Example

2.1. An Overview of the Project

This super large cooling tower stood 210.0 m, with a throat height of 157.5 m and air inlet height
of 32.5 m. The top section had a diameter of 115.8 m, and the throat section in the middle portion
had a diameter of 110 m. The zero-meter diameter was 180. The tower body was connected to the
annular plate resting on the foundation with 52 pairs of X-shaped pillars. The X-shaped pillars had a
rectangular cross section, which measured 1.2 m × 1.8 m. The foundation was a cast-in-situ reinforced
concrete structure with a width of 12.0 m and a height of 2.5 m. The terrain category was B, with a
basic wind velocity of 23.7 m/s. Table 1 shows the main parameters of the super large cooling tower.

Table 1. Main structural parameters of super large cooling tower.

Component Height/m Wall
Thickness/m Radius/m Concrete

Grade Structural Schematic

Tower body

32.5 2.00 80.5

C40
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2.2. Modeling of the Whole Construction Process

The construction process was divided into eight stages based on the progress of construction and
calculation precision. Evolution of wind-induced stability performance was analyzed for each stage.
Table 2 shows the parameters of each working condition.

Table 2. Parameters of super large cooling tower under typical working conditions.

Schematic of Working
Conditions
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C45 

Foundation 
Circular plate foundation with a 

cross-sectional area of 12 m × 2.5 m 
C35 

2.2. Modeling of the Whole Construction Process 

The construction process was divided into eight stages based on the progress of construction 
and calculation precision. Evolution of wind-induced stability performance was analyzed for each 
stage. Table 2 shows the parameters of each working condition. 

Table 2. Parameters of super large cooling tower under typical working conditions. 

Schematic of 
Working 

Conditions 
    

No. of working 
condition 

Working 
condition 1 

Working 
condition 2 

Working 
condition 3 

Working 
condition 4 

Template number 10 30 50 70 
Height/m 44.1 69.8 94.9 120.4 
Air inlet 

diameter/m 
154.41 140.31 127.61 117.21 

Minimum shell 
thickness/m 0.590 0.460 0.405 0.385 

Schematic of 
working 

conditions 
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Table 2. Cont.

No. of working condition Working
condition 5

Working
condition 6

Working
condition 7

Working
condition 8

Template number 90 105 120 139
Height/m 146.2 165.7 185.2 210.0

Air inlet diameter/m 111.21 110.61 112.61 115.81
Minimum shell

thickness/m 0.375 0.370 0.370 0.370

3. Numerical Simulation

3.1. Methodology

Fluid is considered to be incompressible viscous flow in anti-wind design of structures. Spatial
averaging of transient N–S equation can yield the governing equation in large eddy simulation (LES):

∂µi

∂xi
= 0 (1)

∂µi

∂t
+
∂(µiµ j)

∂x j
= −

1
ρ

∂p
∂xi

+ v
∂2µi

∂x j∂x j
−
∂τi j

∂x j
(2)

where ρ is air density, t is time, v is kinematic viscosity coefficient of air, µi and µ j are velocities in three
directions after filtering, and τi j is non-closed term in the N–S equation after spatial averaging, i.e.,
subgrid scale stress.

τi j = µiµi − µiµ j (3)

Boussinesq approximation was introduced according to Smagorinsky subgrid–scale model based on
eddy viscosity assumption. Thus, the subgrid–scale stress is written as

τi j −
1
3
τi jδi j = −2µtSi j = −µt(

∂µi

∂x j
+
∂µ j

∂xi
) (4)

e tensor of solvable scale, τkk is the isotropic component of subgrid–scale stress, which is contained in
the pressure item after filtering, δij is Kronecker delta function, µt is subgrid–scale turbulence eddy
viscosity coefficient, generally using the Smagorinsky assumption:

µt = (Cs∆)
2
∣∣∣S∣∣∣ (5)

where Cs is Smagorinsky constant, generally taken as 0.1–0.23 and being 0.1 in this study. Strain
rate tensor

∣∣∣S∣∣∣ = √
2Si jSi j. ∆ is grid scale, ∆ = (∆x∆y∆z)

1/3, where ∆x, ∆y, and ∆z are the grid size
in x, y, and z directions, respectively. This is the standard Smagorinsky subgrid–scale model. Some
researchers propose dynamic determination of Cs value to better characterize collision, separation, free
shear layer, and vortex shedding of the flow field around the blunt body. It is known as the dynamic
Smagorinsky model.

However, both the Smagorinsky model and dynamic Smagorinsky model are algebraic models,
which assume a local equilibrium between the generation and dissipation of subgrid–scale turbulent
kinetic energy. These models are not fit for simulating structures with a high Reynolds number, such
as the cooling towers. To solve this problem, we proposed a new form of subgrid–scale model based
on literature [15]:

∂ksgs

∂t
+
∂µ jksgs

∂x j
= −τi jSi j −Cε

ksgs
3/2

∆
+

∂
∂x j

[
(Cd∆v

√
ksgs + v)

∂ksgs

∂x j

]
− εw (6)
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where, Ksgs is the kinetic energy of transportation equation SGS, Cs is Smagorinsky constant, and v is
positive. Here, Cs will reduce the amplitude of Ksgs, and a Gaussian filter is needed for finite difference.

This model is better applied to engineering applications. There is no need for experimental
filtering, and the computational load is small. So, it can be used to simulate structures with a high
Reynolds number, such as cooling towers [10].

3.2. Parameter Configuration and Grid Generation

A physical model of the super large cooling tower was built according to original size, so that
the Reynolds number used in numerical simulation would be comparable to that in the actual project.
The size of the computational domain was X × Y × Z = 6000 m × 4000 m × 1000 m (X is across-wind
direction, Y is along-wind direction, and Z is height direction). The blocking rate of the model was
below 1%. The computational domain was divided into dense region and peripheral region so as to
ensure both computational efficiency and precision. Non-structured grids with a high adaptability
were used for the region near the cooling tower; for the peripheral space further away from the cooling
tower, structured grids having a regular topology were used for the discretization. Therefore, the total
number of grids was reduced, which improved the computational efficiency. The minimum grid size
was 0.2 m in the core region. The model of the built-up tower had approximately 12.8 million grids.

Boundary conditions were defined using UDF (User define function) file. Inlet boundary
condition was velocity inlet, and the outlet boundary condition was pressure outlet. The top and sides
of the computational domain were equivalent to free slip walls, the symmetry boundary conditions
(Symmetry). The floor and structure surface were equivalent to no-slip wall boundary condition.
The wind field was considered as incompressible flow field. Discrete equations were solved using
SIMPLEC. This calculation method has good convergence performance and applies to LES (Large
eddy simulation) with small time step. The time step of LES was set to 0.05 s. Here, only the schematic
for the computational domain and grid generation of the model of the built-up tower is provided, as
shown in Figure 1.
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Figure 2. Comparison of numerical calculation, field measurement, and wind tunnel test. 

3.4. Simulation Results 
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for LES under the other seven working conditions. Thus, the flow field on the surface of the tower 
and the time history of pulsating wind pressure were obtained for the whole construction process. 

Figure 1. Computational domain and grid generation for the super large cooling tower.

3.3. Validation

The design code for cooling towers [16–19] only provides the average and pulsating wind pressure
distribution curves of the built-up towers. Therefore, we only validated the numerical simulation for
the built-up tower.

Figure 2 shows the comparison of simulated average and pulsating wind pressure distributions of
a cross section of the built-up tower against the measured and standard curves. It can be seen that the
simulated average wind pressure distribution curve agreed well with the standard curve. The pressure
coefficients in the upwind side, region of extreme negative pressure, and at the separation point on
the leeward side were consistent with the standard curve. This validated the average wind pressures
obtained by LES.

Moreover, the simulated pulsating wind pressure distribution curve basically coincided with the
measured curve and the curve of wind tunnel test. The values lay between the results measured at
home and abroad. Five curves are presented respectively in Figure 2b, among which three are the
measured pulsating wind pressure curves in domestic and foreign regulations (VGB–R 610Ue 2005,
Blanchette et al. 2013, DL/T 5339–2006, GB/T 50102–2014), and two are the measuring points of the
third and ninth floors of the full-size cooling tower in this paper. Pulsating wind pressure distribution
is closely associated with the terrain, incoming turbulent flow, and surrounding interference. The trend
and values of pulsating wind pressure distribution estimated by LES were close or fell into the range
of the measured values. Therefore, the pulsating wind pressures simulated by LES were reliable and
suitable for subsequent analysis of wind-induced vibration and stability performance.
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3.4. Simulation Results

3.4.1. Pulsating Wind Pressure

The same parameter configuration as the numerical simulation for the built-up tower was used
for LES under the other seven working conditions. Thus, the flow field on the surface of the tower and
the time history of pulsating wind pressure were obtained for the whole construction process. Due
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to limited space, Figure 3 only provides the time history of pressure coefficient at the upwind side,
crosswind side, separation point and leeward side for the built-up model.
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Figure 3. Time history of pressure coefficient at representative measuring points of the built-up tower.

Figure 4 provides the power spectral density curves of pulsating wind pressure at the representative
measuring points. Comparison showed that for different positions, the peaks of the power spectral
density function all occurred in the low frequency range. The energy of the pulsating wind pressure
was mainly concentrated in low frequencies. The values of the power spectral density function were
slightly higher on the upward side than at the separation point and leeward side.

3.4.2. Pressure Coefficients on the Tower Surface

Figure 5 shows the nephograms of pressure coefficients on tower surface under eight typical
working conditions. The distributions of pressure coefficient were basically consistent under different
working conditions. The increase of construction height did not change the wind field characteristics
of cylindrical structure. The flow separated in front of the tower body due to collision, which resulted
in the separation bubble, and the bubble shedded off from the crosswind side. Consequently, there
were positive and negative pressure distributions on the upward and crosswind sides of the tower
body. The increase in the construction height greatly decreased the negative pressure on the crosswind
and leeward sides, especially for the built-up tower.
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Figure 4. Power spectral density curves of pulsating wind pressure at the representative measuring
points.
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Figure 5. Nephograms of pressure coefficients on tower surface under eight typical working conditions.

3.4.3. Turbulent Kinetic Energy

Figure 6 is the schematic for the turbulent kinetic energy distribution under the eight working
conditions. There were significant differences between the eight working conditions. As the construction
height increased, the scale component of maximum turbulent kinetic energy deviated from the upper
end of the air inlet to the wake stream. In addition, as the construction height increased, the turbulent
kinetic energy of fluid inside the tower decreased. This resulted in uniform distribution of internal
pressure of the built-up tower along the circumferential and meridional directions.
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Figure 6. Schematic for turbulent kinetic energy distribution under working condition 8.

4. Analysis of Dynamic Characteristics

The integrated model of the tower body–pillar–circular foundation was built using ANSYS
software. The tower body, pillar, circular foundation, and elastic foundation were simulated with shell
element, beam element, and spring element, respectively. The connections of circular foundation to the
tower body and pillars were simulated using multi-point constraint and rigid domain, respectively.
Block Lanczos method was employed to analyze the dynamic characteristics of finite element (FE)
model of the cooling tower through the whole construction process. Table 3 shows the fundamental
frequencies and vibration mode distribution under each working condition. Figure 7 is the distribution
curve of natural frequencies of the first fifty modes under different working conditions. It can be seen
that construction height had a significant impact on lower-order frequencies, but a lesser impact on
higher-order frequencies. As the construction height increased, the fundamental frequencies of the
cooling tower decreased. The fundamental frequency was the largest under working condition 1,
which was 0.963 Hz.

Table 3. Vibration modes at fundamental frequency under each working condition.

Working
Condition

Working
Condition 1

Working
Condition 2

Working
Condition 3

Working
Condition 4

Vibration mode
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Figure 8 shows the changes of natural frequencies of the first ten modes with the number of
circumferential harmonics under each working condition. Comparison shows that the minimum
natural frequencies occurred when the number of circumferential harmonics was 4 under different
working conditions. As the natural frequencies increased, the number of circumferential harmonics
increased as well.
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Table 4 shows the capsize modes of the cooling tower for the whole construction process. As
the construction height increased, the order of capsize mode also increased, while the frequency
corresponding to the excitation mode decreased.
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Table 4. Capsize modes of the cooling tower for the whole construction process.

Working
Condition

Working
Condition 1

Working
Condition 2

Working
Condition 3

Working
Condition 4
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where α and δ are integral parameters. However, the use of the Newmark method for the calculation 
of discrete spatial domain in FE model cannot satisfy the requirement (that is, numerical damping at 
high frequencies should not be introduced at the expense of precision, and not too many values of 
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Combining Formulae (2), (4), and (6),

(a0[M] + a1[C] + (1− α f )[K])
{
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}
= (1− α f )
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}
+ α f

{
Fa

n
}
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}
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}
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{ .
un

}
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{ ..
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}
)

(12)

where a0 = 1−αm
α∆t2 , a1 =

(1−α f )δ

α∆t , a2 = 1−αm
α∆t , a3 = 1−αm

2α − 1, a4 =
(1−α f )δ

α − 1, a5 = (1− α f )(
δ

2α − 1)∆t.
For terrain category B, the basic wind speed was 23.7 m/s and the damping ratio of the structure

was 5%. Then the wind vibration coefficient was calculated as follows:

βRi =
Ri

Ri
= 1 +

gσt

Ri
(13)

where βRi is the wind vibration coefficient of node i; Ri, RI, and σt are the overall response, average
response, and pulsating response of node I, respectively; g is peak factor of node I, taken as 3.0
(Ke et al. 2012).

5.2. Distribution of Wind Vibration Coefficient

Based on the time history under eight working conditions, the wind vibration coefficient was
calculated dynamically. The distributions of wind vibration coefficient for the whole construction
process were discussed under five equivalent targets, as shown in Table 5.

Table 5. Five equivalent targets for value determination of wind vibration coefficient.

Equivalent Target No.

Meridional axial force on the upwind side Equivalent target 1
Von Mises stress on the upwind side Equivalent target 2

Average absolute value of the mean response Equivalent target 3
Maximum absolute value of the mean response Equivalent target 4

Maximum pressure coefficient * Equivalent target 5

Note: Maximum pressure coefficient * refers to wind pressure at the measuring point multiplied by the corresponding
wind vibration coefficient.

The equivalent target 3–1 is the wind vibration coefficient and its mean value of the meridional
axial force, the equivalent target 3–2 is the wind vibration coefficient and its mean value of the toroidal
bending moment, and the equivalent target 3–3 is the wind vibration coefficient and its mean value of
the radial displacement.

Equivalent goals 4–1, 4–2, 4–3 and equivalent goals 5–1, 5–2, 5–3 have the same representative
meaning as above, which is not repeated here.

Figure 9 shows the distributions of wind vibration coefficient with construction height under five
equivalent targets. It can be found that the wind vibration coefficient decreased with height under
the eight working conditions. For the same construction model, the wind vibration coefficient was
the largest under equivalent target 5, and that under equivalent target 1 was the smallest. Figure 10
shows the recommended values of wind fluttering coefficient under the eight working conditions for
the five equivalent targets. Equivalent target 1 was the value of wind vibration coefficient, while all
other equivalent targets were increments relative to target 1.
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Figure 9. Wind vibration coefficient with meridional heights under five equivalent targets for each 
working condition. 
Figure 9. Wind vibration coefficient with meridional heights under five equivalent targets for each
working condition.
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5.3. Fitting Formula of Wind Vibration Coefficient

Wind vibration coefficient of super large cooling towers is greatly affected by structural performance
and wind pressure distribution during the whole construction process. However, the wind vibration
coefficient does not linearly increase with the height significantly, and there is considerable discreteness
of wind vibration coefficient for different equivalent targets. Therefore, the control of internal
force, safety, and economic performance of the cooling towers were the major considerations for the
determination of wind vibration coefficient in this study. We proposed the following formula of
wind vibration coefficient by taking the meridional axial force as the target (equivalent target 1, GB/T
50102–2014, 2014):

y =
m− β0

1 + ( x
n )

k
+ β0 (14)

where β0 is the wind vibration coefficient of the built-up tower, β0 = 1.74, m, n, and k are calculation
parameters, x is the template number, and y is the wind vibration coefficient for the corresponding
template number. After several iterations, the calculation parameters in the fitting formula were as
follows: m = 2.526, n = 116.511, k = 1.320.

Figure 11 shows the fitted curve and the comparison of wind vibration coefficients under the five
equivalent targets. The fitted curve could well reflect the differential values of wind vibration coefficient
during the whole construction process when the meridional axial force was taken as the target. Table 6
shows the recommended values of wind vibration coefficient under each working condition.

Table 6. Recommended values of wind vibration coefficient under each working condition.

Working
Condition

Working
Condition

1

Working
Condition

2

Working
Condition

3

Working
Condition

4

Working
Condition

5

Working
Condition

6

Working
Condition

7

Working
Condition

8

Wind
vibration
coefficient

2.47 2.34 2.19 2.02 1.96 1.91 1.82 1.74
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6. Stability Performance of the Cooling Tower during the Whole Construction Process 

We then analyzed the evolution of wind-induced stability performance during the whole 
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6. Stability Performance of the Cooling Tower during the Whole Construction Process

We then analyzed the evolution of wind-induced stability performance during the whole
construction process of the super large cooling tower. The effects of wind vibration coefficient,
concrete age, construction load, geometric non-linearity, and internal suction force on the buckling
stability and ultimate bearing capacity of the cooling tower were discussed.

6.1. Influence of Concrete Age and Construction Load

The elastic modulus of concrete with different age was calculated under each working condition:

Ec(t) = Ec
√
βt (15)

where Ec(t) is the elastic modulus (kPa) of C40 concrete with an age of t days, Ec is the elastic modulus
of concrete shell with an age of 28 days, βt is a coefficient, βt= es(1−

√
28/t), S depends on the type

of concrete, the value is 0.25 for ordinary cement and rapid-hardening cement, and t is the age of
concrete (day). The Poisson’s ratio and linear expansion coefficient of concrete with an age of t days
were the same as those of concrete with an age of 28 days. Shear modulus was 0.4 times that of the
elastic modulus.

Figure 12 shows the distribution of elastic modulus of concrete for different template number
under working condition 2 (30 templates).

The construction loads were determined based on the following criteria: (1) the uniformly
distributed load imposed by templates, slidewalk, scaffold, hanging basket, railings, a-frame, and
supporting system to the shell below along the circumferential direction was about 3.6 kN/m, (2) the
newly cast concrete exerted a uniformly distributed load along the circumferential was calculated as
25 × template height (1.277 m) × average thickness of the plate (m) kN/m, (3) the uniformly distributed
load exerted by the construction workers turning over the template to the shell below along the
circumferential direction was about 0.75 kN/m, and (4) concentrated load would be generated by the
reinforcing bars stacked on the slidewalk. The maximum concentrated load produced this way was 18
kN; (5) Concentrated load would be generated by the weight of electric welder and switchboard and
acted on the slidewalk, reaching a level of about 3.6 kN.
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Figure 12. Distribution of elastic modulus of concrete under working condition 2.

Figure 13 shows the typical construction conditions of cooling tower under two kinds of wind
loads during the whole construction process (wind pressure of standard wind vibration coefficient
and wind pressure of actual wind vibration coefficient).The buckling coefficients and displacements
of cooling towers under typical construction conditions during the whole construction process are
analyzed under the two conditions of concrete age change and concrete age change. Comparison
reveals that:

(1) As the construction height increased, the buckling coefficient decreased, and the rate of decrease
became smaller over time. Buckling displacement showed a discrete distribution, and no consistent
variation trend was observed. Thus, wind vibration coefficient and whether the concrete age and
construction load were considered had little impact on buckling mode and buckling displacement
under the eight working conditions.

(2) Buckling coefficient decreased if the concrete age and construction load were considered.
The influence of wind vibration coefficient referred from the specification and the actual wind vibration
coefficient on the buckling stability was much smaller than the influence of whether the concrete age
and construction load were considered or not.Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 24 
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Figure 13. Changes of buckling coefficient and buckling displacement under eight working 
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6.2. Analysis of Geometric Non-Linearity

Figures 14 and 15 respectively show the typical construction conditions of cooling tower under
two kinds of wind loads (actual wind-induced coefficient wind load, buckling wind speed wind
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load).Considering the concrete age change and not considering the concrete age change, the linear and
non-linear calculation of the typical construction conditions during the whole construction process of
the cooling tower is carried out, and the variation law of the maximum displacement of the structure
is analyzed.
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(a) Standard wind vibration coefficient 

Figure 15. Comparison of maximum displacement under linearity and non-linearity of the structure
for critical wind speed of buckling during the whole construction process.

It can be seen from the Figure 14, as the construction height increased, the maximum displacement
of the tower increased constantly, but the amplitude decreased. The maximum displacement under
working condition was smaller than that under working condition 7 due to the rigid ring constraint.
The maximum displacement response was consistent under linearity and non-linearity of the cooling
tower under different working conditions; the values differed very slightly.

It can be seen from the Figure 15 that the distribution pattern of maximum displacement changed
under the critical wind speed of buckling when considering geometric non-linearity. Below is the
linear analysis of wind-induced maximum displacement under some working conditions.
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6.3. Influence of Internal Suction Force

The influence of internal suction force on stability performance of the cooling tower during the
whole construction process was further analyzed. Figure 16 is the comparison of buckling coefficient
and buckling displacement with or without internal suction force under different working conditions.
There was an increment without internal suction force as compared with the condition with internal
suction force. An absence of internal suction force caused a significant increment in the buckling
coefficient during the whole construction process, but it had a lesser impact on buckling displacement.
The maximum increment of buckling coefficient was 16.2%, and the maximum difference in buckling
displacement was 1.2% in an absence of internal suction force without considering concrete age and
construction load. The maximum increment of buckling coefficient was 16.6%, and the maximum
difference in buckling displacement was −0.8% in an absence of internal suction force considering
concrete age and construction load.
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(a) Standard wind vibration coefficient 
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(a) Linear analysis  (b) Nonlinear analysis 

Figure 17. Comparison of maximum displacement in linear and non-linear analyses under basic 
wind speed. 
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(a) Linear analysis (b) Nonlinear analysis 

Figure 18. Comparison of maximum displacement in linear and non-linear analyses under critical 
buckling wind speed. 

Figure 16. Comparison of buckling coefficient and displacement under standard and actual wind
vibration coefficients.

Figures 17 and 18 are the comparisons of maximum displacement in linear and non-linear analyses
under basic wind speed and critical wind speed of buckling for each working condition. It is easy
to see that the internal suction force under the basic wind speed had less impact on the maximum
displacement increment in the presence of internal suction force. In contrast, under the critical wind
speed of buckling, the internal suction force caused a significant increment in maximum displacement
under each working condition.

The comparison shows that when the wind load is the basic design wind speed, considering the
influence of internal suction, the maximum displacement increment caused by wind has little influence
on each working condition, and the influence is positive or negative.

However, when the wind load is buckling wind speed, considering the influence of internal
suction, the maximum displacement of wind-induced displacement increases significantly under
different working conditions.
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(a) Linear analysis  (b) Nonlinear analysis 

Figure 17. Comparison of maximum displacement in linear and non-linear analyses under basic 
wind speed. 
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Figure 18. Comparison of maximum displacement in linear and non-linear analyses under critical 
buckling wind speed. 

Figure 17. Comparison of maximum displacement in linear and non-linear analyses under basic
wind speed.
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Figure 17. Comparison of maximum displacement in linear and non-linear analyses under basic 
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Figure 18. Comparison of maximum displacement in linear and non-linear analyses under critical 
buckling wind speed. 
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buckling wind speed.

6.4. Ultimate Bearing Capacity

Figure 19 provides the curve of maximum displacement with wind speed during the whole
construction period for each working condition. The histogram indicates the changes of maximum
displacement with wind speed under the standard wind vibration coefficient. The displacement under
actual wind vibration coefficient considering concrete age, construction load, geometric non-linearity,
and internal suction force was the increment relative to the condition of standard wind vibration
coefficient. Stepwise loading was performed using the initial wind speed of 23.7 m/s at the height
of 10 m as the baseline. The step length was 1–20 m/s. Comparison indicated that the increase of
construction height greatly reduced the ultimate bearing capacity of the cooling tower. The critical
wind speed of buckling decreased from 350 (±20) m/s to 100 (±20) m/s, and the decrease rate became
smaller over time. No consistent variation trend was observed for the maximum displacement upon
buckling under each working condition.

Ultimate bearing capacity of the cooling tower increased when considering the geometric
non-linearity, and decreased when considering the concrete age and construction load. The ultimate
bearing capacity during the whole construction process was sensitive to wind vibration coefficient.
The ultimate bearing capacity was much lower under actual wind vibration coefficient at a low
construction height. As the construction height increased, the ultimate bearing capacity of the structure
calculated with the actual wind vibration coefficient increased gradually.
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(c) Working condition 3 (d) Working condition 4 
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Figure 19. Changes of maximum displacement and increment with wind speed under eight working 
conditions. 
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7. Conclusions

We discussed the evolution of wind-induced stability performance and performed parameter
analysis for the whole construction process of super large cooling towers. The contents of research
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included dynamic characteristics, wind vibration coefficient, wind-induced response, buckling
instability, ultimate bearing capacity, and geometric non-linearity of the tower. The following
conclusions were reached:

(1) The fundamental frequency of the built-up tower was 0.57 Hz. As the construction height
increased, the fundamental frequency decreased. Construction height had a significant impact on the
lower-order frequencies, but a lesser impact on the higher-order frequencies. The order of capsize
mode increased with the increase of construction height, while the frequency of the excitation mode
decreased gradually.

(2) The wind vibration coefficient decreased with construction height during the whole construction
process. For the same construction model, the wind vibration coefficient was the maximum under
equivalent target 5, and it was the smallest under equivalent target 1. Based on the calculation results,
we proposed the formula of wind vibration coefficient by taking the meridional axial force as the target
for the tower, as shown below. In the formula, x is the template number, and y is the wind vibration
coefficient for the corresponding template number.

y =
0.786

1 + ( x
116.511 )

1.32
+ 1.74 (16)

(3) The buckling coefficient of the cooling tower decreased, and the maximum displacement
increased gradually as the construction height increased. Buckling displacement showed a discrete
distribution, without a consistent variation trend. In addition, the ultimate bearing capacity of the
tower decreased with the construction height. The critical wind speed of buckling decreased from 350
(±20) m/s to 100 (±20) m/s, and the decrease trend slowed down over time.

(4) The buckling coefficient of the tower during the whole construction period decreased when
considering the concrete age and construction load. Geometric non-linearity had mild impact on the
maximum displacement under the basic wind speed, but the impact was higher under the critical
wind speed of buckling. The presence of internal suction force caused a reduction in the buckling
coefficient of the cooling tower. The buckling coefficients calculated from standard or actual wind
vibration coefficient differed little. The influence factors of bucking stability of the cooling tower can
be ranked in a decreasing order as follows: internal suction force > geometric non-linearity > concrete
age and construction load > wind vibration coefficient. The degree of influence of these factors did not
show a consistent variation trend over the construction height.

(5) The ultimate bearing capacity of the cooling tower during the construction period increased
when considering geometric non-linearity, and decreased when considering concrete age and
construction load. The ultimate bearing capacity during the whole construction process was sensitive
to the wind vibration coefficient. As the construction height increased, the ultimate bearing capacity
calculated with the actual wind vibration coefficient increased gradually.

To conclude, the checking computation of stability performance of the super large cooling tower
during the whole construction period should consider the effect of differential values of wind fluttering
coefficient, as well as the influence of concrete age, construction load, and internal suction force. The
effect of geometric non-linearity is negligible.
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