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Abstract: Advances in technology have enhanced the ability to detect leakages in boiler tube
components in thermal power plants. As a specific issue, the interaction between the coal fuel stream
and the boiler tube membrane generates random and high-amplitude impulses, which negatively
affect the measured acoustic emission (AE) signal from leakages. It is essential to detect and practically
handle these kinds of impulses. Based on the object detection concept, this paper proposes an impulse
detection methodology that employs deep learning flexible boundary regression (DLFBR). First,
the shape extraction (SE) preprocessing technique is implemented to yield the shape signal, which
contains intrinsic information about the impulse from the raw AE signal. Then, DLFBR extracts and
generates both the feature map and the confidence mask from the shape signal to regress a boundary
box, which specifies the position of the impulse. For illustration purposes, the proposed algorithm
is applied to an experimental leakage detection dataset recorded from a subcritical boiler unit with
a tube membrane. Experimental results show that the proposed method is effective for detecting
impulses of leakage in a boiler tube testbed, providing 99.8% average classification accuracy.

Keywords: boiler tube leakage diagnosis; impulse detection; acoustic emission; boundary regression;
deep convolution neural network

1. Introduction

In recent decades, coal-fired power plants have been widely used as the main energy plants for
large-scale industrial procedures. A coal-burning power plant boils water in boiler tubes using the
heat generated by burning fossil fuels to provide high-pressure and high-temperature steam inside the
tube. Boilers are critical units for transferring heat from the fuel to the water. Due to its extremely
high operating pressure and temperature, the boiler tube is the component that most commonly
undergoes failure [1–5]. Tubes wear out and can no longer sustain the high temperatures and pressures.
Undiscovered failure in a tube may lead to even more destruction in other tubes [6]. The failure of boiler
tubes can be caused by fuel ash particles, overheating, waterside and fireside corrosion fatigue cracking,
stress corrosion cracking, erosion, etc., resulting in leakage in the tubes. Leakage in a steam boiler not
only diminishes the total efficiency of the power plant operation due to unscheduled outages but also
induces hazardous conditions for operators. Leakage can lead to catastrophic secondary damage, such
as tube explosions and destruction of the whole boiler, if not handled properly. Condition monitoring
and leak diagnosis of boiler tubes are indispensable for efficient performance and maintenance; they can
help improve the reliability, safety, and availability of the system. In addition, a fault detection system
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is able to identify a fault at its earliest degradation phase by exploiting complex and non-stationary
patterns of variables, enabling operators to take proper actions in advance. In a thermal power plant,
measures such as forecasting of tube explosions, timely leak detection, and localization of leak positions
are necessary to schedule repair times and minimize financial losses. However, the structure of a boiler
is so complicated that the state of the component–tube interaction associated with the turbulence of
the two-phase flow (water and steam) is hard to model. Hence, boiler tube maintenance can rely on
data-driven fault detection in the tubes. Data, which indicate the health states of the tube, can be
acquired by acoustic emissions, the electrical resistance, and vibration and ultrasonic signals [7–9],
and the leakage detection mechanism is repurposed as a classifier to perform detection. Among these
methods, acoustic emission (AE) is widely used to collect data to monitor a degrading system [9–11].
When a leak occurs in a tube, turbulence flow created by escaping fluid creates pressure waves
throughout the escaping fluid, within the fluid itself, and within the container structure. These waves
are related to structure-borne acoustic waves. To detect leaks, the energy associated with turbulence
waves is transformed into electrical signals using different types of transducers, which are connected
to a computer. AE sensors, which have high sensitivity, can record emission events caused by slight
variations in the structure of a tube component [12]. An advantage of using AE sensors for assessment
is that this allows the entire machine structure to be monitored simultaneously with a simple in situ
set up. This analysis technique does not need to scan individual components but utilizes a set of
sensors that are attached outside of the tube component to transmit AE signals. Several dynamic
variables can then be simultaneously observed during a leakage process. Previous studies related to
data-driven monitoring of boiler tubes mostly used manual processes to analyze collected data [13,14].
These methods are executed by visualizing sudden variations in the recorded data and then manually
detecting the leakage source. However, the highly complex and nonlinear signals acquired from the
system when a leak occurs in the boiler tube are impossible to identify by simply observing the AE
waveforms. Recently, meticulous artificial intelligent (AI) techniques have been investigated for leak
detection in boiler tubes. For example, Sun et al. implemented a leakage detection algorithm that
utilized a scheme with principal component analysis [15]. Some other techniques focused on flowrate
balance signals with Bayesian networks [16], phase transformation and maximum likelihood [6], fuzzy
logic [17,18], and artificial neural networks [1,19,20]. Furthermore, these classifying methods did
not give a satisfactory result based on the input of raw AE signals. Hence, a preprocessing setup is
necessary to extract better information from the recorded AE signals. However, even this application
has certain limitations, such as wave attenuation, inference of background noise, and inaccessible
sensor locations.

One of the processes that has the largest effect on measuring leakage signals is the interaction
between the coal fuel stream from the fuel injection inlet and the tube’s wall. The AE signal from
the fluid leakage associated with the tube’s wall has a small amplitude and is non-stationary, but
it spreads over a long duration; it is usually covered by another signal with a high signal-to-noise
ratio (S/N), which can be caused by the excitations generated by the coal powder impacting with the
metal tubes. This impact phenomenon randomly generates sharp and transient impulses with high
amplitude. To filter the fluid leakage signal, this kind of high S/N impulse waveform needs to be
detected and removed from the recorded signal. Previously, the impulse detection problem has usually
been solved by setting a threshold (e.g., a soft threshold [21,22], wavelet threshold [23], constant false
alarm rate for object detection [24]) and a cut-off range where the amplitude of the signal exceeds
the threshold. However, this approach is easily affected by random peaks from noise, and the cut-off

range does not cover the whole length of the impulse. Based on the concept of object detection [25,26],
we defined the fuel-attacked impulses as salient objects over the remaining background signal, and
the object detection and object localization algorithms are employed to identify this kind of impulse.
Despite the achievements of AI-based methods, such as the Hidden Markov [27], fuzzy algorithm [28],
and convolution neural network [29,30] methods, the design of an impulse detection algorithm still
relies on the patterns of signals, which have been preliminarily studied in [31]. However, the leakage
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signal in the boiler tube contains complex intrinsic information with a different pattern, and the patterns
of the impulse signal and leak signal are hardly differentiated. Therefore, this paper proposes a deep
learning flexible boundary regression (DLFBR) method to capture the different intrinsic information
of the object, which is the attacked impulses, and the background signal, which is mainly caused by
the leakage signal. DLFBR frames impulse detection as a regression issue to spatially separate the
boundary box surrounding the impulse. It first uses a one-dimensional convolution neural network
(1D-CNN) to divide the time signal into grids with different grid sizes. With respect to each grid size,
a confidence mask and a feature map are created to mark the position and extract the object-related
information. Then, the boundary regression algorithm yields the boundary around the object that
needs to be detected based on a different relative scale of the feature map and confidence mask.

To purify the leakage signal, this paper proposes an impulse detection methodology using the
DLFBR model to detect impulses caused by the impact of the fuel stream on the metal tube. A summary
of the main contributions of this paper are presented as follows:

1. This research proposes a preprocessing method for shape extraction (SE) to extract the global
shape signal, which contains intrinsic information on the impulse and a low level of random
noise in the macro-level that corresponds to the length of the sampled signal.

2. Then, the main proposed method uses DLFBR, which is structured based on a 1D-CNN with
the boundary regression layer. This deep learning model learns information related to the
shape signal and generates the grid with a confidence value; it helps to regress the boundary of
the impulse.

In the remainder of this research article, we provide a brief description of the boiler tube leak
detection testbed and data acquisition system in Section 2. A detailed description of the SE and
DLFBR are given in Section 3, and the experimental evaluation results of the algorithm are presented
in Section 4. Finally, Section 5 contains the concluding remarks.

2. Dataset of Simulated Leakage in a Seeded Boiler Tube

In a coal-burning thermal power plant, the steam vaporized from feedwater by heat energy from
fuel combustion rotates the turbine to generate electricity. To simulate the leak process in a boiler tube,
an elaborate experimental apparatus was built to collect the leakage signal. The general scheme of the
system is depicted in Figure 1. The feedwater was circulated by a pump between the tube membrane
and the tank. Before flowing into the lower drum, water was preheated by steam from the upper
drum. The lower drum fed feedwater that was vaporized into steam, which was temporarily stored
in the upper drum. In advance, bituminous pulverized coal was directed through the nozzle into
the combustion or furnace. To protect the sensor from heat damage caused by fire and hot gas when
the furnace was in a positive pressure situation and ensured the sensitivity of the sensor. Most leak
detection testbeds weld waveguides onto the boiler tube membrane and through the case, unused soot
blower ports, or penetrations in the inspection doors. Both airborne and structure-borne techniques
were used to measure the leakage signal. In airborne applications, microphones were attached by
hollow waveguides to the furnace medium space. For the structure-borne measurement, piezoelectric
transducers were attached to AE-type waveguides. The waveguide housed the AE sensor assembly
with integrated head amplifiers to reduce the loss of the AE energy in the measurement, along with
the essential components required for its sustained operation, such as isolation valves, heat-insulated
spacers, and heat-insulated couplings.
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Figure 1. The overall scheme of the boiler tube leak detection testbed.

The leakage phenomenon in the boiler tube was simulated by seeding four pinholes, which were
located at four different positions in the boiler’s tube. The four pinholes were disposed at random
position in the tubes as the occurrence of faults is random. The positions of the seeded pinholes are
depicted in Figure 1, where the pinholes are depicted by red stars. The testbed was installed using
seeded pinholes with different sizes: 0.6 mm, 1 mm, and 2 mm in diameter. The detailed installation of
each pinhole on the boiler membrane is illustrated in Figure 2. The measuring points with waveguides
were located near the source of the leakage hole to get a better AE signal. The leakage level was
controlled by manipulating the flow passage with a valve. Each pinhole state could be remotely
controlled by solenoid valves, which were attached to the pinhole. The valves needed to open and
close the pinholes to simulate tubes in different operating conditions: leak and normal. First, the valves
were held in the closed state during the process of collecting AE signals for the normal condition.
For the normal condition, AE signals were recorded for one minute. These signals were segmented
into multiple one-second signals. Furthermore, valves were opened to record the signals related to
the leakage phenomenon. Signals were recorded for two minutes in the leak state. The AE signals
were recorded using wideband differential AE sensors (WDI-AST) and data acquisition devices with
a peripheral component interconnect (PCI-2). To increase the number of impacts between the fuel
powder and the tube membrane, the fuel stream was composed of a mixture of steel elements and
pulverized coal. A detail of the setup is illustrated in Figure 2, and the data specification is also
presented in Table 1 below.
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Figure 2. Detailed setup of the data acquisition system.

Table 1. Data acquisition system and data specification.

Type of Setup. Detailed Specification

Card PCI 2
- 18-bit 40 MHz ADC
- Sensor testing: AST built-in
- Dynamic range: >85 dB

AE sensors (WDI-AST)

- Peak sensitivity [V/µbar]: −25 dB
- Directionality: ±1.5 dB
- Working range: from 200 to

900 kHz
- Resonant frequency: 650 kHz

Measurement type

- Acoustic emission
- Vibration
- Pressure
- Microphone

Pinhole size 0.6 mm, 1 mm, 2 mm

Test cases
- No operation
- Without fake powdered coal
- With fake powdered coal

AE sampling rate 1 MHz
Signal length for each case 3 min to 5 min

Number of datasets 4

3. Impulse Detection Methodology Using Deep Learning Flexible Boundary Regression

Since the time lengths of the AE impulse signal excited by the fuel stream are variable, the proposed
method must adapt to predict boundaries of different sizes. This research introduces the DLFBR
impulse detection model, which considers an impulse as an object to be analyzed and recognized.
This model improves the 1D-CNN to adapt for hit detection in the AE signal. The research reframes hit
detection as a straightforward regression issue, directly from the AE signal vector to the boundary box
coordinates. The proposed method takes an AE signal as the input, feeds it through a neural network
structure that looks similar to a 1D-CNN to integrate the boundary regression layer, and receives a
vector of box coordinates around the impulse position in the output. The basic idea of the detection
algorithm includes two steps: preprocessing the signal to extract the shape signal and a flexible
boundary detector.
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3.1. Preprocessing to Extract the Shape Signal

The preprocessing step works to extract the global shape of the impulse at the macro-level,
corresponding to the length of the sampled signal. Normally, the concept of object detection is used
in an image processing technique where the object is smooth, continuous, and mostly homogenous
inside the point area of the object. With this condition, the convolution neural network considers the
boundary of an object to be composed of an edge and blob patterns, which have a sudden change
between their different colors. However, the AE signal collected from the leak detection testbed always
includes environmental noise and contains many small troughs and peaks. If these troughs and peaks
are smaller than the grid size generated by the deep learning detector, the object detection algorithm
cannot give a satisfying result. To mitigate the undesired variations and unexpected instantaneous
frequency values produced by the remaining amount of small noise, the preprocessing step helps
obtain the overall shape of the signal with little random noise. Figure 3 presents the preprocessing step
of the algorithm.
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Figure 3. Preprocessing process of the acoustic emission (AE) signal.

In the first step, the AE signal sample is segmented into non-overlapping frames and rectified to
obtain the positive part. Then, in each window, the root means square (RMS) is calculated to form the
lower rate RMS signal. Next, the lower rate signal is expanded to its original size by scaling the time
axis using cubic interpolation and antialiasing. The cubic interpolation method performs piecewise
cubic Hermite interpolation based on the values at neighboring grid points. It seeks to match only the
first-order derivatives at the data points with those in the intervals before and after. For a set of data
points (xi, yi), i = 1..n, the cubic Hermite interpolant at any point x, with xi < x < xi+1, takes the form:

P(x) =
3cs2
− 2s3

c3 yi+1 +
c3
− 3cs2 + 2s3

c3 yi +
s2(s− c)

c2 di+1 +
s(s− c)2

c2 di, (1)

where
c = xi+1 − xi δi =

yi+1−yi
ci

di = P′(xi) s = x− xi.

An instance based on piecewise cubic Hermite interpolation is shape-preserving piecewise cubic,
which preserves the shape of the data since the resulting interpolated function has a continuous
derivative. Shape-preserving piecewise cubic interpolation has a similar formula to that of piecewise
cubic Hermite interpolation, but it differs in the component of the first-order derivatives di. The
output vector value is a weighted average of points taken from at least the nearest four neighborhoods;
this interpolation ensures that the value of the interpolant is located within a range of local points.
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3.2. Impulse Detection with the Deep Learning Flexible Boundary Regression Detector

In contrast to general CNNs, the proposed method employs a one-dimensional time-domain
signal as the input data instead of two-dimensional pixels. The one-dimensional AE signal is fed into
the first convolution layer. To detect an object, the detector takes the feature for that object and assesses
it at various locations and scales in the sample signal. DLFBR observes the entire signal during the
training and testing process to implicitly encode contextual information about the type of object as well
as its position. The component object detector is only unified into an end-to-end single neural network,
which utilizes features from the entire signal to estimate the position for each boundary box. To reason
globally about the full sample signal and all of the objects inside the signal, DLFBR divides the input
signal into a grid with a grid size G. If the center of an object drops into a cell in the grid, that cell
responds to detecting that object. From the generated grid, each grid cell regresses the B encircled box
and the confidence score for each box. These confidence scores represent how confident the network
is that the box contains an object, as well as how accurate the network thinks the predicted box is.
The confidence is specified as

con f (cell) = Pr[ Impulse] × IOUtruh
pred. (2)

The confidence score should be zero if there is no object existing in that cell. Otherwise, the
confidence score should receive a value equal to the intersection over union (IOU) proportion between
the regressed boundary box and the ground truth boundary box. This metric is normally used to
evaluate how well an object detection output is related to some ground truth box. Every boundary box
is composed of three prediction values: (x, w, c). The x coordinate locates the center of the predicted
box relative to the margin of the cell; the width w is presented relative to the whole length of sample
signal; and the confidence c is the confidence score of whether or not there is an object inside the box,
which represents the IOU proportion between the ground truth box and the predicted box. This score
encodes both the probability of that impulse appearing in the box and how well the regressed box fits
the impulse. If direct location prediction is utilized, the model encounters instability issues during
the training phase when predicting the estimate x for the box. To remedy this issue, researchers have
used the concept of an anchor, which predicts box coordinates relevant to the position of the grid cell.
The logistic regression activation σ(·) is used to map and constrain the network’s predictions output
such that the values fall between 0 and 1. Thus, DLFBR predicts a vector of three elements (τx, τw, τc)

for each boundary box. When the grid cell is offset from the beginning of the sample signal by cx and
the anchor is previously set with the width qw, then the predictions correspond to

bx = σ(τx) + cx,
bw = qweτw ,

Pr[ Impulse] × IOUtruh
pred = τc.

(3)

The predefined anchors are chosen to be as representative as possible of the ground truth boxes,
and the K-means clustering algorithm is used to define them. This prediction constraint helps make
parameter optimization easier to learn and makes DLFBR more stable. To adapt to a different length,
DLFBR generates predictions across three different scales so that the boundary regression layer is used
for detection in the feature map and makes confident masks of three different grid sizes: 10, 40, and
80 cells.

The structure of DLFBR includes three steps, as shown in Figure 4. First, the block convolution
layers of the model extract the features from the AE signal to yield the feature map and confidence
mask with respect to the grid. Splitting the signal into the grid cells was implicitly done by several
layers of 1D-CNN. The convolutions enable us to compute predictions at different positions in a signal
in an optimized way. The network downsamples the input signal by the factor stride (i.e., the factor
by which the output of the layer is smaller than the input signal of the network) until the boundary
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regression layer; thus, the output from the final convolution layer has the size of the predefined grid.
The grid size determination enforces spatial diversity in the boundary predictions. The convolution
layers employ the leaky RELU as the activation function with

ψ(x) =
{

x,
0.1x,

i f x > 0
otherwise

. (4)
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All of the convolution layers are added by the batch normalization to create improvements in
the training convergence while avoiding the regularization requirement found in other methods.
The method also helps regularize the model so that the network does not need a dropout step to
avoid overfitting.

In the second step, the boundary regression layer predicts the output probabilities and coordinates.
The boundary regression layer utilizes the anchor boxes to decouple the object prediction from the
spatial location for every box. In this way, the impulse location predictor predicts the box coordinate,
and the object predictor predicts the conditional probability of whether or not there is an object in the
given box. The boundary box width is normalized by the sample signal length so that it falls between 0
and 1. The boundary box coordinate is parameterized to be offset by a particular cell location to ensure
that it is also bounded in the range of 0 and 1. Then, the sum-squared error used as the output loss
function helps to optimize the parameters of the model. Because most of the cells in the grid do not
contain an impulse, but the sum-squared error weights the location error equally with the classification
error, misalignment occurs; this affects the precision. To solve this issue, the two parameters, i.e., αloca
and αnoObj, are used to increase the value of the loss component from the coordinate estimations and
to decrease the value of the loss component from the confidence core for boxes that do not contain
objects. This research also predicts the square root of the width to reflect the fact that small deviations
in large boxes matter less than they do in small boxes; this is done instead of using the width directly
to solve the problem that arises when the sum-squared error weights the error from the large boxes
and small boxes equally. During training, DLFBR predicts multiple boxes for each cell, but only one
box is chosen to be responsible for each impulse; the prediction box that has the highest current IOU
proportion with the ground truth is selected. The loss function used to optimize the parameters of the
network is shown below.
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Lθ(opred, otruth) = αloca
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B∑
j=0

1obj
i j

[(
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i − xpred
i

)2]
+ αloca

G∑
i=0

B∑
j=0

1obj
i j

(√wtruth
i −

√
wpred

i

)2
+

G∑
i=0

B∑
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1obj
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(
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i − cpred
i
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+ αnoObj
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i=0

B∑
j=0

1noObj
i j

(
ctruth

i − cpred
i

)2
(5)

Here, 1obj
i j denotes that it has the value 1 when the object exists in the predicted boundary box jth

of cell ith. Additionally, 1noObj
i j is almost the same, except it has a value of 1 when there are no objects in

the ith cell. The first component in the loss function calculates the loss related to the predicted box’s
center position. The second part is the loss related to the predicted box’s width. The third and fourth
parts are associated with the confidence scores for each box. Usually, it is clear which cell has an object
appear inside of it, and the network should only predict one box for each impulse. However, for some
large impulses or impulses near the border between cells, which can be well localized by multiple cells,
the algorithm will predict multiple boundary boxes. Non-maximal suppression can be employed to
remove extra detection boxes that are generated for the same impulse. This non-maximal suppression
first discards all boxes with a confidence of prediction less than or equal to 0.6. Then, it picks the box
with the largest confidence in its prediction output as the prediction and discards any remaining boxes
with IOU values greater than or equal to 0.5. Finally, only one boundary box is chosen for each impulse.

4. Results and Performance Evaluation

To validate the effectiveness of the DLFBR method, this algorithm was employed to detect impulses
caused by a coal fuel powder attack by using the dataset described in Section 2. Four datasets were
collected, each corresponding to a different pinhole that was opened. Each dataset included more than
100 one-second signals. The normal signal was recorded when all of the pinholes were closed to create
a baseline for comparison of the leakage cases. Both the signals in the leakage case and the normal case
showed a similar signal with the impulses in the time domain, as shown in Figure 5.
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The high amplitude impulses that appeared in both the leakage and normal signals do not relate
to the intrinsic properties of the leakage phenomenon. Nevertheless, this kind of impulse, which was
caused by the interaction between the coal powder flow and the steel tubes, protruded from and
overlaps with the real leakage signal. Moreover, these interacting impulses appeared randomly, and the
impulse width was variable; this made it more difficult to exactly detect their position and width in the
time domain signal.
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4.1. Effectiveness of the Shape Extraction Algorithm

DLFBR was designed to be flexible to different kinds of inputs. We used three different inputs
for DLFBR: the raw AE signal, the envelope signal, and the extracted shape signal. To illustrate the
effectiveness of preprocessing with shape extraction, the results for impulse detection from DLFBR
with the same sample but different input types are compared in Figure 6. Figure 6c shows the
results of impulse detection with the input that used the proposed preprocessing method. Similarly,
Figure 6a,b show the results when the inputs were the raw signal and the preprocessing signal with
envelope analysis.
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As seen in Figure 6a, applying DLFBR to the raw signal sometimes failed to detect the impulse,
even if the impulse clearly showed a high amplitude. Furthermore, DLFBR predicted a number of
boundary boxes for the same impulse. These boxes may be overlapping or separate because of the
small troughs and peaks inside the impulse; this can cause DLFBR to make incorrect predictions.
The DLFBR results with the envelope analysis are shown in Figure 6b. This method could detect
most of the impulses and led to better predictions, but the overlapping between boundary boxes still
occurred. The results of DLFBR with the SE preprocessing are shown in Figure 6c. This technique
outperformed the other two methods, detecting all of the impulses and predicting only one boundary
box for each impulse.

4.2. Effectiveness of the DLFBR Impulse Detection Algorithm

For illustration purposes, this paper compared the proposed method with two other impulse
detection methods found in the literature. The results of the proposed DLFBR algorithm and the other
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two methods, i.e., the soft threshold [21,22] and constant fault alarm rate (CFAR) [24] methods, are
considered by measuring the prediction performance of these methodologies based on the metric
of the average precision, which is based on the intersection over union. To compute the precision,
the overlap area between the output box from the algorithm and the ground truth box was first
found. Then, the area of the union, which consisted of both the output box from the algorithm and
the ground truth box, was also calculated. Dividing the area of overlap by the area of union gave
the IOU proportion. Due to the variable AE signal and the fact that the impulses are transient and
non-periodical, a complete match between the output boxes and ground truth boxes is unrealistic.
This paper defines an evaluation metric that rewards output boxes for heavily overlapping with ground
truth boxes. The ground truth box that bounds the impulse was generated by hand for each one-second
sample signal, which contained the impulse. Then, the intersection over union was calculated between
the output of the algorithm and the ground truth box. If the IOU was larger than a predetermined
value, the algorithm detected a true positive impulse. Then, the precision was calculated as

Pre =
#true possitives

#true positives + # f alse positives
. (6)

The results of impulse detection for these three methods are shown in Figure 7. These results
were obtained from the same sample for illustration purposes. The soft threshold method could not
accurately detect the prominent impulse in the presence of background noise, as shown in Figure 7c;
in fact, this method missed the second impulse of the sample. In addition, this method did not give
good results for the width of the impulse when the predicted box did not cover the whole impulse,
i.e., the trailing region of the impulse was cut off because its amplitude value was smaller than the
threshold. Therefore, the threshold-based technique is appropriate when the level of the background
noise is either unchanged or changes gradually. The CFAR detector’s results showed better detection
ability, as shown in Figure 7b. Because the threshold from the CFAR detector was more adaptive to
the noise, it detected more true impulses. However, it did not perform well in terms of the box width
when the signal consisted of strong temporal bursts of high AE activity. Such bursts were composed
of overlapping transients with varying duration, strength, and shape. In this paper, in addition to
determining the exact position, the width of the impulse is also important for defining the impulse
box, which contains enough information related to the entire impulse to purify the leakage signal
from the attack signal of the coal fuel stream. DLFBR was robust to different levels of noise and gave
better width values for the boundary box of the impulse; it detected most of the impulses with a larger
margin regression box relative to the CFAR detector, as shown in Figure 7a. This box covered the
length of the impulse and ensured that there was only one box for each impulse.

The calculated precision metrics used to evaluate the three algorithms for impulse detection with a
boiler tube dataset are shown in Table 2. DLFBR yielded the best results, showing an average precision
of 89.80% for the four datasets and higher IOU proportions of overlap between the predicted boxes
and the ground truth boxes.

Table 2. Precision performance for deep learning flexible boundary regression (DLFBR) compared to
the soft threshold and constant fault alarm rate (CFAR) methods.

Dataset Soft Threshold
(IOU = 0.2)

CFAR
(IOU = 0.2)

Proposed Method
(IOU = 0.3)

Dataset 1 0.7562 0.6767 0.9154
Dataset 2 0.6333 0.7111 0.8100
Dataset 3 0.4882 0.6948 0.9331
Dataset 4 0.7640 0.8037 0.9336
Average 0.6604 0.7215 0.8980
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4.3. Results for Leak Detection in Boiler Tubes

To purify the leakage signal from the attack signal of the coal fuel stream, the detected impulses were
removed from the AE recorded signals. Then, classification was performed on the impulse-removed
signal between the normal and leakage conditions. During the experimental process of leakage
detection, the leak stream along with the generated AE signal was continuous but nonstationary.
Therefore, the transient impulse that appeared in the recorded AE signal contained less information
about the leakage phenomenon. However, most of this was caused by the interaction between the
coal fuel and the tube membrane. Removing these impulses helped increase the quality of the leakage
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signal component, which resulted in higher classification accuracy. This method helped to indirectly
evaluate the effectiveness of the proposed DLFBR method. For this reason, the proposed method
employs the 1D-CNN classifier to separate the normal and leakage signals in this study. The deep
structure of the 1D-CNN architecture and the adaptation of the highly non-linear properties of the
network allow this method to obtain salient information from the input data. To demonstrate the
efficacy of the DLFBR impulse detection model, we obtained classification results for the leakage and
normal signals when the input used the raw AE signal (without removing the impulse) and when the
input had the impulse removed.

The 1D-CNN used all four channels of each dataset as inputs for the neural network. The results
of the classification accuracy are presented in the first column of Table 3. By using the input where the
impulse had been removed, the classification accuracy was increased by 14.65%. However, this result
shows low classification accuracy because the intrinsic information inside the signal is complex, and
constructing an optimized neural network structure requires a huge effort. Alternatively, the frequency
spectrum, which presents useful and stable details about the leak signal, can be utilized as an input
for the 1D-CNN. In the frequency spectrum, normal noise is shown as low-frequency white noise
(rumbling), while leaks display a higher frequency (hissing) signal. The classification results for the
normal and leakage signals using the frequency spectrum as the input are shown in the second column
of Table 3, and the confusion matrices are depicted in Figure 8. It can be seen that the classification
model’s average accuracy with the frequency spectrum input from the impulse-removed signal was
99.8%. This is an increase of 0.2% compared to using the signal without removing the impulse. This
means that the employed classifier can accurately classify most of the testing samples. Specifically, the
neural network can correctly classify 99.8% of the instances in the normal class; 99.8% of the instances
belonging to the leakage state of the boiler tube were correctly predicted. Removing the attack impulses
from the signal can yield enhanced classification performance.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 16 
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Table 3. Results of leakage classification.

Method
Input to the 1D-CNN Classification

Raw Signal Frequency Spectrum

Signal with impulse 50.05% 99.60%
Impulse-removed signal 64.70% 99.80%

Improvement 14.65% 0.20%

5. Conclusions

The main objective of this paper was to detect and isolate the transient impulses, which are
caused by the interaction between the coal fuel powder stream and the boiler tube component. These
impulses do not relate to the leakage acoustic emission signal from the tubes but unfavorably affect the
measured signal. To address this issue, this paper proposed a deep learning approach with DLFBR
impulse–object detection. Before applying DLFBR, the SE algorithm was employed to extract the shape
signal, which helps to improve the capabilities of DLFBR. Afterward, the DLFBR learned the intrinsic
information from the shape signal to generate the feature map and confidence mask for each signal;
it helped to regress the boundary box of impulse. The proposed DLFBR method was applied to an
experimental boiler tube leakage detection dataset. The proposed DLFBR-based technique showed
superior impulse detection performance compared with two other impulse detection methods found in
literature, demonstrating 89.8% classification accuracy. In addition, the proposed DLFBR was indirectly
evaluated by removing the impulses from the collected signal. The experimental results yielded 99.8%
classification accuracy between the normal and leakage signals. The improved accuracy with using
the purified signal by the proposed DLFBR demonstrates the usefulness of impulse detection in a
time-domain signal.
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