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Abstract: In most hyperspectral super-resolution (HSR) methods, which are techniques used to
improve the resolution of hyperspectral images (HSIs), the HSI and the target RGB image are assumed
to have identical fields of view. However, because implementing these identical fields of view is
difficult in practical applications, in this paper, we propose a HSR method that is applicable when
an HSI and a target RGB image have different spatial information. The proposed HSR method first
creates a low-resolution RGB image from a given HSI. Next, a histogram matching is performed
on a high-resolution RGB image and a low-resolution RGB image obtained from an HSI. Finally,
the proposed method optimizes endmember abundance of the high-resolution HSI towards the
histogram-matched high-resolution RGB image. The entire procedure is evaluated using an open
HSI dataset, the Harvard dataset, by adding spatial mismatch to the dataset. The spatial mismatch
is implemented by shear transformation and cutting off the upper and left sides of the target RGB
image. The proposed method achieved a lower error rate across the entire dataset, confirming its
capability for super-resolution using images that have different fields of view.
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1. Introduction

Hyperspectral images (HSIs) are widely used in many scientific and engineering fields, because they
are capable of collecting the light spectrum from a broad wavelength and saving the spectral data with
high spectral resolution. Most HSI applications in scientific and engineering fields aim to identify
materials in an image on the basis of the spectral characteristic of each chemical reflecting the light.
HSIs have been used as a powerful tool for detecting certain materials in an object, or measuring
quantitative chemical content in the fields of agriculture [1,2], environment [3,4], surveillance [5,6],
biomedical imaging [7,8], and geosciences [9,10].

Low-resolution is, however, one of the shortcomings of HSIs in practice. The low-resolution results
from the way in which hyperspectral cameras acquire the spectrum from light. Currently, two types of
hyperspectral cameras are available—push-broom and snapshot. Push-broom cameras scan a line in
an image and put the reflected light through optical spectroscopic sensors [11], while snapshot cameras
use a focal-plane array to generate a two-dimensional image with a single shot [12]. Regardless of the
hyperspectral camera type, all hyperspectral cameras slice the light input into small units of spectral
bands to obtain fine spectral resolution, and this process inevitably leads to a low amount of energy
collected by a pixel on the sensor. Therefore, pixel size of hyperspectral cameras should be larger than
that of general cameras, to avoid high signal-to-noise ratios in the collected spectrum.

To overcome this innate limitation of hyperspectral cameras, much research has been conducted
to increase the resolution of HSIs, by integrating other types of images. The techniques are variously
referred to as hyperspectral image fusion [13–15], hyperspectral super-resolution (HSR) [16,17],
or hyperspectral image upsampling [18]; HSR is the term used to refer to the technique in this
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paper. Most common HSR techniques are based on pan-sharpening, which can also be applied to
RGB images. Pan-sharpening merges a low-resolution multispectral image with a high-resolution
panchromatic image to create a single multispectral image with higher resolution features [19]. One of
the most common types of pan-sharpening algorithms, component substitution [20], is comprised of six
steps: up-sampling, alignment, forward transformation, intensity matching, component substitution,
and reverse transformation. However, because HSR is an ill-posed problem, assumptions of the
previous pan-sharpening techniques to resolve the ill-posedness are imperfect, which leads to the need
for new assumptions, based on new perspectives [21]. HSR techniques based on deep learning have
been developed in recent years, as deep learning techniques are rapidly emerging for image processing.
Li et al. [22] proposed an HSR model combining a deep convolutional neural network with an extreme
learning machine for HSI classification. Yuan et al. [23] trained the nonlinear relationship between
low- and high-resolution images using a convolutional neural network, and proposed a collaborative
non-negative matrix factorization, to enforce collaborations between the observed low-resolution HSI
and the transferred high-resolution HSI.

Among various HSR techniques, those based on the linear mixing model (LMM) are widely
studied by many researchers. The LMM represents an HSI as a matrix factorization of linear spectral
bases, so-called endmembers, and it can solve difficult HSI fusion problems with multispectral
images, including RGB images. Wycoff et al. [24] formulated an HSR problem in the form of a sparse
non-negative matrix factorization, and applied alternating optimization and convex optimization
solvers. Huang et al. [25] obtained a spectral dictionary using K-singular value decomposition,
and computed sparse fractional abundances with a sparse coding technique of orthogonal matching
pursuit. Simoes et al. [26] defined an HSR model as the standard linear inverse problem model,
using a form of regularization based on vector total variation, by considering spatial and spectral
characteristics of the given data. Kwon and Tai [18] proposed a two-step RGB-guided HSI upsampling
scheme that consists of spatial upsampling and spectrum substitution stages. One aspect of note in
this work is that the spectrum substitution stage learns a local spectral dictionary, from the superpixel
neighborhood. Fang et al. [27] developed a sparse representation model based on superpixels,
that learns a spectral dictionary via online dictionary learning. This method adopts joint sparse
regularization to simultaneously decompose the superpixel on the transformed dictionary, to obtain
the corresponding coefficient matrix.

However, in most HSR techniques, it is implicitly assumed that the mismatch between
low-resolution and high-resolution images is negligible. When a hyperspectral camera is used
together with an RGB camera, it is rarely possible, in practice, to match the fields of view (FOVs) of
the two cameras exactly. In remote sensing, such as for satellite photography and aerial photography,
the mismatch of FOVs resulting from different camera angles or lens distortion can be adjusted and
made negligible because the imaged objects are far enough from the cameras. However, if imaged
objects are close to the cameras, it is difficult to avoid these mismatches between images. Furthermore,
the two cameras have different sensitivities, even in the same light bandwidths, owing to differences in
imaging sensors and filming mechanisms.

HSR techniques based on the LMM potentially diverge in the process of finding the coefficient if
there is a significant mismatch between images. This divergence problem occurs when an HSI and
other RGB or multispectral images do not perfectly fit each other at the pixel level, because most
of the linear-mixing-model-based HSR techniques simultaneously optimize the coefficient towards
the pixel location of both the HSI and RGB or multispectral image. Lanaras et al. [28] formulated
the super-resolution problem as a searching procedure for an image that has both high-spatial and
high-spectral resolution. The high-resolution HSI is defined as a factorization of a matrix of endmembers
and a matrix of per-pixel abundances. A low-resolution HSI is reconstructed by multiplying a spatial
downsampling matrix, and a high-resolution RGB image is reconstructed by multiplying a spectral
downsampling matrix. Then, the differences between reconstructed images and original images are
minimized using a gradient descent optimization algorithm. However, if the input HSI and the RGB
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image are mismatched, the high-resolution HSI diverges, because it is impossible for the per-pixel
abundance matrix to satisfy pixel locations of both images.

The divergence problem has to be overcome to develop an HSI–RGB image integrated system
that can be used to take an image of a close object. We faced this problem while developing an
HSI–RGB image integrated system detecting chemical leaching on the surface of a concrete structure.
The features of chemical leaching on the concrete surface were too obscure to be detected, because of
the low resolution of the HSI. One of the methods used to increase the resolution is to gain access closer
to the concrete surface, but most concrete structures are too far away to be accessed. Therefore, it is
necessary to develop an HSI–RGB image integrated system that can reconstruct a high-resolution HSI
from an RGB image taken with different camera sensitivities and from different FOVs.

In this paper, we propose an HSR method that uses an HSI and an RGB image taken from a different
FOV. This method mainly uses histogram matching and the endmember abundance optimization
process proposed in [28]. First, a low-resolution RGB image is obtained, by applying spectral sensitivity
of an RGB camera to a low-resolution HSI. The acquired low-resolution RGB image contains the
color distribution of the low-resolution HSI. Next, histogram equalization is used to match the color
distribution of the low-resolution RGB image and the high-resolution RGB image, taken from a slightly
different viewing angle with the low-resolution HSI. Finally, the spatial endmember abundance of the
high-resolution HSI is matched to the spatial information obtained from the high-resolution RGB image.

The proposed method can be described as a rearranging of the endmember of the HSI to fit into
the pixel location of the high-resolution RGB image. Because there is no constraint on the pixel location
of the low-resolution HSI, the proposed method can build a high-resolution HSI only if the endmember
combination of both images is similar. The performance of the proposed method is evaluated by field
experiments comparing the spectrum of the same material in the low- and high-resolution HSIs using
a spectral angle mapper.

2. Problem Formulation

The goal of the HSR technique is to search for an image that has both high spectral and high
spatial resolution. The image is formulated as Z ∈ RB×W×H with B, W, and H representing the number
of spectral bands, width and height of the image, respectively. The HSR task of this research takes two
inputs, an HSI H ∈ RB×w×h with high spectral resolution and low spatial resolution (w < W and h < H)
and an RGB image I ∈ Rb×W×H with low spectral resolution and high spatial resolution (b < B).
According to the LMM of Lanaras et al. [28], the intensities z ∈ RB at a given pixel of Z are described
by an additive mixture:

z =
∑p

j=1
e ja j, Z = EA (1)

with a matrix E ∈ RB×p of endmembers and a matrix A ∈ Rp×W×H of per-pixel abundances. By this
definition, most p endmembers (materials) are present in the image. The endmembers E act as
non-orthogonal bases to represent Z in a lower dimensional space Rp with rank {Z} ≤ p.

The actual high-resolution RGB image I is a spectrally downsampled version of Z:

I = RZ = REA (2)

where R ∈ Rb×B is the spectral response function of the sensor. The spatial response function S of the
hyperspectral camera and the spectral response function R of the conventional camera form part of the
camera specifications and are assumed to be known. The spectral response function of the Nikon D700
offered in the work of Jun et al. [29] is used as R for this research.

The low-resolution HSI, H, is defined as:

H = EA′ (3)
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where A′ ∈ Rp×w×h is a low-resolution matrix of per-pixel abundances. The reason the per-pixel
abundances of H are defined not as a factorization of EA and spatial downsampling operator, but as
another form of matrix, is that the pixel location of the super-resolution result is not the same as that
of H.

The low-resolution RGB image L is defined as:

L = REA′ (4a)

which represents the factorization of the spectral response function R and the low-resolution HSI,
H. The constraint condition of this paper follows that of Lanaras et al. [28]. The main assumption
of the constraint is that the endmembers are reflectance spectra of individual materials, and the
abundances are proportions of those endmembers. As a consequence, the factorization is subject to the
following constraints:

ai j ≥ 0 ∀ i, j (non− negative abundance) (4b)

1ᵀA = 1ᵀ (abundances sum to 1) (4c)

with ai j the elements of A. Here 1 denotes a vector of 1s compatible with the dimensions of A.

3. Proposed Solution

3.1. Overall Scheme

In this paper, we propose a solution to the problem formulated in Section 2, using histogram
matching and the endmember abundance optimization process proposed in Lanaras et al. [28].
As briefly explained in Section 1, [28] defined a high-resolution HSI as a factorization of spectral
endmembers and its per-pixel abundance. The authors of [28] find a high-resolution HSI by optimizing
the spectral endmembers to a low-resolution HSI, and the per-pixel endmember abundances to a
high-resolution RGB, image. The optimization step for endmember abundance is adopted in this
method to find the per-pixel endmember abundance. The overall framework of the proposed solution
is displayed in Figure 1. The HSR procedure proposed in this paper consists of three steps:

Step 1. Creating an RGB image from a low-resolution HSI, using a spectral response function of a
commercial RGB camera.

Step 2. Matching the histogram of a high-resolution RGB image with that of a low-resolution RGB
image, obtained in Step 1.

Step 3. Optimizing endmember abundance of a high-resolution HSI toward the histogram-matched
high-resolution RGB image obtained in Step 2.

In Step 1, a low-resolution RGB image is reconstructed from a low-resolution HSI by factorizing a
spectral response function of a commercial RGB camera. The reconstructed low-resolution RGB image
is used as a color distribution standard point for both the low-resolution HSI and high-resolution RGB
image. In Step 2, the histogram of the high-resolution RGB image is matched with the low-resolution
RGB image obtained in Step 1. Since the high-resolution RGB image has the same color distribution as
the low-resolution RGB image, it is less necessary to match the color distribution using an optimization
process. In Step 3, the per-pixel endmember abundance optimization process of [28] is adopted,
to match the spatial distribution of endmember abundance between the high-resolution HSI and
the high-resolution RGB image. The per-pixel endmember abundance optimization is performed
by reducing the subtraction between the target high-resolution RGB image and the high-resolution
RGB image obtained from the high-resolution HSI. Because this optimization process disregards the
objective function, representing the difference between low- and high-resolution HSIs, the endmember
abundance freely converges to the pixel location of the high-resolution RGB image.
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information of an Red-Green-Blue (RGB) image and a hyperspectral image (HSI) is mismatched.

Each part of the proposed method is formulated as explained below. Step 1 factorizes the spectral
response function of a RGB camera with a low-resolution HSI to reconstruct a low-resolution RGB
image. An RGB image is reconstructed the equation formulated in [29]:

Ich =

∫ 720nm

400nm
Sch(λ)L(λ)Rx(λ)dλ (5)

where Sch(λ) (ch = R, G, B) is the spectral response function of an camera for each channel of RGB,
L(λ) is spectral power distribution of an illuminant and Rx(λ) is a spectral reflectance of a point in an
image. Equation (5) can also be written in a matrix form, for a discrete summation along the spectral
range of a hyperspectral camera with a given bandwidth. Step 2 matches the histogram of an RGB
image to that of a low-resolution RGB image L, obtained from an HSI. The histogram-matching process
is a minimization of grayscale transformation T in the following equation:

min
T

∣∣∣c1(T(g)) − c0(k)
∣∣∣ (6)

where g is a specific index on a gray scale, c0 is the cumulative distribution function of L’s histogram
and c1 is the cumulative distribution function of I’s histogram for all intensities k on a gray scale.
Since the histogram equalization is defined on a gray scale, it has to be iteratively performed on each
channel of a RGB image. T is a function that finds the index on c0 that has the value most similar to the
value of c1 at a particular index g on grayscale. After the function T is defined for g on all intensities on
a gray scale, histogram equalization is performed by finding and mapping a value corresponding to L
in the input image I, using T. In Step 3 of the proposed algorithm, an estimate of Z, or equivalently E
and A, is needed. From the given super-resolution problem, the following constrained least-squares
problem is formulated as:

arg min
A
‖ I − REA ‖2F (7a)

subject to ai j ≥ 0 ∀ i, j (7b)

with ‖ · ‖F denoting the Frobenius norm, and ai j is elements of A and constrained to non-negative values.

3.2. Overall Algorithm and Implementation

The method proposed in Section 3.1 proceeds with the following procedure, as described in
Table 1. The algorithm requires H and I, which are low-resolution HSI and high-resolution RGB images,
respectively. Because Z will be reconstructed using endmember abundance with the same resolution
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as I, the resolution of I has to be an integer multiple of the resolution of H with upsampling rate S.
Additionally, RGB camera sensitivity C is required to reconstruct an RGB image from H.

The proposed method begins by constructing a low-resolution RGB image L from H, using C.
The camera sensitivity for each RGB channel is multiplied by the spectral information of H of each
pixel, and normalized into an 8-bit-precision RGB image L, for further histogram equalization with
I. Then, the histogram of I is matched with that of L, so that I has the same color distribution as L.
The histogram equalization is performed using a MATLAB built-in function [30]. The next step is to
find the initial values, E(0) and A(0), to optimize Z, which consists of the endmember vector E and the
per-pixel abundance vector A. Simplex identification via split augmented Lagrangian (SISAL) [31]
initializes endmember E and sparse unmixing by variable splitting and augmented Lagrangian
(SUnSAL) [32] initializes A’, respectively. SISAL is an algorithm for unsupervised hyperspectral linear
unmixing and finds the minimum volume simplex containing the hyperspectral vectors, by augmented
Lagrangian optimizations. SUnSAL is an eigen decomposition-based hyperspectral unmixing algorithm.
The MATLAB code for SISAL and SUnSAL is available at the author’s webpage [33]. The low-resolution
per-pixel abundance A’ is upsampled with S and will be used as the initial point of the low-resolution
step. The optimization is performed with a projected gradient method for 7a. The equation for the
projected gradient method is:

Uq = Eq−1
−

1
c

(
Eq−1A−H

)
Aᵀ (8a)

Eq = proxE(U
q) (8b)

where c = γ2 ‖ AAᵀ ‖F is a nonzero constant and proxE is a proximal operator that is constrained to 7b.
The optimization procedure is repeated for q = 1, 2, . . . until convergence, or until the pre-determined
error rate, calculated by an error metric, is reached.

Table 1. Overall algorithm for the proposed solution.

Requires:
H (low-resolution hyperspectral image)
I (high-resolution RGB image)
C (RGB camera sensitivity)
S (upsampling rate)

Reconstruct L by applying C to H
Match histogram of I to that of L
Initialize E(0) with SISAL and A′(0) with SUnSAL from H
Initialize A(0) by upsampling A′(0) with S
k← 0
while not converged do

k← k + 1
A(k)

← A(k−1)S; Estimate E(k) with (8a) and (8b)
end while
return Z = E(k)A(k)

4. Experiment

4.1. Baseline Study for Spatial Information Mismatch

To confirm the limitation of current methods under color space difference and pixel mismatch, we
applied the method of Lanaras et al. [28] to the cases where pixel mismatch exists, and color spectral
functions are not identical for H and I. The method of Lanaras et al. implicitly assumes that there is no
pixel mismatch or color difference between high resolution RGB image and low resolution HSI, and the
effects of this assumption are investigated using images with pixel mismatch and color difference.
A public hyperspectral database, called the Harvard dataset [34], was used for the evaluation of the
proposed algorithm. Because the purpose of the Harvard dataset [34] is to establish the basic statistical
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structure of HSIs of real-world scenes, the dataset is in accord with the condition in which the proposed
algorithm will be used. The Harvard dataset [34] has 50 indoor and outdoor images recorded under
daylight illumination, and 27 images recorded under artificial or mixed illumination. The spatial
resolution of the images is 1392 × 1040 pixels, with 31 spectral bands of width 10 nm, from 420 to
720 nm. The original HSIs are used as ground truth for the evaluation.

First, the upper and left sides of the original HSIs (Figure 2a) were cut off by 50 pixels in both
horizontal and vertical directions to form the pixel mismatch dataset (Figure 2b). Comparing Figure 2a,b,
it can be observed that the location of the window on the left side is slightly translated, potentially
due to the lower per-pixel performance of the super-resolution process. Second, RGB images were
reconstructed as displayed in Figure 2c, using a color spectral function, Nokia N900, which was
different from the one used in optimization. The camera sensitivities of the Nokia N900 and Nikon
D700 are displayed in Figure 3. Figure 2c has relatively brighter color space compared to Figure 2a,
which causes low spectral accuracy of a super-resolution result. The maximum RGB value of the test
was normalized to 1, which is a common image processing technique for enhancing the visibility of
a reconstructed image. The experiments were conducted with the same implementation details as
in [28] for both datasets, but the operation was forced to run 1500 iteration for the 11 selected images.
For a fair comparison between the proposed algorithm and other methods, the same error rate method
was used as the primary metric. The datasets were tested using the root–mean–square error (RMSE) of
the estimated high-resolution HSI Z, with respect to the ground truth image Ẑ:

RMSE =

√
1

BNm

∑∑(
ẑi j − zi j

)2
=

√
‖ Ẑ−Z ‖2F

BNm
(9)

A spectral angle mapper (SAM) [35] was also adopted; it is defined as the angle in RB between the
estimated pixel ẑi j and the ground truth pixel zi j, averaged over the entire image and given in degrees:

SAM =
1

Nm

∑
arccos

ẑᵀi jzi j

‖ ẑi j ‖2‖ zi j ‖2
(10)

where ‖ · ‖2 is the l2 vector norm.
The test results were tabulated in Table 2 for comparison with the results of [28]. The algorithm

of [28] showed accurate results compared to other methods, such as those in [24,26,36,37], and [38],
but the experimental results indicate that a small pixel mismatch and color difference would lead
to a higher error rate. This phenomenon is theoretically inevitable for algorithms that optimize the
high-resolution HSI for both the RGB image and low-resolution HSI. For instance, the low-resolution
step of [28], minimizing the objective function of endmembers in the image, is highly governed by
the abundance of the high-resolution HSI. Therefore, inputting two images with pixel mismatch, as
displayed in Figure 2a,b, means optimization toward two different points, and inevitably results in
poor accuracy. This phenomenon appears in Figure 4a, which shows an error rate of > 10% where
the spatial mismatch is significant. Color difference is another factor that should be considered in
super-resolution problems. The high-resolution step requires an accurate spectral sensitivity function
to recover an RGB image close to the input RGB image. However, the sensitivity of the hyperspectral
camera usually differs from that of the RGB camera, as displayed in Figure 2a,c, complicating the
initialization of the color space between the RGB image and HSI. As displayed in Figure 4b, the color
distribution difference caused significant errors in parts of the HSI. The method is also inefficient in
finding the spectral function of the RGB camera every time the input RGB image is changed. Therefore,
poor results in both the pixel mismatch and color difference dataset indicate the need for the algorithm
to account for these issues in the super-resolution problem.
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reconstructed from an HSI from the Harvard dataset [34] with camera sensitivity for a Nikon D700,
(b) mismatched image where 50 pixels on the upper and left sides are cut off; (c) color mismatched
RGB image reconstructed using a Nokia N900.
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Figure 4. Example of a per-pixel RMSE (root–mean–square error) image from the Harvard dataset [34]:
(a) Image where translation is applied by cutting off and (b) an image in which the histogram is not
matched with that of an RGB image.

4.2. Proposed Method Evaluation

To test the performance of the proposed algorithm under a condition in which a mismatch between
a low-resolution image and a high-resolution image is significant, the original HSIs were edited in
two ways. To construct the first dataset, the upper left corner of the original HSIs was cut off for the
specific number of pixels, increasing in 20-unit increments from 20 to 100 pixels, as represented in
Figure 5a. For the second dataset, an affine transformation was applied, as displayed in Figure 5b,
to make horizontally sheared images from the pixels not cut off from the original images. The affine
matrix for the shear transformation used in this research was:

1 Cx 0
0 1 0
0 0 0

 (11)

The numbers used for the constants Cx in the shear transformation matrix are listed in Table 3.
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Figure 5. Example of pixel mismatch representation using (a) cutting off (Pn indicates the number of
pixels cut off from the left and upper sides) and (b) shear transformation.

We ran our method with the maximum number of endmembers set to p = 10, which is sufficient
for both datasets. The inner loops of optimization steps (8a) and (8b) were run for 5000 iterations.
Operation times depended on the image size and the number of iterations. For a 1392 × 1040 pixel
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image with 31 channels, it took ~660 s on a single Intel i7-7700, operating at 3.60 GHz with GPU
computation on a GTX 1080Ti (11 GB). The ratio between low-resolution image and high-resolution
image is set to 1:8.

Table 3 compares the average and median RMSE and SAM values by the method of
Lanaras et al. [28], with those by the proposed method for the eight cases, using images with
and without geometric transformation. For all of the experimental cases, the color difference is applied.
For the ideal images without any transformation, the method of Lanaras et al. [28] shows slightly lower
RMSE and SAM values than the proposed method. If any transformation is applied to the images,
however, the method of Lanaras et al. [28] results in significantly increased errors. With the small shear
deformation (Cx = 0.1), the average RMSE and SAM values increase from 2.68 to 9.79, and 5.58 to 7.16,
respectively. With the small cut-off of images (Pn = 20), the average RMSE and SAM values increase
from 2.68 to 9.12, and 5.58 to 6.71, respectively. On the other hand, the proposed method results
in slightly increased errors with the transformation. With the small shear deformation (Cx = 0.1),
the average RMSE and SAM values increase from 2.68 to 3.64, and 6.69 to 6.73, respectively. With the
small cut-off of images (Pn = 20), the average RMSE values increase from 2.68 to 3.56, and the average
SAM values change negligibly, from 6.69 to 6.65. Even with larger transformations, the proposed
method results in significantly smaller RMSE and SAM values than the method by Lanaras et al. [28].
The results quantitatively confirm that the proposed algorithm can solve the super-resolution problem
of an HSI, where an HSI and a target RGB image have different fields of view.

To qualitatively evaluate the performance of the proposed method, we verified the performance of
the per-pixel error rate image and the RGB image reconstructed from the high-resolution HSI, as shown
in Figure 6. Figure 6a,c show the per-pixel RMSE and reconstructed RGB images of the high-resolution
HSI of super-resolution in an environment where the shear transformation for Cx was 0.3. Figure 6b,d
show the per-pixel RMSE and reconstructed RGB images of high-resolution HSI of super-resolution, in
an environment where Pn was 80. Comparing Figure 6a,b with the per-pixel error image in Figure 4,
we can observe that the error rate for the overall image has been significantly reduced. In particular,
the phenomenon where two images are not merged into one image by the pixel mismatch in Figure 4a
is significantly reduced in Figure 6a,b. Also, this phenomenon is hardly observed in the reconstructed
RGB images of Figure 6c,d, which confirms that removing the high-resolution step in [28] gives a better
performance in pixel-mismatch environments, by relaxing the spatial constraint on two images with
different FOVs. Also, we showed that the color distribution difference that can be caused by removing
the high-resolution step in [28] can be reduced by using histogram equalization. However, further
research might be needed to study how to update the endmembers, even in an environment of pixel
mismatch, using additional optimization techniques.

Table 3. Results for the Harvard database.

Method of Field of View Mismatch
Lanaras et al. [28] Proposed Method

RMSE SAM RMSE SAM

Average Median Average Median Average Median Average Median

Without Transformation 2.68 2.11 5.58 5.47 2.68 2.57 6.69 5.32

Shear Transformation Using
Affine Matrix

Cx = 0.1 9.79 7.70 7.16 7.35 3.64 2.96 6.73 6.03
Cx = 0.2 11.76 9.33 7.88 8.00 4.4 3.56 6.9 6.26
Cx = 0.3 12.89 10.62 8.37 8.68 5.19 4.30 7.2 6.18

Translation by Cutting off Upper
and Left Sides

Pn = 20 9.12 6.93 6.71 6.83 3.56 2.87 6.65 5.65
Pn = 40 10.95 8.17 7.31 7.40 4.25 3.27 6.86 5.80
Pn = 60 12.02 9.27 7.80 8.03 4.93 3.68 7.08 5.98
Pn = 80 12.81 9.99 8.24 8.52 5.60 4.13 7.24 6.20
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Figure 6. Example of per-pixel RMSE images and reconstructed RGB images of high-resolution HSIs:
(a) Per-pixel RMSE image where a shear transformation with Cx = 0.3 is applied, (b) a per-pixel RMSE
image where translation with Pn = 80 is applied, (c) RGB image an where shear transformation with
Cx = 0.3 is applied, and (d) RGB image where translation with Pn = 80 is applied.

5. Conclusions

A new approach for hyperspectral super-resolution for an HSI and an RGB image taken with
different camera sensitivities and fields of view is proposed. Matching different camera sensitivities and
fields of view is a challenging task, that must be overcome to develop an HSI–RGB image integrated
system for environments where this issue is inevitable. The proposed method employs a modification
of the work of [28] to solve the super-resolution problem in an environment where an HSI and a target
RGB image have slightly different fields of view. The basic principle of the proposed method is to
obtain endmembers from the given his, and to optimize the per-pixel abundance with RGB images, for
which the histogram is matched to that of the RGB image reconstructed from the HSI. The endmember
optimization term between the low-resolution HSI and the high-resolution HSI is removed, to prevent
divergence caused by different per-pixel abundances of the low-resolution HSI and the high-resolution
RGB. A histogram-matching step between the given RGB image and the RGB image reconstructed
from the HSI is added, to reduce the color difference caused by different camera sensitivities and the
potential accuracy decrease caused by removal of the endmember optimization term.

We first conducted two experiments to confirm the effect of different camera sensitivities and
fields of view. The datasets for the experiments were constructed by editing 11 selected images from
the Harvard dataset, which is comprised of basic statistical structures of HSIs of real-world scenes.
To confirm the effect of the color difference, the input high-resolution RGB image is reconstructed
using camera spectral functions different from the one used for the optimization process. To confirm
the effect of the different fields of view, the upper and left sides of the input high-resolution RGB
image are cut off by 50 pixels. The experimental results demonstrate that these differences may lead
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to a high error rate in the super-resolution problem. The performance of the proposed method was
also tested on the Harvard dataset. The experimental dataset was constructed by adding two types
of geometric transformation, warping and transition, to the reconstructed RGB image, using camera
spectral functions different from the one used for the optimization process. The low error rate of the
experimental results in RMSE and SAM demonstrates that the proposed algorithm is applicable in
environments with pixel mismatching and color differences.
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