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Abstract: As automotive lamps are highly integrated, the heat generated from bulbs reduces the light
quantity and lifespan of the bulbs. Numerous studies have been actively conducted worldwide on heat
dissipation designs and material modifications for heat release. In this study, an analysis was carried
out of the mechanical, thermal, and morphological characteristics of Polybutylene Terephthalate
(PBT) and Polyamide (PA6) matrix composites containing alumina filler; further, their flowability and
injection moldability were also studied. The PA6 matrix that was subjected to an addition of 60%
alumina was selected as the sample. To compare the performances of the selected composites with
that of the fog lamp reflector manufactured with conventional PBT, fog lamp reflectors were fabricated.
When 60% alumina was added, the thermal conductivity was improved. Thus, the maximum
temperature of the lamp reflector was reduced, and the heat was transferred to the surroundings;
this was in contrast to the fog lamp reflector fabricated with conventional PBT.

Keywords: composite material; lamp reflector; injection molding; thermal properties; morphology;
melt flow rate

1. Introduction

As automotive lamps are highly integrated, the heat generated from bulbs reduces the light
quantity and lifespan of the bulbs [1]. In addition, the surrounding parts are deformed by thermal
shocks at higher temperatures. Among the automotive lamp modules, the part subjected to the highest
heat is the reflector that reflects the light of the bulb outside [2]. To minimize the deformation of the
reflector caused by thermal shocks, many studies have been actively conducted worldwide on heat
dissipation design and material change for heat release [3–6].

As for studies on the geometry of the reflector, research has been conducted on the geometry that
improves the heat dissipation performance by designing radiation fins on the reflector. The geometry
that has the optimal heat dissipation performance was derived using the geometry of radiation fins
as a design variable [7]. There are also cases where materials were changed to improve heat transfer.
For the projection lamp reflector, the aluminum die casting method was applied to release the heat
generated from the bulb. Although aluminum is a light metal with high thermal conductivity, it is
heavier than polymer materials (specific gravity: approximately 2.7 g/cm3) and its molding process
is limited. In addition, the cost of processing, such as anodizing, is high [8,9]. Research on the
development of light and thermally conductive polymer composites is underway to replace metal
materials [10,11]. Further, studies are being conducted on composites obtained by mixing lightweight,
highly strong, and thermally conductive base materials and ceramic powders or fibers with appropriate
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particle sizes [12–14]. In previous studies on composites, however, the mechanical characteristics [15,16]
and thermal characteristics [17,18] were analyzed in the composite specimen stage, and few studies
were conducted on the actual products.

Moreover, various methods [19–21] have been introduced for molding products using composites,
and most of them require long production times and involve processes requiring high production costs.
Among the various manufacturing methods, the method that uses injection molding is suitable for the
mass production of products with the same geometry, and it is one of the methods selected for the
manufacture of automotive parts considering economic efficiency and productivity.

In this study, the mechanical, thermal, and morphological characteristics of polymer matrix
composites containing alumina based on the alumina content were compared for their application to
automotive lamp reflectors, and their flowability and injection moldability were analyzed. PBT and PB6
were used as the polymer matrix, and alumina was used as a thermally conductive filler. The various
characteristics of composites according to the alumina content were analyzed. Among them, the case
where 60% alumina was added to PA6 was selected.

To compare the performances of the selected composites with that of the fog lamp reflector
manufactured with conventional PBT, fog lamp reflectors were fabricated under the same conditions
as the reflector injection conditions. Lamps were mounted on the fabricated two reflectors, and the
temperature changes of the reflectors were analyzed by creating an environment similar to actual use
conditions. When 60% alumina was added, the thermal conductivity was improved and thus the
maximum temperature of the lamp reflector was reduced and the heat was well transferred to the
surroundings, compared to the fog lamp reflector fabricated with conventional PBT.

2. Materials and Methods

2.1. Materials and Specimen Fabrication

To apply polymer composites to automotive fog lamp reflectors, PBT and PA6 were used as
the polymer matrix, and alumina was selected as a filler for improving the thermal conductivity of
the polymers.

Ultradur B 4560 from BASF SE was used as PBT. It is a material created for the injection molding
of automotive lamp bezels and has a medium viscosity grade. PA6 with Hyosung 1011br, RV 2.4
(Korea), was used as matrix resin in this work. In addition, alumina (Al2O3) was applied to improve
the thermal conductivities of the polymers. The Al2O3 used in this study was provided by Dongkuk
R&S Co. Ltd. (Gimhae, Korea). Spherical alumina with mean particle diameters of 5, 10, and 25 µm
was selected. For the chemical composition, DSP-AS series with over 99.9% Al2O3, 245 ppm of free
Na+, and 11 ppm of free Cl− were used. Spherical alumina was used to improve the flowability of the
material during injection molding, and various sizes of 25, 10, and 5 µm were mixed to increase the
packing density [22,23] required for thermal conductivity improvement [24].

Pellets for injection were manufactured by a TSE 32 twin-screw extrude machine (UNEEPLUS Co.
Ltd. Hwaseong, Korea) at a screw speed of 300 rpm, melt temperature at 250 ◦C. The screw diameter
in the extruder machine was 32 mm, and the length–diameter ratio was 40.

Injection molding for specimen fabrication used NE-80 (80 Ton) (Woojinplaimm Co. Ltd. Boeun,
Korea). For the fabrication of tensile specimens and spirals, the nozzle temperature was set to 260 ◦C.
Specimens were fabricated under the same injection conditions, including the injection rate of 50%,
an injection pressure of 6.5 MPa, and the cooling time of 20 s. Specimens for the measurement of
the heat transfer coefficient of each sample were fabricated using a heat press. The specimens were
fabricated by setting the temperature to 270 ◦C, the pressure to 0.6 MPa, and the pressing time to 5 min.
The testing samples had a diameter and a thickness of 12.7 and 2 mm, respectively [25].

Table 1 shows the compositions of the samples used in this study. The compositions were used
to analyze the characteristics of the samples based on the polymers of PBT and PA6 according to the
alumina content. For PA6, three cases with alumina contents of 50%, 60%, and 70% were compared and
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analyzed. For PBT, only 60% alumina was used because it was difficult to fabricate samples through
injection molding after mixing alumina due to cooling shrinkage.

Table 1. Content of PBT, PA6, and Al2O3 used for the preparation of polymer blends.

Sample Designation
Composition (wt.%)

PBT PA6 Al2O3

PBT (0) 100 0
PBT (60) 40 60
PA6 (0) 100 0
PA6 (50) 50 10
PA6 (60) 40 60
PA6 (70) 30 70

2.2. Characterization

Tensile strength (Ts) tests were carried out at room temperature according to American Society for
Testing and Materials (ASTM) D638-14 [26] using a QM 100TM universal testing machine (Qmesys Co.
Ltd., Anyang-si, Gyeonggi-do, Korea) with a cross-head speed of 5 mm/min. Flexural tests were also
conducted on the universal testing machine at room temperature according to ASTM D790-17 [27].
The notched impact strengths of the composites were determined with a QM700A IZOD Type impact
tester (Qmesys Co. Ltd., Anyang-si, Gyeonggi-do, Korea) at room temperature according to ASTM
D256-10 [28]. Each test was repeated three times to obtain each reported value.

The melt flow index (MI) was measured via a method that involved determining the rate
of extrusion of molten thermoplastic resins using an extrusion plastometer [29]. After a specified
preheating time, the resin was extruded through a die with a specified length and orifice diameter
under the prescribed conditions of temperature, load, and piston position in the barrel. The MI was
measured after drying the sample at 100 ◦C for 2 h, using a QM280A (Qmesys Co. Ltd., Anyang-si,
Gyeonggi-do, Korea) at a temperature of 235 ◦C and load of 1.0 kg according to ASTM D1238.

The flow behavior of plastic melts is of great importance for the injection of the molding and
can be assessed in practical terms. This is achieved via the spiral test that employs spiral molds on
commercial injection molding machines (NE-80). The flow path covered by the melt, which is also
the length of the spiral, is a measure for the flowability of the processed material [30]. The test was
conducted using a transfer pressure of 6.9 MPa and a mold temperature of 260 ± 3 ◦C in accordance
with the standards of ASTM D 3123-09.

The thermal conductivity (Tc) of the composites was examined by NETZSCH Geraetebau GmbH
(LFA447), and the infrared (IR) source was a Xenon flash lamp. The thermal diffusivity was measured
using a flash method, which is a noncontact measurement method, with no contact resistance with the
sample, and the thermal conductivity test was carried out according to ASTM E1461.

Thermogravimetric analysis (TGA) was performed on a TA Instrument Model Q5000IR. The TGA
temperature was calibrated with Curie temperature standards. Conventional TGA was performed
under nitrogen flow (25 mL × min−1) from room temperature to 700 ◦C using a heating rate of
20 ◦C min−1.

The morphology of the composites was observed by SEM (Sigma 500, Carl-Zeiss, Jena, Germany)
using an acceleration voltage of 10 kV. The sample surfaces were coated with platinum to enhance the
image resolution and prevent electrostatic charging [29,31].

3. Analysis of Test Results

3.1. Analysis of Mechanical Characteristics

Mechanical characteristics according to the alumina content added to the polymers of PBT and
PA6 were analyzed. Table 2 lists the results of the test on the mechanical characteristics. It was found
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that both PBT and PA6 exhibited lowered performances when alumina was added compared to the
mechanical strengths without alumina. For PBT, when 60% alumina was included, the tensile strength
sharply decreased, making it impossible to perform an experiment. It was also not possible to properly
measure the elongation. In the case of the flexural strength, the result was only half that of PBT
without alumina. Moreover, the impact strength test was not possible in this study because the impact
strength specimen tended to be damaged while it was fabricated. When the mechanical strengths
were analyzed for PA6 mixed with alumina, the tensile strengths were slightly lower compared to
that of PA6 without alumina, and the value showed a tendency to decrease as the alumina content
increased. When the content increased from 60% to 70%, however, there was no significant difference
in tensile strength. In the case of the elongation, however, the value continuously decreased as the
alumina content increased. Both flexural and impact strengths were found to decrease as the alumina
content increased.

Table 2. Mechanical properties of PA6/PBT/Al2O3 composites with different weight ratios.

Parameters of
Compounding Process

Tensile
Strength (MPa) Elongation (%) Flexural

Strength (MPa)
Impact

Strength (kJ/m2)

PBT (0) 66.7 250 93.2 2.5
PBT (60) 14.2 0.58 41.6 -
PA6 (0) 72.2 216 95.6 2.9
PA6 (50) 65.9 1.8 114.8 3.6
PA6 (60) 60.5 1.3 100.4 3.3
PA6 (70) 61.8 1.0 95.6 3.0

The addition of a rigid filler restricts the chain mobility of polymer molecules; this may lead to
the formation of micro-cracks in the composites. Furthermore, increased stress concentration at the
ends of the filler is another reason for crack formation in the matrix. It is known that, when the extent
of cracks in the specimen reaches a critical level, especially, in matrix surrounding filler, the matrix
cannot resist applied load and then cracks initiate in those regions [32–35]. PBT and PA6 revealed
different mechanical strength properties when alumina was added. The addition of alumina to PBT
was significantly detrimental to the mechanical strength of PBT; further, it was difficult to even fabricate
specimens by the addition of alumina. Conversely, in the case of PA6, the addition of alumina led to
an extreme decrease in the elongation, but no significant degradation of other mechanical properties
was observed. Therefore, in terms of mechanical strength, the addition of alumina to PA6 would
evidently be more suitable for the production of injection-molded products compared to PBT.

3.2. Analysis of Thermal Conductivity Test Results

The thermal conductivity test was conducted on PBT and PA6, according to the Al2O3 content.
Table 3 summarizes the results of the test, which were obtained from the average values of three
specimens. When 60% alumina was added to PBT, the thermal conductivity was found to be 1.21 W/mK,
which was four times as high as the thermal conductivity of the PBT polymer (0.29) [36]. For PA6,
when the alumina content was 50%, the thermal conductivity was 0.425 W/mK, which was approximately
1.7 times higher compared to the case without alumina. The thermal conductivity was 1.13 W/mK for
the alumina content of 60% and 1.163 W/mK for 70%. PA6 exhibited lower thermal conductivity than
PBT. This appears to be because of the difference in thermal conductivity between the basic materials.
The thermal conductivity of alumina is approximately 30 W/mK, but the mixtures of alumina and
polymers exhibited low thermal conductivities because alumina was accumulated on the polymers
and heat bridges could not be properly formed. Further, this is because the heat transfer is interrupted
by a very small gap in the contact surface between the alumina and the polymer [37,38].
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Table 3. Thermal conductivity of PBT, PA6, and Al2O3 composites.

Sample Designation Thermal Conductivity (W/mK)

PBT (0) 0.29
PBT (60) 1.21
PA6 (0) 0.25

PA6 (50) 0.425
PA6 (60) 1.13
PA6 (70) 1.163

3.3. Analysis of Flowability Test Results

To analyze the flowability of ceramic polymer composites, MI measurement and a spiral flow
(SF) experiment were performed. Table 4 lists the MI measurements and the SF experiment results,
and Figure 1 shows the specimens injected by the SF experiment.

Table 4. Flow characteristics of PA6/PBT/Al2O3 composites with different weight ratios.

Parameters of Compounding Process Melt Flow Rates (g/10 min) Spiral Length (mm)

PBT (0) 80 440
PBT (60) 68.5 400
PA6 (0) 63.0 385
PA6 (50) 50.4 340
PA6 (60) 46.2 315
PA6 (70) 36.0 297
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As shown in Table 4, when 60% alumina was added to PBT, the spiral length decreased by 40 mm
compared to PBT without alumina. The MI measurement also decreased from 80 to 68.5 g/10 min.
For PBT, the experiment was attempted based on the alumina content, but the experiment could not be
performed properly as the specimens showed a tendency to be damaged because of cooling shrinkage
after the SF experiment.

For PA6, the spiral length decreased as the alumina content increased. When 70% alumina was
added, the spiral length decreased by 88 mm compared to PA6 (0), confirming that the flowability
significantly decreased. The spiral length of PA6 (0) was 385 mm and that of PA6 (50) was 340 mm;
this was calculated as a 12% reduction in the spiral length. In the case of PA6 (60), the injection rate
was 315 mm and the reduction rate was 7.4% when PA6 (50) was selected as the basis of comparison.
In the case of PA6 (70), the reduction rate was 5.7% when based on PA6 (60). This implies that the
reduction rate is not proportional to the alumina content. Compared to the initial 50% addition of
alumina, additions of 10% and 50% or more had a greater effect on flowability as compared to the
reduction of spiral length. Moreover, when PBT (60) and PA6 (60) were compared, PBT exhibited better
flowability than PA6 (60); however, the specimen of PBT was damaged during cooling and subjected
to nozzle clogging. In the case of PBT (60), the flow characteristics decreased by 9.1% when compared
to PBT; in the case of PA6 (60), this decrease was 18.2% when compared to PA6 (0). The effect on flow
due to the addition of alumina was confirmed to have a more profound influence on PA6 than on PBT.

Based on the results of the thermal conductivity test and SF experiment, samples were injected by
adding 60% alumina to PBT and PA6, respectively. Figure 2 shows the injection results of PBT (60) and
PA6 (60). When injection was performed using a rectangular mold with round edges and a constant
thickness, the PBT sample showed surface breakage while being cooled after injection. This appears to
be because the resin of PBT was brittle. The PA6 sample did not exhibit any breakage. The experimental
results provided by the MI, spiral test, and the square injection methods confirmed that the PA6 (60)
did not possess suitable flowability characteristics when compared to the conventional PA6. However,
there was no problem in injecting the shape, and the possibility of an additional reflector injection
was confirmed.
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3.4. Thermogravimetric Analysis

To study the thermal degradation observed by rheological analysis, PA6 and PBT were mixed
with alumina and they were characterized by thermogravimetry (TGA). The results are presented
in Figure 3.
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The weight loss caused by the decomposition of the pure PBT and Al2O3 composites was nearly
the same up to a temperature of about 390 ◦C. After this point, the thermal degradation was influenced
by the presence of 60% Al2O3 in the PBT matrix. The Al2O3 content in the polymer plays a pivotal role
in the thermal degradation temperatures. In the case of the PBT containing 60% alumina, more than
60% of the weight is left at 600 ◦C. In addition, it was found that the weight reduction rate was lower
compared to that of pure PBT.

In the case of pure PA6, thermal degradation could be observed from 450 ◦C and the residual
weight was close to 0% at over 600 ◦C, making it possible to determine the residual amount according
to the alumina content. In the case of PBT (0), it can be observed that the weight reduction occurs
sharply from 390 ◦C; further, PA6 (0) shows a decrease in weight from 450 ◦C. When PBT and PA6
were compared, the thermal stability of PA6 was found to be superior [39].

In addition, it was discovered that the rate of degradation increased with an increase in the
alumina content [40,41]. The temperature at which the rate of weight reduction starts stopping is
beyond 550 and 500 ◦C for PA6 (0) and PA6 (50), respectively. This temperature is gradually lowered to
480 and 470 ◦C for PA6 (60) and PA6 (50), respectively.

3.5. Microstructures of the Composites

Figure 4 shows the SEM images of the raw materials. PBT is relatively smooth and uniform; PA (6)
exhibited round patterns; and for alumina, spherical alumina was selected for improved flowability
during injection, and the SEM measurement results confirmed that most alumina powders were
maintaining the spherical shape. Figure 5 shows the SEM images of the cross sections of the PA6 (50),
PA6 (60), PA6 (70), and PBT (60) samples. In the case of PA6 (50), the distribution of alumina was
significantly low. As the alumina content increased, a large amount of alumina was visible on the
surface, forming heat bridges. There were, however, gaps between the alumina and polymer, and voids
increased owing to the filler addition of alumina. They increased as the alumina content increased,
which degraded mechanical strength characteristics. For PBT, the dispersion state was not good in
many cases. This phenomenon is a typical disadvantage of these composites, which deteriorates the
overall mechanical and thermal properties. Subsequently, agglomeration occurred, and there were
many voids between the agglomerated parts. This seems to have significantly reduced the mechanical
strength of these composites.
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4. Analysis of the Automotive Lamp Reflector Application Test

4.1. Reflector Fabrication Using Injection Molding

Reflectors were fabricated through injection molding for the temperature measurement test
because of material change. The test was conducted on the fog lamp reflector, and the model applied
to vehicle ‘S’ from company ‘H’ was used as the fog lamp.

For the temperature measurement test, the reflector fabricated using conventional PBT and the
product fabricated using PA6 (60) tested above were compared. The SPE-250 model from Hyundai
was used as the injection molding machine, and the reflectors used the same fog lamp mold for
a comparison. As for the injection conditions, the injection pressure was set to 55 bars, the injection
rate to (50%), and the nozzle temperature to 260 ◦C.

4.2. Analysis of the Reflector Temperature Distribution Test

To measure the temperature difference between the reflectors due to the material change, a system
was constructed as shown in Figure 6. Polycarbonate (PC) chambers were constructed to conduct the test
in environments with conditions similar to the enclosed conditions wherein the reflector is mounted and
used in a vehicle, and the fabricated PBT and PA6 (60) reflectors were set, respectively. The temperature
measurement time was set to 50 min at which the temperature converged in a preliminary test, and the
temperature of the reflector surface was measured after 50 min. A fog lamp h8 of 12 V and 35 W was
used as the target lamp, and 12 V was applied using a power supply (SPS-2415). K-type thermocouples
were attached to measure the temperature distributions of the reflectors. They were attached to three
internal positions and three external positions above the lamp where the highest temperatures were
predicted in the simulation [42]. This position was found to be the highest temperature, similar to
the results predicted by infrared thermal camera (FLIR T620). A thermocouple was used for more
accurate temperature measurement. Figure 7 shows the results of measuring the temperature of the
reflector surface using a thermal imaging camera. The results obtained by the thermal imaging camera
were not well defined for the accurate measurement of the temperature. This was due to the curvature
offered by the reflector surface and the reflection of the surface itself; however, the trend of the overall
temperature of the reflector surface was confirmed.
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Figure 8. Reflector temperature measurement results over time: (a) temperature distribution of the
PBT reflector, (b) temperature distribution of the reflector made of PA6-based composites.

Figure 9 shows the temperatures of the reflectors made of PBT (0) and PA6 (60). FT2 in Figure 9a
is the position closest to the lamp and, thus, it is the hottest position. The maximum temperature
of the PBT reflector was 95.6 ◦C and that of the PA6 (60) reflector was 88.7 ◦C, which confirms the
temperature of the reflector made of conventional PBT was approximately 7 ◦C higher. This is the
result caused by the difference in heat transfer between the materials. Moreover, it was found that PA6
exhibited relatively higher temperatures at FT1 and FT3.
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Figure 9. Internal and external temperatures of the reflectors. (a) Internal temperatures,
(b) external temperatures.

As PA6 (60) has higher thermal conductivity than PBT, it can be estimated that more heat transfer
from FT2 increased the temperatures. While the difference between the maximum and minimum
temperatures was approximately 32 ◦C for PBT, it was approximately 23 ◦C for PA6 (60). Figure 9b
shows the temperatures measured at three points outside the reflectors. The maximum temperature
was observed at the position of BT2, and the value was 74.4 ◦C for the PBT reflector and 77 ◦C for the
PA6 (60) reflector.

Among the temperatures behind the PBT reflector, those of BT1 and BT3 were 55.1 and 54.8 ◦C,
respectively, indicating no significant temperature change. In the case of the PA6 (60) reflector, however,
the temperatures rose to 60 and 64.8 ◦C, respectively. This appears to be because the temperature of the
bulb was well transferred to the back of the reflector owing to the thermal conductivity of the material
applied to the reflector. Therefore, the PA6 (60) reflector exhibited higher temperatures at all three
points behind the reflector. This also appears to be because the internal temperature was transferred to
the surroundings due to the relatively higher thermal conductivity of the PA6 (60) reflector.

The temperature deviation behind the reflector was measured to be 20 ◦C for PBT and 17 ◦C
for PA6 (60). Moreover, when the temperatures of FT2 and BT2 were compared for each specimen,
the temperature difference was 21.2 ◦C for PBT and 11.7 ◦C for PA6 (60). The analysis of the
temperatures of the reflector surface revealed that the reflector made of PA6 (60) exhibited a lower
maximum temperature and a reduction in temperature deviation for each section caused a high thermal
conductivity compared to the reflector made of conventional PBT.

5. Conclusions

In this study, the mechanical, thermal, and morphological characteristics of polymer matrix
composites containing alumina according to the alumina content were compared for their application
to automotive lamp reflectors, and their flowability and injection moldability were analyzed. A fog
lamp reflector was fabricated through injection molding using PA6 (60) selected based on the analysis
results, and it was compared with the conventional PBT reflector to verify its applicability.

Owing to the alumina filler added to the polymers for thermal conductivity improvement,
the thermal conductivity was clearly improved even though some of the mechanical characteristics of
the polymers were degraded.

As for the injection ability of the polymer composites, the flowability decreased as the alumina
content increased, and the injection ability of PBT was found to be significantly lower than that of PA6.

To analyze the applicability of the selected composites to the reflector, fog lamps were fabricated
through injection molding using PBT, which is used in existing fog lamps, and the selected PA6 (60),
and they were tested under conditions similar to the actual lamp use conditions. The test results
confirmed that PA6 (60) reduced the maximum temperature and transferred heat well to the
surroundings compared to the existing reflector.
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