
applied  
sciences

Article

Development of Two Novel Hybrid Prediction
Models Estimating Ultimate Bearing Capacity of the
Shallow Circular Footing

Hossein Moayedi 1,2 , Bahareh Kalantar 3,* , Anastasios Dounis 4, Dieu Tien Bui 5,6,*
and Loke Kok Foong 7

1 Department for Management of Science and Technology Development, Ton Duc Thang University,
Ho Chi Minh City, Vietnam; hossein.moayedi@tdtu.edu.vn

2 Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3 RIKEN Center for Advanced Intelligence Project, Goal-Oriented Technology Research Group,

Disaster Resilience Science Team, Tokyo 103-0027, Japan
4 Department of Industrial Design and Production Engineering, University of West Attica, Campus 2,

250 Thivon & P. Ralli, 12244 Egaleo, Greece; aidounis@uniwa.gr
5 Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
6 Geographic Information System Group, Department of Business and IT, University of South-Eastern

Norway, N-3800 Bø i Telemark, Norway
7 Centre of Tropical Geoengineering (Geotropik), School of Civil Engineering, Faculty of Engineering,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; kfloke2@live.utm.my
* Correspondence: bahareh.kalantar@riken.jp (B.K.); dieu.t.bui@usn.no or

buitiendieu@duytan.edu.vn (D.T.B.)

Received: 11 September 2019; Accepted: 11 October 2019; Published: 29 October 2019
����������
�������

Abstract: In the present work, we employed artificial neural network (ANN) that is optimized
with two hybrid models, namely imperialist competition algorithm (ICA) as well as particle swarm
optimization (PSO) in the case of the problem of bearing capacity of shallow circular footing systems.
Many types of research have shown that ANNs are valuable techniques for estimating the bearing
capacity of the soils. However, most ANN training models have some drawbacks. This study
aimed to focus on the application of two well-known hybrid ICA–ANN and PSO–ANN models to
the estimation of bearing capacity of the circular footing lied in layered soils. In order to provide
the training and testing datasets for the predictive network models, extensive finite element (FE)
modelling (a database includes 2810 training datasets and 703 testing datasets) are performed on
16 soil layer sets (weaker soil rested on stronger soil and vice versa). Note that all the independent
variables of ICA and PSO algorithms are optimized utilizing a trial and error method. The input
includes upper layer thickness/foundation width (h/B) ratio, footing width (B), top and bottom soil
layer properties (e.g., six of the most critical soil characteristics), vertical settlement of circular footing
(s), where the output was taken ultimate bearing capacity of the circular footing (Fult). Based on
coefficient of determination (R2) and Root Mean Square Error (RMSE), amounts of (0.979, 0.076) and
(0.984, 0.066) predicted for training dataset and amounts of (0.978, 0.075) and (0.983, 0.066) indicated
in the case of the testing dataset of proposed PSO–ANN and ICA–ANN models of prediction network,
respectively. It demonstrates a higher reliability of the presented PSO–ANN model for predicting
ultimate bearing capacity of circular footing located on double sandy layer soils.
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1. Introduction

Recently, artificial neural network (ANN) has been suggested to support the estimation of ultimate
bearing capacity of the circular footing in single homogenous soil environments as well as other
engineering materials [1–4]. The study of Fult (maximum applied stresses corresponding to a particular
settlement, i.e., 0.10 foundation width) of foundations is essential to geotechnical engineering and soil
mechanics. In addition, complex geological structure, e.g., bearing capacity of shallow footings lied on
multilayer soil (or non-homogeneous soil), are important to be considered. Traditional approaches
are based on complex solutions, i.e., utilizing limit equilibrium consideration [5–9] or extensive
experimental approaches [10–14]. In many cases, the suggested solutions illustrated how the top
layer thickness (or its ratio to the footing width) affects the Fult of the shallow footing placed on two
or more layered soils. In this regard, the settlement and bearing capacity of shallow footings have
been proven to depend on several key factors, namely foundation soil parameters, the shape of the
footing, and number of soil layer beneath the footing. The complexity of the problem is raised by the
addition of soil layers under the footing. Different equations have been proposed to compute the soil
bearing capacity (e.g., in a particular settlement) of circular and square footings [15–17]. The main
problem of predicting the ultimate bearing capacity of the circular footing is to reduce or minimize its
likelihood of high settlement after real stresses are used. The most effective parameters in predicting a
correction amount for the bearing capacity are (i) soil parameters (or layered soils beneath footing),
(ii) footing shape (e.g., strip, circular, and rectangular); and (iii) soil layers arrangement [18]. It is
important to note that the soil properties (e.g., dilation angle, unit weight, internal friction angle and
cohesion, and Poisson’s ratio, as well as elastic modulus) can apply stresses on the footing. In general,
the ultimate bearing capacity of the circular footing has been determined to be the ultimate applied
stress in the case of the maximum ratio of settlement (footing settlement/footing width or S/B) that
is 10% of the footing width [5,19,20]. There are many factors that can affect bearing capacity of the
shallow footing like multilayer soil and geological conditions, failure model considered through the
calculation, the stronger soil location (for example, the arrangement of soil layer), type of the soil, and
footing width [21]. For providing a reliable prediction of the ultimate bearing capacity (Fult) for shallow
footings placed on multi-layered soils, many scholars like Haghbin [22], Lotfizadeh and Kamalian [23],
Meyerhof and Hanna [10], and Ahmadi and Kouchaki [24] suggested novel formulas.

In this study, to forecast the Fult of the circular footing, 84 ANN models and 58 hybrid models (for
example, helping the ANN for providing an efficient outcome), namely (i) imperialist competition
algorithm (ICA) and (ii) particle swarm optimization (PSO) were designed. The hybrid ICA–NN and
PSO–ANN models provided here were not utilized in the engineering-based example provided in this
study. There does not exist a study conducted on the use of the proposed hybrid model to predict
the Fult of circular footing rested on multilayer soil conditions. Thus, this study aimed to optimize
ANN with two well-developed hybrid optimization algorithm models with a reliable approximation
of circular footing’s bearing capacity rested on layered soils.

2. Methodology and Model Assessment

2.1. Artificial Neural Network

In this study, three different hybrid artificial intelligent systems were used to estimate the ultimate
bearing capacity of the circular footing, namely (i) conventional feedforward backpropagation ANN,
(ii) hybrid PSO–ANN, and also (iii) ICA–ANN. McCulloch and Pitts [25] suggested ANN for the
first one. Then, in 1949, the first technique for training ANNs was suggested [26]. There were
several rules according to observations and hypothesis of neuro-physiologic nature. Numerous other
researchers have investigated the development of nonlinear and simple mathematical models according
to biological neuron [27,28]. These studies allow for the production of a big number of structures (e.g.,
topologies) and network learning algorithms [29–35]. With using a randomly selected testing database,
ANN-based models run the dataset in a training network and can also analyze the predicted result
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(i.e., less than 30% of the whole datasets) [36–38]. More details about the ANN algorithm are presented
in Figure 1.
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2.2. Particle Swarm Optimization (PSO)

Eberhart and Kennedy [39] have introduced particle swarm optimization (PSO) algorithm. After
that, many scholars used it, including Huang and Dun [40] and Wan et al. [41], in different optimization
problems. This algorithm commonly uses less memory and also has a higher learning speed than
other optimization algorithms like the genetic algorithm. Figure 2 shows simplified details about the
algorithm of PSO that all considered particles were initialized. The most appropriate particle can be
chosen when the fitness assessment for every particle is performed. Then, among all particles, the global
best particle can be selected and the outcomes for particle velocity should be tested by terminating
criteria. The algorithm ends when the terminating criteria are met. With this new compatibility, the
algorithm is predicted again, and new compatibility can be selected per each particle. In many studies
(Zhang, et al. [42], Yuan and Moayedi [43], Yuan and Moayedi [44], Xi, et al. [45] and Moayedi, et
al. [46]), the learning approach of hybrid PSO combined with the ANN algorithm (called PSO-ANN in
this study) was suggested (Figure 3).
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2.3. Imperialist Competition Algorithm (ICA)

The method of imperialist competition algorithm (ICA) was firstly developed by [47] and later
expanded in different engineering subjects by other researchers (e.g., Mosallanezhad and Moayedi [48]).
Its process is very similar to many other evolutionary algorithms such as PSO and genetic algorithm
(GA). The first step in ICA is candidate solutions (or initial population). This step in ICA gets started
with a number of countries. The number of countries will be separated into two main groups, namely
imperialists and colonies. In these groups, the imperialists are some of the strongest countries where
the colonies are the remaining countries (Figure 4). Note that colonies are distributed between the
imperialists to make the empires. The distribution of the colonies is based on their own relative
strength. As in the ICA, each one of the emeries competes with others to govern more colonies and
therefore expand their territory. At the end of this imperialist competition looping, stronger empires
will take possession of weaker colonies located in weaker empires. The process will stop after being
satisfied by pre-defined termination criteria. Description of the ICA algorithm including its designed
steps is well described in other studies. The algorithm of ICA is presented in Figure 5.

In the literature, for enhancing the efficiency of the ANN-based algorithm by the use of novel
optimization algorithms, many works have been performed. In the case of solving engineering issues,
algorithms like genetic, ICA, and PSO algorithms can be selected as the new optimization approaches.
Moreover, in order to improve the defect of the ANNs, many optimization algorithms have been
tested. The optimized finding method of ANN algorithm can cause undesirable solution because
the backpropagation approach is a local searching method, for example, searching via the training
algorithm. For finding an appropriate weight along with bias of the network and for enhancing the
efficiency, different optimization approaches can be selected. Because optimization algorithms can
discover a global minimum in comparison with backpropagation-based neural networks, one can find
a higher probability of finding more appropriate convergence in these methods. Hence, by taking
advantage of hybrid methods like PSO–ANN and ICA–ANN, the ANN weakness in the case of finding
the global minimum is removed for example enhancing its searching characteristics by fitness functions
and also cost functions.

Appl. Sci. 2019, 8, x 5 of 22 

 

2.3 Imperialist Competition Algorithm (ICA) 

The method of imperialist competition algorithm (ICA) was firstly developed by [47] and later 

expanded in different engineering subjects by other researchers (e.g., Mosallanezhad and Moayedi 

[48]). Its process is very similar to many other evolutionary algorithms such as PSO and genetic 

algorithm (GA). The first step in ICA is candidate solutions (or initial population). This step in ICA 

gets started with a number of countries. The number of countries will be separated into two main 

groups, namely imperialists and colonies. In these groups, the imperialists are some of the strongest 

countries where the colonies are the remaining countries (Figure 4). Note that colonies are distributed 

between the imperialists to make the empires. The distribution of the colonies is based on their own 

relative strength. As in the ICA, each one of the emeries competes with others to govern more colonies 

and therefore expand their territory. At the end of this imperialist competition looping, stronger 

empires will take possession of weaker colonies located in weaker empires. The process will stop 

after being satisfied by pre-defined termination criteria. Description of the ICA algorithm including 

its designed steps is well described in other studies. The algorithm of ICA is presented in Figure 5. 

 

Figure 4. Imperialist competition algorithm main procedure to take possession of a weaker colony. Figure 4. Imperialist competition algorithm main procedure to take possession of a weaker colony.



Appl. Sci. 2019, 9, 4594 6 of 21

Appl. Sci. 2019, 8, x 6 of 22 

 

 

Figure 5. The flowchart of the ICA process (after Moayedi and Armaghani [49]). 

In the literature, for enhancing the efficiency of the ANN-based algorithm by the use of novel 

optimization algorithms, many works have been performed. In the case of solving engineering issues, 

algorithms like genetic, ICA, and PSO algorithms can be selected as the new optimization 

approaches. Moreover, in order to improve the defect of the ANNs, many optimization algorithms 

have been tested. The optimized finding method of ANN algorithm can cause undesirable solution 

because the backpropagation approach is a local searching method, for example, searching via the 

training algorithm. For finding an appropriate weight along with bias of the network and for 

enhancing the efficiency, different optimization approaches can be selected. Because optimization 

algorithms can discover a global minimum in comparison with backpropagation-based neural 

networks, one can find a higher probability of finding more appropriate convergence in these 

methods. Hence, by taking advantage of hybrid methods like PSO–ANN and ICA–ANN, the ANN 

weakness in the case of finding the global minimum is removed for example enhancing its searching 

characteristics by fitness functions and also cost functions. 

3. FEM Simulation and Data Collection 

3.1. FEM Simulation 

Figure 5. The flowchart of the ICA process (after Moayedi and Armaghani [49]).

3. FEM Simulation and Data Collection

3.1. FEM Simulation

In this study, eight different soil types were used along with significant diversity in their main
attributes. These attributes can address almost the most usual kinds of sands. In the modelling,
internal friction and dilation angles in the range of 32–42 and 3.4–11.5 degrees are selected and also
utilized, respectively. Moreover, the elastic modulus, Poisson’s ratio, and unit weight varied between
the values of 17500–65000 kN/m2, 0.333–0.249, and 19–21.1 kN/m3, respectively. The soil properties,
which are attended for prediction of a network can be shown as a series of the graphical summary that
is the range of input data. These datasets include friction angle, Poisson’s ratio, elastic modulus, and
unit weight is drawn in Figure 6. To determine applied stresses beneath the footing (Fult), asymmetric
FEM of circular foundation, for example, a width around 1.0 m is placed on two-layer soils (Figure 7).
Infeasible civil engineering plans, the layers of soil beneath the foundations are not homogeneous,
commonly, and there are many cases where (i) a weaker soil layer rested on a stronger soil layer or (ii)
stronger soil placed on a soil layer with much weaker physical characteristics. Plaxis 2D (a commercial
finite element software) is employed to predict the influences of soil layer’s properties on ultimately
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applied stresses. Based on several recommendations (e.g., Mosallanezhad and Moayedi [50], and Hou,
et al. [51]) the most effective factors, which influence the maximum bearing capacity of the soil, are (i)
soil properties (for example, soil layer thickness beneath the footing), maximum expected settlement
(s), friction angle ϕ, unit weight γ, elastic modulus E, Poisson’s ratio υ, type of design analysis, and
dilation angle ψ. (Table 1). Note that, in the present work, cohesion has been considered equal to zero
for estimating the Fult in distinct layered sandy soils. In addition, zero value for cohesion means soil
does not have any cohesive strength and provides sandy soil state. Values of 0, 0.4, 0.4, 0.8, and also 1.0
are selected for the upper layer width of thickness.
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Table 1. FEM plan used for the input layers’ preparation.

Ground Conditions Foundation Diameter (B) (m) (Upper Layer Thickness/Foundation
Width) or h/B

Soil layer S1 on soil layer
(S2, S3, S4, S5, S6, S7, S8) 1.0 0, 0.2, 0.4, 0.8, 1.0,
Soil layer S8 on soil layer
(S1, S2, S3, S4, S5, S6, S7)

As stated earlier, to generate the best structure for the proposed hybrid models, the database
employed to train the models is obtained by a total of 3513 full-scale finite element simulations. The
dataset is considered for a circular footing with a radius of 1.0 m, rested on two-layered soil condition.
It is noted that the vertical stress amounts before arriving at the maximum S/B ratio are labelled Fult.
Based on many similar works (e.g., Anvari and Shooshpasha [52] and Noorzad and Manavirad [53]),
soil layer thickness beneath the footing, maximum expected settlement (s), friction angle ϕ, unit
weight γ, elastic modulus E, Poisson’s ratio υ, type of design analysis, and dilation angle ψ were
selected as inputs and applied datasets for building the proposed models. An instance of a database
received by the FEM simulation and effective factors influencing the Fult, as the model output, selected
in the ANN algorithm was shown in Table 2.

3.2. Model Assessment

The normalized data were employed in this study. Moreover, two well-known statistical criteria
of coefficient of determination (R2) and root mean square error (RMSE) were specified to calculate the
error rate of the predicted network results. Equations (1) and (2) formulate these indices:

R2 = 1−

∑s
i=1 (Yipredicted −Yiobserved)

2∑s
i=1 (Yiobserved −Yobserved)

2 (1)

RMSE =

√√√
1
N

N∑
i=1

[(
Yiobserved −Yipredicted

)]2
(2)

where Yi observed, and Yi predicted are the real and estimated values of a bearing capacity, respectively.
Also, the term N indicates the number of instances and Yobserved denotes the average of capacities.
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Table 2. Instance of input and also output datasets employed for simulating purpose in the estimation
of Fult.

Model

Inputs
Output

Top Layer Properties Bottom Layer Properties

ϕtop ψtop γtop Etop υtop ϕbot ψbot γbot Ebot υbot h/B Settlement Fult

(deg) (deg) kN/m3 kPa - (deg) (deg) kN/m3 kPa - - mm kPa

1 30 3.4 19 17500 0.333 33 5.8 19.9 25000 0.313 0.2 30.362 297.789
2 30 3.4 19 17500 0.333 42 11.5 21.1 65000 0.249 0.2 30.358 641.312
3 42 11.5 21.1 65000 0.249 36 8 20.5 35000 0.291 0.6 30.324 819.291
4 30 3.4 19 17500 0.333 34 6.4 20.1 27500 0.306 1 30.279 229.515
5 42 11.5 21.1 65000 0.249 36 8 20.5 35000 0.291 0.2 30.264 645.802
6 42 11.5 21.1 65000 0.249 31 4.2 19.3 20000 0.327 0.2 30.257 351.505
7 42 11.5 21.1 65000 0.249 34 6.4 20.1 27500 0.306 0.6 30.175 674.178
8 42 11.5 21.1 65000 0.249 39 10 20.9 50000 0.27 0.2 30.112 932.268
9 42 11.5 21.1 65000 0.249 39 10 20.9 50000 0.27 0.8 30.071 1096.348
10 30 3.4 19 17500 0.333 37 8.8 20.7 40000 0.285 0.2 30.050 439.321
11 42 11.5 21.1 65000 0.249 36 8 20.5 35000 0.291 0.4 30.041 739.102
12 42 11.5 21.1 65000 0.249 37 8.8 20.7 40000 0.285 0.2 30.040 735.445
13 42 11.5 21.1 65000 0.249 30 3.4 19 17500 0.333 0.2 30.005 307.149
14 30 3.4 19 17500 0.333 36 8 20.5 35000 0.291 0.4 29.973 292.666
15 42 11.5 21.1 65000 0.249 34 6.4 20.1 27500 0.306 1 29.972 823.612
16 42 11.5 21.1 65000 0.249 33 5.8 19.9 25000 0.313 0.8 29.949 692.368
17 30 3.4 19 17500 0.333 34 6.4 20.1 27500 0.306 0.2 29.942 324.735
18 30 3.4 19 17500 0.333 36 8 20.5 35000 0.291 0.6 29.940 249.580
19 30 3.4 19 17500 0.333 42 11.5 21.1 65000 0.249 0.6 29.934 251.650
20 42 11.5 21.1 65000 0.249 39 10 20.9 50000 0.27 0.6 29.904 1054.378
21 42 11.5 21.1 65000 0.249 37 8.8 20.7 40000 0.285 0.6 29.884 896.035
22 42 11.5 21.1 65000 0.249 39 10 20.9 50000 0.27 1 29.856 1124.575
23 42 11.5 21.1 65000 0.249 34 6.4 20.1 27500 0.306 0.8 29.831 742.268
24 30 3.4 19 17500 0.333 31 4.2 19.3 20000 0.327 1 29.829 220.100
25 30 3.4 19 17500 0.333 31 4.2 19.3 20000 0.327 0.6 29.817 225.296
26 30 3.4 19 17500 0.333 31 4.2 19.3 20000 0.327 0.8 29.801 221.703
27 42 11.5 21.1 65000 0.249 33 5.8 19.9 25000 0.313 0.4 29.784 533.911
28 42 11.5 21.1 65000 0.249 34 6.4 20.1 27500 0.306 0.2 29.771 497.129
29 30 3.4 19 17500 0.333 37 8.8 20.7 40000 0.285 0.8 29.709 239.304
30 30 3.4 19 17500 0.333 31 4.2 19.3 20000 0.327 0.4 29.701 230.895

4. Model Development for Fult Estimation

4.1. ANN Network Optimization

Estimation of the maximum applied stress on circular footings lied in 16 different layered soil
sates is the most important objective of this research. As the first step of the optimization method of
ANN, different training and testing datasets are taken for the prediction that considering around 80%
of the total dataset (in the case of the training dataset) and 20% of the total dataset (for the testing
dataset). To drive the most appropriate predictive network, many works (e.g., Moayedi, et al. [46], and
Chakraborty and Goswami [12]) proposed to use 20% or 703 datasets and 80% or 2810 datasets of both
datasets (i.e., testing and training), respectively. The most appropriate structure of the model of ANN
could be obtained after a large number of trial and also error process and using change in the number
of the hidden layer as well as the number of neurons [54]. Therefore, around 84 ANN-Tansig models
were built. For finding their best network performances, the efficiency of suggested networks has been
measured. Figures 8 and 9 show the mean outcome of six ANN iterations in the case of the network
efficiency R2 and RMSE. For ranking the achieved outcomes from ANN iterations, two distinct ranking
systems of total ranking and also color intensity are utilized. The proposed model number 14 with
the total ranking value of 28 should be selected as the best-constructed model according to the mean
network performance from a total of 84 ANN built networks, and the testing and training datasets
(i.e., that is after six iterations). However, we have gained better network performance results after
analyzing whole network efficiency (as shown in Figures 8 and 9) with eight hidden neurons. This
proves that the final structure of ANN that is designated for this approach should have a structure of
14×8×1, however searching for the trivial change in the accuracy and the network efficiency (in the
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case of the training and testing databases as shown in Figures 8 and 9), for the pre-introduced node
number in a single structure of hidden layer the optimized amount was designated to be eight. This is
also a simplification that is provided for the proposed model to be more practical.Appl. Sci. 2019, 8, x 11 of 22 
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4.2. Hybrid PSO–ANN and ICA–ANN Models in Predicting Fult

Two-hybrid models of ICA–ANN and also PSO–ANN are employed to choose the most suitable
predictive model among them. Therefore, to discover optimum factors in both models, many parametric
studies are done. The optimal state of ANN model needs to be indicated, prior to running a parametric
investigation for hybrid model factors. Parametric investigation of ANN model was performed
considering a series of trial and error process (discussed in Section 4.1), and it was found that an ANN
model with eight hidden neurons (or architecture of 12 × 8 × 1) received better performances. Hence,
the obtained architecture was confirmed and used to both hybrid intelligent systems (e.g., ICA-ANN
and PSO-ANN).

As previously mentioned, in order to determine the most appropriate structure of the hybrid
model of PSO-ANN, there is a need for a parametric investigation according to the trial and error
process. Numerous parameters such as coefficients of velocity relation (C1 and C2), inertia weight
and the number of iterations, and the number of existing particles can considerably affect network
efficiency of the PSO approach. Many scholars suggested that, for providing an acceptable network
performance, C1 and C2 equal to 2 as well as inertia weight (iw) of 0.25 is proper. Different models
of PSO are generated by distinct amounts of swarm size (i.e., 25, 50, 75, 100, 150, 200, 250, 300, 350,
400, 450, and 500) to indicate the appropriate particle size/swarm population (with Iw = 0.25 as well
as C1 and C2 equal to 2). When 400 is the number of swarm size, the best efficiency is obtained.
For the training and testing datasets, the R2 and RMSE are (0.9607 and 0.076) and (0.978, and 0.075),
respectively. Figure 10a shows the performance result variation; for example, MSE utilized here, of
PSO–ANN models that have different various population sizes. As observed, the model that has
swarm sizes equal to 400 indicates the least RMSE, which demonstrates its advantage in comparison to
other approaches. For selecting appropriate values for C1 and C2, a similar trial and error approach is
used. In this regard, by distinct C1 and C2, around 12 models are designed, and then their efficiencies
are according to total ranking and CER approaches. The most appropriate efficiencies with the total
value of 69 obtained when C1 and C2 were (1.33 and 0.67) or (1.5 and 1.5), respectively. For the testing
datasets, the R2, and RMSE are 0.9607, and 0.076, respectively. Finally, five approaches are provided by
Iw (0.2, 0.4, 0.6, 0.8, and 1.0) to choose an appropriate amount for the Iw. For the IW, achieved total rank
of 0.2, 0.4, 0.6, 0.8, and 1.0 are 28, 12, 18, 6, and 26, respectively. It demonstrates the advantage of the
PSO–ANN approach with Iw of 0.2.

In order to take the most appropriate predictive result from the ICA–ANN hybrid approach,
optimizing its influential factors is an important concern. In order to employ the best approach, two
distinct ranking methods (CER and total ranking [49]) are used. Similar to the first parametric study
process performed, e.g., in selecting proper ANN architecture and PSO–ANN model, this has also
been obtained considering a series of trial and error progress. As stated earlier, in ICA, number of the
country (Nc), number of the decade (Nd), and number of imperialists (Ni) are recommended as the most
influential parameters on ICA performance. In order to determine the proper Nc, several designs are
created by distinct amounts of Nc (25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, and 500). For these
models, Ni = 5 and Nd = 200 were utilized. As a result, with the total rank of 68, Nc = 300 can provide a
higher efficiency system capacity. Then, for applying the best amount for Ni, 12 models with Ni values
of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 were constructed and assessed using R2 and RMSE. The
results show that all three statistical indexes are not changed for the Ni more than 5. Therefore, Ni = 5 is
considered the best value for the number of imperialists. Finally, the step of the ICA–ANN modelling,
using the Ni = 5 and Nc = 300, several models of ICA were constructed considering the various number
of Nd, i.e., 50, 100, 200, 300, 400, and 500 (results shown in Figure 10b). These models are also assessed
according to their efficiency indexes (e.g., R2 and RMSE). It can be clearly seen that increasing the
number of nodes causes more convergence between the predicted network and measured outputs.
According to the obtained result, the model with Nd = 300 was the best value, among others.
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The results of network performance varied vs. population size for both of the ICA–ANN and
PSO–ANN approaches are shown in Figures 11 and 12, respectively.
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In the present paper, outputs of a total of 3513 FEM simulations are found to calculate the
applicability of the used method. We found that the learning approach is acceptable in term of whole
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training network. Amounts of (0.979 and 0.076) and (0.978 and 0.0750) are obtained according to R2

and RMSE, respectively, for training and testing databases of the optimal PSO–ANN predictive models.
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