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Abstract: Recently, several studies have focused on image-to-image translation. However, the quality
of the translation results is lacking in certain respects. We propose a new image-to-image translation
method to minimize such shortcomings using an auto-encoder and an auto-decoder. This method
includes pre-training two auto-encoders and decoder pairs for each source and target image domain,
cross-connecting two pairs and adding a feature mapping layer. Our method is quite simple and
straightforward to adopt but very effective in practice, and we experimentally demonstrated that our
method can significantly enhance the quality of image-to-image translation. We used the well-known
cityscapes, horse2zebra, cat2dog, maps, summer2winter, and night2day datasets. Our method shows
qualitative and quantitative improvements over existing models.
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1. Introduction

A variety of network models have been introduced to address the issue of image-to-image
translation, which is a hot topic in the field of computer vision and graphics. Image-to-image
translation involves learning the mapping from a source domain image to a target domain image.
Early image-to-image translation methods used convolutional neural networks (CNN), which learn to
minimize the loss of a pixel value between the source domain image and the target domain image but
had the limitation of failing to produce more photorealistic images [1,2].

To solve this problem, a generative adversarial network (GAN) approach was recently suggested [3].
This approach used the information necessary to enhance the quality of the target translation image,
rather than just using pixel-to-pixel dissimilarity, by additionally utilizing adversarial feedback to
improve image translation quality [4–7].

Pix2pix [3] tried to solve the blurring problem, which is one of the problems faced by many
CNN-based approaches, and had, thus, made various image translation tasks possible, such as changing
a label (segmentation) image to an actual image, a daytime image to a night image, and a satellite map
to a graphic map. Despite their promising results, there were still various problems, as depicted in
Figure 1a. Furthermore, obtaining enough paired data to learn image translation was another difficult
problem. For example, if we wanted to transform landscape photographs into paintings in the style of
van Gogh, we might have to prepare real paintings by van Gogh for all the landscape pictures, which
would be almost impossible in practice.

CycleGAN [8] enabled image-to-image translation even for unpaired image pairs and produced
quite successful results. However, its unsupervised learning with unpaired data often causes instability
of the images generated. When comparing the results of CycleGAN with the ground truth images of
the cityscapes data, two different segments (building and tree) seemed to be confused with each other,
as shown in Figure 1b. Such problems, as explained already, may raise the necessity for a more effective
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translation method. In this paper, we propose a new translation method where the mapping process
from source domain to target domain can work better, and thus suppress mistranslation by transferring
the learning of domain and target feature spaces using both an auto-encoder and decoder. In contrast
to commonly-used feature space learning methods [9–13], our approach utilizes an auto-encoder and
an auto-decoder—which are pretrained for the source domain and target domain, respectively—and
cross-connects them by mapping their feature spaces across the two domains.
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the results of label → photo by Pix2pix, various notable noises and blurs are observed, which reduces 
the quality of the translated pictures. (b) In the translated pictures of label → photo by CycleGAN, 
some building segments are painted with tree pictures and vice versa, while our results show 
translating each segment accurately. 

Figure 1. Low-quality photographs showing unstable flaws in the translated images of Pix2pix (a) and
CycleGAN (b). From left to right: input, ground truth, output (baseline) and output (ours). (a) In the
results of label→ photo by Pix2pix, various notable noises and blurs are observed, which reduces the
quality of the translated pictures. (b) In the translated pictures of label→ photo by CycleGAN, some
building segments are painted with tree pictures and vice versa, while our results show translating
each segment accurately.

2. Related Work

2.1. Feature Extraction and Reconstruction

An auto-encoder is a method specialized in unsupervised feature learning. The auto-encoder
consists of two parts: an encoder and a decoder. The encoder learns to translate the input into an
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internal representation, which can also be used as a feature vector. The decoder learns to translate the
internal representations translated by the encoder into the same form as the input.

Previous work has shown that extracting useful intermediate representations is effective for
learning deep-generative or discriminative models. P. Vincent et al. [9,10] used corrupted inputs to train
an auto-encoder for robust feature extraction. J. Masci et al. [11] introduced a hierarchical convolutional
auto-encoder for a feature extraction. We use pre-trained auto-encoders to enable image translation
between distinct feature spaces, such as “style” or “text,” to transfer segmentation to photorealistic
images. Details are described in Section 3.1.

2.2. Generative Adversarial Networks

Generative adversarial networks (GANs) [14] can learn to generate randomly sampled images
with the idea of an adversarial loss that drives the output images of a generator indistinguishable from
actual photographs. Recent methods adopted these networks to achieve magnificent results in several
areas and applications [15–18]. Our work is also based on GANs for translating images but we focus to
combine it with our training methodology.

2.3. GAN-Based Image-to-Image Translation

Recent studies have explored various models with GANs for image-to-image translation.
For example, Pix2pix, the first GAN-based approach of P. Isola et al. [3], used a conditional, generative
adversarial network [19] for image translation, when a source and target image pair was given. Similar
methods have been adopted for several tasks, such as synthesizing a photograph from a sketch [20]
and changing the weather of an original image [21]. More recently, T. park et al. [18] proposed a
spatially-adaptive normalization layer to consider semantic information.

When paired training data were not available for some tasks, other studies have suggested several
approaches to transform from an unpaired image. CoGAN [22] used a weight-sharing constraint
to learn a joint representation over multi-domains. CycleGAN [8] used cycle consistency [23] and
least-squares loss [6]. DualGAN [24] suggested a similar method to CycleGAN but used a Wasserstein
loss [25] instead of the least-square loss. UNIT [26] and CD-GAN [27] used a shared latent space and
cycle consistency for better quality and accuracy.

Unlike the approaches described above, our method is not limited to a specific task, nor do we
rely on predefined relationships between the source and target domains. Our method can be applied to
make a general-domain solution for many image-to-image translation tasks. We compare our trained
model against previous approaches and experiment with our approach under various conditions in
Section 4.

3. Method

3.1. Feature Space Mapping

We think that the decoder part can have the same significant effect as the encoder part and propose
to use not only the pre-trained encoder but also a pre-trained decoder for the image-to-image translation
task. We can consider an auto-encoder that has pre-trained feature extraction and reconstruction for the
domain X. The encoder in this network, Enx, is responsible for representing the domain X to the latent
space; Enx: X→ Zx. Contrarily, the decoder Dex is responsible for representing the latent space to the
domain X; Dex: Zx→ X (Figure 2). Our idea is using a “cross-connection” of two pairs of auto-encoders
and decoders Enx – Dex and Eny – Dey for a generator of a GAN to improve image-to-image translation
results. For example, we can connect Enx and Dey to make a generator to learn translation from domain
X to domain Y. Since the encoder Enx has been pre-trained to represent the domain X to the latent
space, it learns to extract the feature of domain X effectively in the image-to-image translation learning
phase, and the decoder Dey also learns to reconstruct domain Y from the latent space while preserving
common characteristics of Y with a pre-trained effect. This cross-connecting approach makes the results
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of GAN more stable and photorealistic. Recently, like UNIT, image-to-image translation methods
using auto encoders and decoders have been proposed. These methods try to train extracting latent
space and translating domains in one training stage, resulting in some problems, such as low-quality
translation, as we described in Section 4.3.2. In contrast, we think our method performs better because
pre-training the auto-encoder and decoders provide more flexible advantages for the characteristics of
each domains.
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Figure 2. The architecture of an auto-encoder for pre-training the latent space of domain X and the
latent space of domain Y.

To train auto-encoders for each domain, we follow the basic equation of the convolutional
auto-encoder [11]. The representation of the k-th latent feature map extraction for input I is denoted as:

hk = σ (I * Wk + bk), (1)

where sigma is an activation function, Wk is a weight, and bk is a bias, and * denotes the 2D convolution
operation. The reconstruction of latent representation is obtained using

y = σ (
∫

k∈H hk * Ŵ + c), (2)

where c is a bias for input channel. H identifies the list of feature maps and Ŵ represents the 2D
transposing convolution operation. Mean absolute error (MAE) or mean squared error (MSE) is used
for a reconstruction loss between an output of the autoencoder and a ground-truth.

In addition to this, we construct an additional layer to combine two auto-encoder and decoder
pairs. This layer we add learns to fill the “gap” between the space Zx and Zy. As we mentioned
earlier, Enx learns to represent X relative to the latent space Zx, and Dey reconstructs Y from space
Zy, so it does not guarantee that Zx and Zy, which are independently trained results of two different
auto-encoders, lie in the same dimensional space. The added layer fills this gap to learn how to map
two latent spaces properly.

After the cross-connection is complete (Figure 3), the entire network is fine-tuned by the learning
method according to the model used to apply the cross-connected auto-encoder and decoder.
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3.2. Model Architecture

We refer to [28,29] for both generator and discriminator networks of CycleGAN [8] and Pix2pix [3].
These models are networks for following ResNet [30] or U-Net [31] architecture consisting of
convolutional layers, normalization layers, skip-connections, and activation functions. A specific and
detailed implementation is described below.

3.2.1. Generator and Discriminator

In a CycleGAN-based model, there are two translation processes: X→ Y forward translation and
Y→ X reverse translation. To learn the unsupervised translation with this cycle consistency [23], two
generator networks are needed: an Enx and Dey-connected pair for the forward translation process
X→ Y and an Eny and Dex pair for the reverse translation process Y→ X. Each generator network
is composed of processes in which the kernel-3, stride-2 convolutional layer, instance normalization
layer, and ReLU-activation function. Each also contains processes of stride-2 deconvolutional layers
after an encoded feature map passes through the multiple residual blocks. We use the PatchGAN [3]
structure for the discriminator, which reduces the burden of calculation because it reduces the number
of parameters in the network by classifying whether image patches are real or fake.

The Pix2pix-based model uses one generator consisting of Enx and Dey because there is a
one-way translation process of X → Y. Further, PatchGAN is used for the discriminator, as in the
CycleGAN-based model.

3.2.2. Feature Mapping Layer

Following Figure 4, the Pix2pix-based model uses a fully connected layer with one hidden layer
as a mapping layer that maps the encoded latent vector to the target domain smoothly. For the
CycleGAN-based generator in Figure 5, a convolutional layer with 3 × 3 size kernel and stride-1 was
used for the feature mapping layer. Due to the structural limitations of the residual block used in
CycleGAN, we use the convolutional layer for the large size feature map as a substitute for the fully
connected layer, which is used as the feature mapping layer in the Pix2pix-based model. For an
effective image translation, skip-connection in the Pix2pix (or residual connection in the CycleGAN) is
removed from the feature mapping layer, while the connection is preserved in other layers, as shown
in Figures 4 and 5.
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4. Results

We compared our method to others under various experimental conditions for both unpaired
and paired image-to-image translations. For comparison, original models of Pix2pix and CycleGAN
were used for baselines to evaluate the performance of our method for each paired and unpaired
image-to-image translation task. UNIT was also trained and used for the comparison with our method.

4.1. Datasets and Evaluation Metrics

First, we used the cityscapes dataset [32] presented in a previous work for a quantitative
comparison. The cityscapes dataset contains various distributions of pairs for semantic segmented
images and photorealistic images of city pictures taken on the road, and it is a common and challenging
dataset used to test image-to-image translation performance [3,8]. We used 2975 image pairs for
training and 500 pairs for testing. We also tested our approach on the horse2zebra dataset to see how
it affects the qualitative performance of object transfiguration. We used 1067 horse images and 1334
zebra images for training, and 120 horse images and 140 zebra images for testing. Cat2dog, maps
(satellite map), summer2winter, and night2day datasets were also used for qualitative comparisons.

For measuring metrics to evaluate our models, we referred to the metrics used in existing methods:
mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM), inception score (IS), and Fréchet inception distance (FID score). MAE
and MSE are the most common ways of measuring the accuracy of the result images in computer
vision tasks [15,33]. In some cases, however, these are not appropriate for evaluating the results of the
GAN approach, and thus, various methods use PSNR or SSIM to assess the quality of the GAN results
quantitatively [17,34–37]. Recent methods also used the inception score [16,38], or FID score [16,39] to
measure the visual quality and diversity of generated images. In this work, we used all six metrics
for evaluation.
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4.2. Implementation Details

For the paired translation task, we used the U-Net based generator model that is used in the
Pix2pix model. For the unpaired translation task, we adopted the ResNet-based architecture used
in CycleGAN. Both models use a 70 × 70 PatchGAN for discriminators. An objective function
combined with adversarial loss and cycle consistency loss is used for the CycleGAN-based model.
Similarly, the Pix2pix-based model uses an objective function that combines an adversarial loss with a
reconstruction loss. The coefficients of loss values were set as lcyc = 10 and lpix2pix = 100. According
to the guidelines of baselines, the Adam optimizer was used and the learning rate parameters of both
models were set as 0.0002. In the experiment with the cityscapes dataset, approximately 100 epochs
of training were performed, and in the experiment with the horsse2zebra dataset, 200 epochs were
performed, all in the same way as the learning conditions for Pix2pix and CycleGAN.

4.3. Qualitative Comparisons

4.3.1. Comparisons with Baselines

We applied our method on CycleGAN and evaluated our results qualitatively. Figures 6 and 7
demonstrate that our model solves the critical problems found in the mistranslated images generated
by the baseline model (CycleGAN). Figure 6 shows that some segmented objects are translated with
incorrect textures by the baseline model, but our model translates the segmented images correctly on
the cityscapes task. Figure 7 shows that some regions or objects other than horses are painted partly
with zebra patterns or poorly translated. In the case of our model, it produces better quality images
with the correct translation on the horse2zebra task.
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Figure 6. Translated pictures of CycleGAN and our method for the cityscapes dataset. From left to right:
input, ground truth, Cycle-GAN (Baseline), and our method. The results of CycleGAN show unstable
translations, including mistranslations between colonnade tree label and the building appearance.
Our method helps to avoid these instabilities during the learning stage and produces more correct
translation results.
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Figure 7. Comparison of pictures translated by CycleGAN and our method from the horse2zebra
dataset. CycleGAN results show mistranslations such as changing texture of background, or removing
detailed characteristics of the source object, or just inverting image colors. The results of our method
show such mistranslations can instead be correctly translated.
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Figure 8 shows more details of the resultant translation images. It shows that our model can
resolve the instabilities of the baseline model (CycleGAN) effectively. Particularly, our model translates
the horses to zebras only, and preserves the original features of the other parts of the image (background
and other objects) that should not be translated. Since the horse2zebra dataset is unpaired between the
horse domain and the zebra domain, quantitative comparisons with ground-truth are not possible,
and qualitative comparisons are the only indicator of the quality of the results.
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Figure 8. Detailed portions of translated pictures. Enlargements of the results of the baseline
(CycleGAN) reveal mistranslation from the horse hair to zebra patterns, elimination of detailed features
like eyes and nose, and inverting (or blurring) colors. Our model is more stable than the baseline
because it makes translations while preserving the main characteristics of all the objects in the image,
including eyes, nose, hair, and colors.

We also applied our method on Pix2pix and evaluated our results qualitatively. In Figure A1,
Pix2pix shows the mixed textures, faded edges, and blurred objects of translated images on the
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cityscapes dataset, but they are translated with, apparently, relatively sharp edges, and distinct textures
and objects by our method.

4.3.2. Comparisons with UNIT

Figures 9 and A2 show that our model (applied on CycleGAN) generates better quality images
than UNIT on different datasets. UNIT effectively translates complex features to simple features,
including distinguishing boundaries and classifying objects. When generating complex features,
however, the results of UNIT show some limitations, such as cracked or over-sharpened textures.
On the summer2winter and night2day datasets, UNIT shows the surface of an object that appears
to be cracked and the existence of an object is lost in severe cases. Our model, on the other hand,
translates only the parts of the image that need to be changed to map the characteristics of these
datasets. In summer2winter datasets, our model is good at finding areas where snow accumulates in
winter images and translates them into images suitable for the summer season.

On the cat2dog dataset, UNIT tries to translate the image while maintaining the overall shape
of input cat or dog images because of their shared latent space. We think that learning to force the
characteristics of different domains into the same latent space is not an efficient method for domain
translation, as we can see in the results. In the case of map datasets, our model not only shows the
proper translation of labels, but also the detailed appearance of a building, whereas the UNIT model
fails to restore objects such as buildings or trees in the area and mistranslates a label. Most results
of unpaired and paired datasets show that our model’s performance is better than the UNIT model
because our model learns to map the feature space between source and target domains, allowing for
more versatile and realistic domain translation.
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Figure 9. Comparison of the UNIT model and our model on paired datasets. On the cityscapes and
night2day datasets, UNIT generates images with overly sharp textures, while our model generates a
smoother, more natural texture. Additionally, UNIT results on the maps dataset show a missing “park”
(green class in the input) section and a lower quality of building details than our method.

4.4. Quantitative Comparisons

We also report comparisons of quantitative evaluations here. Table 1 shows that our model makes
improvements over other baseline models, showing a lower FID and a higher SSIM and inception
score. In particular, the inception score of our model is improved by about 6% and the FID of our
model is improved by about 8% in the label→ photo task compared to the baseline model (CycleGAN).
This result is particularly notable because, as we mentioned earlier, previous metrics (such as MAE,
MSE, and SSIM) had some issues in measuring the GAN results of photorealistic image generation. We
focus more on IS and FID scores (especially on FID) in this task because PSNR is also a measurement
obtained from using MAE and MSE.

Table 1. Evaluation of baseline models and our model on the cityscapes dataset (label→ photo). Higher
value is better in SSIM, PSNR, IS. Lower value is better in MAE, MSE, FID.

Metrics
Label→ Photo

SSIM ↑ PSNR ↑ MAE ↓ MSE ↓ IS ↑ FID ↓

Baseline (Pix2pix) 0.2863 12.8684 41.7085 3547.5539 2.3955 ± 0.1610 101.04794

Baseline (CycleGAN) 0.3416 14.5333 35.4496 2558.5918 2.3421 ± 0.2216 75.3792

UNIT 0.3526 14.6102 35.4176 2653.8875 2.3304 ± 0.2486 82.7469

Ours + 3*3
convolutional layer

(on CycleGAN)
0.3571 14.2083 36.1383 2714.3276 2.4554 ± 0.1582 69.1041

4.5. The Effectiveness of the Feature Mapping Layer

Table 2 shows the effectiveness of adding the feature mapping layer between the auto-encoder
of the source domain and the auto-decoder of the target domain on the photo→ label translation of
the cityscapes dataset. We experiment using different feature mapping layers with various settings:
without feature mapping layer, 1 × 1 convolutional layer, 3 × 3 convolutional layer, 7 × 7 depth-wise
convolutional layer, 1 × 1 convolutional layer with skip-connection, and 3 × 3 convolutional layer with
residual connection for our CycleGAN-based model.
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Table 2. Ablation study of our model on cityscapes dataset (photo→ label). Higher value is better in
SSIM, PSNR, IS. Lower value is better in MAE, MSE, FID.

Metrics
Photo→ Label

SSIM ↑ PSNR ↑ MAE ↓ MSE ↓ IS ↑ FID ↓

Baseline (CycleGAN) 0.5568 15.0977 25.7486 2185.6808 2.1170 ± 0.1927 107.4895
Ours w/o feature
mapping layer 0.5054 13.5550 37.9918 2999.5845 2.2096 ± 0.1290 107.3393

Ours + 1 × 1
convolutional layer 0.5326 14.5956 33.2103 2439.4565 1.9608 ± 0.1521 96.7853

Ours + 3 × 3
convolutional layer 0.5526 15.4477 29.9302 2040.3728 2.0509 ± 0.1997 93.4251

Ours + 7 × 7
depth-wise

convolutional layer
0.5029 13.1269 37.9808 3301.7309 2.1264 ± 0.1557 126.5632

Ours + 1 × 1
convolutional layer +
residual connection

(in FML)

0.5006 13.6503 39.0486 2928.5135 2.1674 ± 0.1042 120.7020

Ours + 3 × 3
convolutional layer +
residual connection

(in FML)

0.5017 13.5443 37.6828 3026.7782 2.0445 ± 0.1418 108.9408

Our model with a 3 × 3 convolutional layer shows high overall performance, especially in terms
of FID score, which is considered an important indicator. The 1 × 1 convolutional layer also shows
better overall performance than most other experiments in FID. Using only a pre-trained auto-encoder
and decoder shows the best performance in IS but shows poor results with respect to all other metrics.
These results indicate that our feature mapping layer helps with learning to map latent space when
used with the suitable pre-trained encoder and decoder, which results in improving the translation
quality significantly.

Adding skip-connection in the feature mapping layer shows even worse results compared to the
baseline model. We think that connecting encoder and decoder of two different domains interferes
with learning correct translation.

5. Discussion

We introduced an image-to-image translation method that uses a pre-trained auto-encoder
and decoder to enhance the quality of translation. First, we trained two distinct auto-encoders for
the source domain X and target domain Y, respectively. Then, we cross-connected the pre-trained
auto-encoder (for the feature extractor of X) and auto-decoder (for the reconstructor of Y), adding
a feature mapping layer. In experiments, we showed that our method improves the quality of
translation results significantly in comparison with the existing baselines. We also investigated how
to add a feature mapping layer in order to further enhance the performance of our model. Despite
qualitative and quantitative improvements identified in experiments, our method is limited to unimodal
image-to-image translation. We plan to investigate more sophisticated feature mapping architectures
between the auto-encoder and decoder by conducting experiments on multimodal tasks.
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Appendix A

We provide our source code at https://github.com/Rooooss/I2I_CD_AE.
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