Special Features on Intelligent Imaging and Analysis
1. Introduction
2. Intelligent Imaging and Analysis
3. Future Intelligent Imaging and Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wan, W.; Lee, H.J. A Joint Training Model for Face Sketch Synthesis. Appl. Sci. 2019, 9, 1731. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Zhu, M.; Lin, Y. Application of a Real-Time Visualization Method of AUVs in Underwater Visual Localization. Appl. Sci. 2019, 9, 1428. [Google Scholar] [CrossRef]
- Ding, H.; Liu, Y.; Liu, J. Volumetric Tooth Wear Measurement of Scraper Conveyor Sprocket Using Shape from Focus-Based Method. Appl. Sci. 2019, 9, 1084. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, W.; Luo, H.; Cheng, L. A Novel Self-Intersection Penalty Term for Statistical Body Shape Models and Its Applications in 3D Pose Estimation. Appl. Sci. 2019, 9, 400. [Google Scholar] [CrossRef]
- Jiang, Y.; Chi, Z. A CNN Model for Human Parsing Based on Capacity Optimization. Appl. Sci. 2019, 9, 1330. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Ao, H.; Belaroussi, R.; Gruyer, D. Fast 3D Semantic Mapping in Road Scenes. Appl. Sci. 2019, 9, 631. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Li, M.; Han, S. Automated Classification Analysis of Geological Structures Based on Images Data and Deep Learning Model. Appl. Sci. 2018, 8, 2493. [Google Scholar] [CrossRef]
- Guo, H.; Wei, G.; An, J. Dark Spot Detection in SAR Images of Oil Spill Using Segnet. Appl. Sci. 2018, 8, 2670. [Google Scholar] [CrossRef]
- Lai, J.-Y.; Wu, T.-C.; Phothong, W.; Wang, D.W.; Liao, C.-Y.; Lee, J.-Y. A High-Resolution Texture Mapping Technique for 3D Textured Model. Appl. Sci. 2018, 8, 2228. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Chen, X.; Sangaiah, A.K.; Yang, K.; Cao, Z. Image Super-Resolution Algorithm Based on Dual-Channel Convolutional Neural Networks. Appl. Sci. 2019, 9, 2316. [Google Scholar] [CrossRef]
- Jang, J.; Jang, H.; Eo, T.; Bang, K.; Hwang, D. No-reference Automatic Quality Assessment for Colorfulness-Adjusted, Contrast-Adjusted, and Sharpness-Adjusted Images Using High-Dynamic-Range-Derived Features. Appl. Sci. 2018, 8, 1688. [Google Scholar] [CrossRef]
- Wang, H.; Xu, H.; Pooneeth, V.; Gao, X.-Z. A Novel One-Camera-Five-Mirror Three-Dimensional Imaging Method for Reconstructing the Cavitation Bubble Cluster in a Water Hydraulic Valve. Appl. Sci. 2018, 8, 1783. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, Y.; Jian, M.; Zhang, X. Deep Residual Network with Sparse Feedback for Image Restoration. Appl. Sci. 2018, 8, 2417. [Google Scholar] [CrossRef]
- Sun, L.; Meng, X.; Xu, J.; Tian, Y. An Image Segmentation Method Using an Active Contour Model Based on Improved SPF and LIF. Appl. Sci. 2018, 8, 2576. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, C.; Pan, Z.; Wang, Z.; Liu, L.; Qi, X.; Mao, S.; Pan, J. Image Segmentation Approaches for Weld Pool Monitoring during Robotic Arc Welding. Appl. Sci. 2018, 8, 2445. [Google Scholar] [CrossRef]
- Zafar, B.; Ashraf, R.; Ali, N.; Iqbal, M.K.; Sajid, M.; Dar, S.H.; Ratyal, N.I. A Novel Discriminating and Relative Global Spatial Image Representation with Applications in CBIR. Appl. Sci. 2018, 8, 2242. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, S.; Liu, H.; Lu, Y.; Hu, N. Double Low-Rank and Sparse Decomposition for Surface Defect Segmentation of Steel Sheet. Appl. Sci. 2018, 8, 1628. [Google Scholar] [CrossRef]
- Wu, Y.; Qin, Y.; Wang, Z.; Jia, L. A UAV-Based Visual Inspection Method for Rail Surface Defects. Appl. Sci. 2018, 8, 1028. [Google Scholar] [CrossRef]
- Yuk, E.H.; Park, S.H.; Park, C.-S.; Baek, J.-G. Feature-Learning-Based Printed Circuit Board Inspection via Speeded-Up Robust Features and Random Forest. Appl. Sci. 2018, 8, 932. [Google Scholar] [CrossRef]
- Sun, X.; Gu, J.; Tang, S.; Li, J. Research Progress of Visual Inspection Technology of Steel Products—A Review. Appl. Sci. 2018, 8, 2195. [Google Scholar] [CrossRef]
- Kim, S.; Bae, W.C.; Masuda, K.; Chung, C.B.; Hwang, D. Fine-Grain Segmentation of the Intervertebral Discs from MR Spine Images Using Deep Convolutional Neural Networks: BSU-Net. Appl. Sci. 2018, 8, 1656. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Bae, W.C.; Masuda, K.; Chung, C.B.; Hwang, D. Semi-Automatic Segmentation of Vertebral Bodies in MR Images of Human Lumbar Spines. Appl. Sci. 2018, 8, 1586. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Wang, Y.; Fang, B.; Yu, W.; Long, H.; Lei, H. Data Balancing Based on Pre-Training Strategy for Liver Segmentation from CT Scans. Appl. Sci. 2019, 9, 1825. [Google Scholar] [CrossRef]
- Zheng, Y.; Fu, H.; Li, R.; Lo, W.-L.; Chi, Z.; Feng, D.D.; Song, Z.; Wen, D. Intelligent Evaluation of Strabismus in Videos Based on an Automated Cover Test. Appl. Sci. 2019, 9, 731. [Google Scholar] [CrossRef]
- Sugimori, H. Evaluating the Overall Accuracy of Additional Learning and Automatic Classification System for CT Images. Appl. Sci. 2019, 9, 682. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Heo, J.-Y.; Hong, K.-H.; Lim, B.-Y.; Lee, C.-S. Computer-Aided Design and Manufacturing Technology for Identification of Optimal Nuss Procedure and Fabrication of Patient-Specific Nuss Bar for Minimally Invasive Surgery of PectusExcavatum. Appl. Sci. 2019, 9, 42. [Google Scholar] [CrossRef]
- Rehman, H.Z.U.; Lee, S. An Efficient Automatic Midsagittal Plane Extraction in Brain MRI. Appl. Sci. 2018, 8, 2203. [Google Scholar] [CrossRef]
- Jung, K.; Jung, S.; Hwang, I.; Kim, T.; Chang, M. Registration of Dental Tomographic Volume Data and Scan Surface Data Using Dynamic Segmentation. Appl. Sci. 2018, 8, 1762. [Google Scholar] [CrossRef]
- Liu, J.; Bai, D.; Chen, L. 3-D Point Cloud Registration Algorithm Based on Greedy Projection Triangulation. Appl. Sci. 2018, 8, 1776. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, D.; Kim, D. Special Features on Intelligent Imaging and Analysis. Appl. Sci. 2019, 9, 4804. https://doi.org/10.3390/app9224804
Hwang D, Kim D. Special Features on Intelligent Imaging and Analysis. Applied Sciences. 2019; 9(22):4804. https://doi.org/10.3390/app9224804
Chicago/Turabian StyleHwang, Dosik, and DaeEun Kim. 2019. "Special Features on Intelligent Imaging and Analysis" Applied Sciences 9, no. 22: 4804. https://doi.org/10.3390/app9224804
APA StyleHwang, D., & Kim, D. (2019). Special Features on Intelligent Imaging and Analysis. Applied Sciences, 9(22), 4804. https://doi.org/10.3390/app9224804