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Abstract: We evaluated electrocardiogram (ECG) biometrics using pre-configured models
of convolutional neural networks (CNNs) with various time-frequency representations.
Biometrics technology records a person’s physical or behavioral characteristics in a digital signal via a
sensor and analyzes it to identify the person. An ECG signal is obtained by detecting and amplifying
a minute electrical signal flowing on the skin using a noninvasive electrode when the heart muscle
depolarizes at each heartbeat. In biometrics, the ECG is especially advantageous in security applications
because the heart is located within the body and moves while the subject is alive. However, a few body
states generate noisy biometrics. The analysis of signals in the frequency domain has a robust effect on
the noise. As the ECG is noise-sensitive, various studies have applied time-frequency transformations
that are robust to noise, with CNNs achieving a good performance in image classification. Studies have
applied time-frequency representations of the 1D ECG signals to 2D CNNs using transforms like MFCC
(mel frequency cepstrum coefficient), spectrogram, log spectrogram, mel spectrogram, and scalogram.
CNNs have various pre-configured models such as VGGNet, GoogLeNet, ResNet, and DenseNet.
Combinations of the time-frequency representations and pre-configured CNN models have not been
investigated. In this study, we employed the PTB (Physikalisch-Technische Bundesanstalt)-ECG and
CU (Chosun University)-ECG databases. The MFCC accuracies were 0.45%, 2.60%, 3.90%, and 0.25%
higher than the spectrogram, log spectrogram, mel spectrogram, and scalogram accuracies, respectively.
The Xception accuracies were 3.91%, 0.84%, and 1.14% higher than the VGGNet-19, ResNet-101, and
DenseNet-201 accuracies, respectively.

Keywords: deep learning; pre-configured model; convolutional neural network; time-frequency
representation; electrocardiogram; biometrics

1. Introduction

Biometrics technology records a person’s physical or behavioral characteristics in a digital signal
via a sensor and analyzes it to identify the person. Traditionally, names, passwords, and physical
keys have been used to identify a person; however, these methods are vulnerable to convenience and
security. Intellectually inferior children, people with disabilities, and patients might face difficulties in
saying their names and might lose the keys. This could also apply in general to all people. However,
children, dementia patients, and people with disabilities should be able to check their identities and
have no fear of losing the keys, as the biometrics employ signals sourced from the body. Biometrics offer
great convenience to human lifestyles throughout society. Considering the security requirements of
any company/organization, biometrics automatically permit access only to those whose identities have
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been verified. It also allows the automatic authorization of cash settlements or remittances even on
online platforms [1–7].

Several characteristics of the body have been studied in the field of biometrics such as the face [8],
fingerprints [9], iris [10], and others [11–16]. Face recognition normally uses color images captured from
an RGB sensor. As face recognition using a camera can simultaneously acquire multiple face data from
several people, it can be used in environments requiring parallel recognition such as when searching
for missing persons. However, this would require the subject to be identified/recognized and the
camera to face in a certain direction. Furthermore, the recognition rate is much lower and vulnerable
to external physical obstructions if the subject to be recognized is far away. Fingerprint recognition can
be implemented with high precision by touching the sensor easily with one hand. However, several
attempts might be required until the identity is successfully established, as it is practically difficult to
generate training data and perform recognition with limited data. Additionally, the hands tend to
be highly exposed to pollution, face disadvantages such as having to take off gloves to access one’s
smartphone at a cold ski resort, and face the possibility of fingerprint duplication or loss. Iris recognition
makes it impossible to counterfeit identity and has a high recognition rate. However, it is troublesome
to position the face near the sensor to acquire the data. The cost of building the iris recognition system
is also higher.

An electrocardiogram (ECG) is obtained by detecting and amplifying a minute electrical signal
flowing on the skin using a noninvasive electrode when the heart muscle depolarizes at each
heartbeat [17]. ECGs are generally used to measure the heart rate consistency, size, and location of the
heart to detect any damage and effects of devices or medications used to regulate the heart such as
pacemakers. This is possible as the ECG depends on the state and geometry of the body including
the weight, height, and comport. The ECG can be used for biometrics due to the complex state and
geometry of the body. In biometrics, the ECG is especially advantageous in security applications
because the heart is located within the body and moves while the subject is alive. However, a few
body states generate noisy biometrics. The geometry of the body temporarily changes when the
subject receives an external impact due to movement, which changes the physical forces on the heart
to generate a noisy ECG signal [17,18].

The analysis of signals in the frequency domain has a robust effect on the noise. Several
studies have investigated the frequency domain of the ECG signal. Chen [19] investigated a fast
ECG diagnosis technique using a frequency-based compressive neural network, wherein the raw
signal was transformed to the frequency domain by dividing the time domain data into several
windows. Feature extraction was applied to the ECG signal in the spectral domain, and diagnosis
was performed using a frequency-based compressive neural network. Akdeniz [20] detected ECG
arrhythmia using a large Choi–Williams time-frequency feature set. The Choi–Williams time-frequency
transform was used for feature extraction, and several algorithms such as SVM (support vector
machine) and k-NN (k-nearest neighbor) were compared. Sharma [21] studied a joint time-frequency
domain based coronary artery disease sensing system using ECG signals. The signal was converted to
a time-frequency representation using an improved eigenvalue decomposition of the Hankel matrix
and Hilbert transform. The time-frequency based features were computed, and these features were
classified using the random tree and J48 decision tree. Zhao [22] studied noise rejection for wearable
ECGs using the modified frequency slice wavelet transform and convolutional neural networks.
The modified frequency slice wavelet transform was used to generate spectrograms, which were
classified using a convolutional neural network (CNN). Aviña-Cervantes [23] evaluated the frequency,
time-frequency, and wavelet analysis of an ECG signal. The Fourier transform, autoregressive moving
average, multiple signal classification, short term Fourier transform, Choi–Williams, Wigner–Ville, and
wavelets were considered to compare the segmentation of the QRS complex which is the combination
of three of the graphical deflections seen on a typical ECG.

The deep learning network is a neural network that has several to several hundred hidden
layers, in contrast to one or two hidden layers in existing neural networks. The many hidden layers
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enable the neural network to solve problems of various complexities, which cannot be solved using
only a few hidden layers. A CNN is a deep learning network that has shown good performance in
image based applications. A CNN is a neural network that combines both feature extraction and
classification. Several ECG biometrics based on the CNN have been studied. Zhang [24] studied single
arm ECG biometric human identification using deep learning. Images projected from the trajectory of
the ECG were used to train the CNN. Luz [25] evaluated the deep learning of off-the-person heart
biometrics representations. Two CNNs were trained using the raw signal and its spectrogram for
feature extraction, where both features were classified by the distance measure. Finally, the scores were
fused using the fusion rule. Deshmane [26] studied ECG based biometric human identification using
CNNs in smart health applications. Fiducial points were detected from a raw signal, and the distances
between these points were calculated. The distances were input in the SVM, k-NN, and CNN, and
their performances were compared. Wu [27] studied personal identity verification based on a CNN.
An ECG signal composed of 3600 samples in 10 s was converted to a 60 × 60 grayscale image, which
was used to train a CNN. Various other studies have focused on the ECG biometrics using CNNs.

As the ECG is noise-sensitive, various studies have applied time-frequency transformations that are
robust to noise, with the CNNs achieving a good performance in image classification. Various studies
have applied time-frequency representations of 1D signals to CNNs using transforms such as MFCC
(mel frequency cepstrum coefficient), spectrogram, log spectrogram, mel spectrogram, and scalogram.
CNNs have various pre-configured models such as VGGNet [28], Xception [29], ResNet [30], and
DenseNet [31]. These time-frequency representations are normally used in signal processing such as
voice and sound and have reported improvement of performance such as in a noisy environment.
The signal is changed to a 2D representation by time-frequency analysis, and the 2D representation is
considered as an image. Among recent literature works, the CNNs has reported good performance
in image classification. In ECG signals, it is necessary to find out whether the combination of
time-frequency representation and CNN is significant enough to be applied to personal identification.
The combinations of the time-frequency representations and pre-configured CNN models have not
been investigated. In this study, we employed the PTB (Physikalisch-Technische Bundesanstalt)-ECG
and CU (Chosun University)-ECG databases. The MFCC accuracies were 0.45%, 2.60%, 3.90%, and
0.25% higher than the spectrogram, log spectrogram, mel spectrogram, and scalogram accuracies,
respectively. The Xception accuracies were 3.91%, 0.84%, and 1.14% higher than the VGGNet-19,
ResNet-101, and DenseNet-201 accuracies, respectively.

In this paper, we evaluated ECG biometrics using pre-configured models of the CNN with
various time-frequency representations. Section 2 describes various deep models of the 2D CNN.
Section 3 discusses the ECG biometrics evaluated using pre-configured models of the CNN with
various time-frequency representations. Section 4 presents the experimental results, and Section 5
summarizes the conclusions.

2. Deep Models of the 2D CNN

2.1. VGGNet

VGGNet was awarded second place in the ILSVRC (ImageNet Large Scale Visual Recognition
Competition) 2014 competition. As VGGNet has a simple structure, it is more widely used than
GoogLeNet, which was awarded first place. VGGNet uses a small filter size of 3 × 3 for convolution as
opposed to various other neural networks that employ relatively large convolution filters. The model
becomes more discriminating as the nodes are activated with ReLUs following convolution using a
1 × 1 filter. Additionally, a small sized filter only has a few parameters required/necessary for learning,
which improves the learning speed. VGGNet has max pooling layers with a 2 × 2 filter size, two fully
connected layers with 4096 nodes, and one fully connected layer with 1000 nodes. Instead of using one
large filter, two successive 3 × 3 convolutions and three successive 3 × 3 convolutions have the same
effect as 5 × 5 and 7 × 7 convolutions, respectively. By doubling the number of convolution filters after
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each max pooling layer, the depth of the neural network increases as the spatial dimension decreases.
VGGNet was originally built to assess the error response to the depth of a neural network. VGGNet has
models with depths of 8, 11, 13, 16, and 19. As the depth of the neural network increased, the errors
decreased until 19 and subsequently increased. VGGNet used scale jittering as a data augmentation for
learning. This was learned using batch gradient descent [28]. Figure 1 shows the structure of VGGNet
with the time-frequency representations as inputs. In the L@M ×N notation, L, M, and N represent the
size of the feature map and rows and columns of the filter, respectively.
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Figure 1. Structure of VGGNet with the time-frequency representations as inputs.

2.2. ResNet

Deep layers in a deep neural network cause problems that interfere with learning such as the
vanishing gradient, exploding gradient, and degradation. A vanishing gradient implies that the
gradient becomes too small as it progresses through many layers, while the exploding gradient implies
that the gradient becomes too large as it progresses through many layers. Degradation means that a
simple shallow neural network performs better than a complex deep neural network. The input of the
previous layer is used to calculate the output of the next layer. The input of the previous layer is reused
by adding it to the output of the next layer. This method is known as a skip connection, and the learning
proceeds until ReLU (W×X) converges to zero. Thus, the output Y has a value similar to the input X to
enable the number of layers in the skip connection to be arbitrarily specified. This method reduces
the vanishing gradient and allows small changes in the input to be delivered to the output. ResNet is
thus built by being deeply stacked with many layers using the skip connection. ResNet performs
convolution with 3 × 3 filter sizes similar to VGGNet [28] and uses convolutions with two strides,
without pooling and dropout. ResNet is applied using skip correlation for every two convolutions [30].
Figure 2 shows the structure of ResNet with the time-frequency representations as inputs.
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2.3. DenseNet

The structure of a general neural network represents a sequential list of convolution, pooling, and
a fully connected layer. Unlike a general neural network, DenseNet solves the problem of degradation
using a dense connectivity as shown Equation (1). DenseNet has approximately twelve filters per layer
and applies a dense connectivity to attach the output of the previous layer to the current layer to build
feature maps in succession. Thus, the information from the initial layer is effectively transferred to the
later layer. This allows all feature maps within the neural network to be entered into the final classifier,
which includes features created in the middle layers. The network is designed to learn enough while
reducing the total number of parameters. The dense connection functions as a regularization, which
minimizes overfitting even when small sets of data are used for learning. DenseNet is designed by
dividing the entire neural network into several dense blocks and placing feature maps of the same size
in each dense block. A transition layer consisting of batch normalization, a convolution layer, and an
average pooling layer is applied. A method to reduce the computational complexity using a bottleneck
structure is applied. In the last section of the neural network, a global average pooling is used instead
of a fully connected layer. DenseNet was trained using the stochastic gradient descent algorithm [31].
Figure 3 shows the structure of DenseNet with the time-frequency representations as inputs.

xm = Hm([x0, x1, . . . , xm]) (1)
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2.4. Xception

Xception is based on an inception. It retrieves the relationship between the channels separately from
the local information retrieval of the images. Xception is performed on every channel using a depthwise
separable convolution, and the output is projected to a new channel space via convolution with a 1 × 1
filter size. Conventional convolution generates one feature map considering the local information
and channels. In contrast, depthwise convolution generates one feature map for each channel and
reduces the number of feature maps via convolution with a 1 × 1 filter size. Pointwise convolution
employs a 1 × 1 filter size. In Inception, the convolution is followed by a nonlinear function. In the
depthwise separable convolution, the first convolution need not have a subsequent nonlinear function.
Xception consists of 36 convolutions in 14 modules for feature extraction. All modules except the
first and last have linear residual connections. Xception is designed by linearly stacking the modules
using depthwise separable convolution and residual connections [29]. Figure 4 shows the structure of
Xception with the time-frequency representations as inputs.
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3. ECG Biometrics using Pre-Configured CNN Models with Various
Time-Frequency Representations

3.1. Preprocessing

The ECG signal is noise-sensitive and could be contaminated by low band frequency noises as a
person moves through the muscles and high band frequency noises generated by the electrical source
used to operate the ECG equipment [32]. Low band frequency noise can be reduced by applying
an average convolution with a filter size of 500, while high band frequency noise can be reduced by
applying an average convolution with a filter size of 10. As the average convolution is performed
to distort the beginning and end of the signal, these parts are discarded, and the R peak points are
subsequently detected. The data are configured by segmenting the signal to be centered on the R peak
point, with only the lead I of the ECG used for the experiment.

3.2. Time-Frequency Representations

Five time-frequency representations are considered here to compare the ECG biometrics, namely
the spectrogram [33], log spectrogram, mel spectrogram [34], MFCC [35,36], and scalogram [37].
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The spectrogram used in this study is based on the short time Fourier transform (STFT). STFT is used to
determine the sinusoidal frequency and phase by dividing a signal that changes over time into several
regional sections. In practice, STFT splits a long time signal into shorter segments of equal length and
subsequently applies the Fourier transform to each segment. For example, in the case of continuous
time, the signal to be transformed is multiplied by a non-zero window function over a short period.
The Fourier transform of the signal is then calculated by sliding the window along the time axis, which
results in a two-dimensional representation of the signal. Mathematically, this can be expressed as
Equation (2) [33].

X(τ,ω) =

∞∫
−∞

x(t)w(t− τ)e−jωtdt (2)

The log spectrogram and mel spectrogram are log scaled and mel scaled versions of the spectrogram
based on STFT. The log scale and mel scale have been famously used for voice applications because
they emphasize the low band frequency relevant for voice analysis and deemphasize the high band
frequency noise. ECG contains important information in the low band frequency [34]. The log scale
and mel scale transforms can be mathematically expressed as Equations (3) and (4), with the scale
mappings of the log and mel transforms shown in Figure 5.

y = log(x) (3)

m = 2595 log
(
1 +

f
700

)
(4)
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MFCC is a linear cosine transform of the log power spectrum at the nonlinear mel scale over
short intervals of a signal. MFCC represents coefficients synthetically composed of an MFC that is
derived from the cepstral representation of an audio clip. The normal cepstrum has linearly spaced
frequency bands, while the mel frequency cepstrum has equally spaced frequency bands. The human
auditory system, which is sensitive to low band frequencies, is similar to the mel frequency cepstrum.
This frequency warping mimics the human auditory system, which is primarily sensitive to the low
frequency band, to better represent low frequency signals such as ECGs. The process to calculate MFCC
can be summarized as follows. Step 1: As the input signal in the time domain is constantly changing, it
is divided into equally sized regions in a short time for simplicity. Step 2: The power spectrum is then
calculated for each region from the divided signals. Step 3: The energies of the mel filter bank are
calculated. Step 4: The energy values of the mel filter bank are logged. Step 5: The discrete cosine
transform (DCT) is applied to the logged energy values. The obtained DCT coefficients represent
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MFCC, and the size of the dimension can be appropriately adjusted [36]. Figure 6 shows the process
used to calculate MFCC.
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A scalogram represents the absolute values of the coefficients obtained from the continuous
wavelet transform of a signal. The wavelet transform is a time-frequency transform, which is more
efficient than the cosine and Fourier transforms [38]. The Fourier transform is weak for high resolution
applications as the analysis is performed on a single scale. In contrast, the wavelet transform is
analyzed on a multi-scale. The Fourier transform decomposes the signal into sinusoids of different
frequencies, which can subsequently be inversed. The wavelet transform decomposes the signal into
shifted, scaled mother wavelets that can be inversed. In Equation (5), T(a, b) represents the continuous
wavelet transform, wherein the signal f(t) is decomposed into the scaled or shifted mother wavelets of
ψa,b(t).

T(a, b) =
1
√

a

∫
∞

−∞

f(t)∗ψ
( t− b

a

)
dtaεR+

− {0}, bεR (5)

The parameters a and b can be used to adjust the scale and position of the mother wavelet. In this
study, we employed the Morse wavelet as the mother wavelet with P2 = 60 and γ = 3. The generalized
Morse wavelet can be expressed as Equation (6) [37]. Figure 7 shows the time-frequency representations.

ΨP,γ(ω) = U(ω)aP,γω
P2
γ e−ω

γ
(6)
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3.3. ECG Biometrics Using Various CNN Models

As the ECG signals are noise-sensitive, various studies have focused on the frequency domain to
reduce the noise in the biometrics. Different methods used to transform signals into the time-frequency
domain include the spectrogram, log spectrogram, mel spectrogram, MFCC, and scalogram.
The time-frequency transformation of a 1D signal results in a 2D matrix, which can be applied
to a 2D CNN. Time-frequency analysis can be used to calculate the frequency and phase of the signal.
As the noise is mainly concentrated in a specific region of the frequency domain, the useful signal and
noise can be independently extracted. The discriminative features might be narrow/restrictive due
to similarities in the different ECG signals from each person. However, the hidden features can be
visualized in the time-frequency domain by expressing the signals at various scales and frequencies.
The ECG data that have been transformed from 1D to 2D using the time-frequency transform can be
applied to the 2D CNN. The 2D CNN has shown good performance in image applications, which has led
to new CNN models being proposed. The popular open source models include the VGGNet, ResNet,
Xception, and DenseNet. Combinations of the time-frequency representations and pre-configured CNN
models have not been investigated. In this paper, we evaluate ECG biometrics using pre-configured
models of the CNN with various time-frequency representations. The PTB-ECG [39,40] and CU
(Chosun University)-ECG [18] databases were used in this study. PTB-ECG is a popular, open access
ECG dataset, while CU-ECG was directly constructed for this study. Figure 8 shows the ECG biometrics
using various time-frequency representations.
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We concentrated on the classification task. We used the accuracy as a performance measure of the
ECG biometrics. The correct classification (CC) was divided by the total classification, i.e., the sum of
the CC and WC (wrong classification) to obtain the accuracy [41] as shown in Equation (7).

Accuracy =
CC

CC + WC
(7)
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4. Experimental Results

4.1. Database

Two databases were used to analyze the performance of the deep model for time-frequency
representations in the ECG biometrics. The first database was PTB-ECG, which was built by the National
Metrology Institute of Physikalisch-Technische Bundesanstalt. PTB-ECG has 27,000 recordings, which
were acquired from 290 people sitting in a comfortable state in a chair. The ECG data were acquired
from subjects that included patients with heart disease and healthy people. The ECG data were
acquired using twelve standard leads and three frank leads at 1000 samples/s. Two to three recordings
of varying length from 23 s to two minutes were acquired for each person, with an average time
difference of 500 days between any two measurements [39,40]. The second database was CU-ECG,
which was directly constructed for biometrics at Chosun University (CU). The database was acquired
from 100 people, which included males and females, aged 23 to 34. The ECG data were acquired from
subjects seated in a comfortable state in a chair. Sixty ECG signals were recorded for each person using
a short length. The data were acquired with a sampling rate of 500 kHz for 10 s each time, with only
the lead I signal recorded. The ECG acquisition equipment was developed using Keysight, MSO9104,
Atmega8, and non-invasive electrodes for constructing the CU-ECG database. Figure 9 shows the
environment for acquiring the CU-ECG signals [18].
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4.2. Experimental Results

The experiment was performed using a computer with the following specifications: Nvidia
GeForce GTX 1080 Ti, Intel i7-6850K central processing unit at 3.60 GHz, Windows 10 64-bit operating
system, and 64 GB random-access memory. In this study, ECG biometrics using pre-configured
models of the CNN with various time-frequency representations were evaluated. The signals were
preprocessed to reduce the noise, and the R peak points were detected to normalize the center point
of the ECG data. In other words, one data point was extracted based on each detected R peak point.
However, the number of R peaks detected for each recording was different, as each person had a
different heart rate, and the detection rate of the R peak was different for each signal. To construct
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the same amount of data for each class, the total number of R peak points detected for each class was
calculated. The class was excluded when the number of detected R peaks was too small. When the
number of detected R peaks was large, a few detected R peaks were removed to ensure the same
amount of data in each class. Considering only the data from lead I, a frame length of 784 centered
on the detected R peak point was obtained. The data were then transformed to the time-frequency
representations. Here, the spectrogram, log spectrogram, mel spectrogram, scalogram, and MFCC
were considered as the time-frequency representations. The transformed ECG data were 2D, which
could be applied to the 2D CNNs. Figure 10 shows the process of making the input image from the raw
ECG signal. The pre-configured models based on the 2D CNN were the VGGNet, Xception, ResNet,
and DenseNet models discussed earlier. The 2D ECG image was input to the CNN, and the neural
network was trained to classify its identity. The depth of the neural network in the VGGNet, ResNet,
and DenseNet models was 19, 101, and 201, respectively. We did not consider a potential issue from
the variability from the selection of the ECG sensor devices. A different ECG sensor device (or product)
would change the shape of the ECG signals and accuracy.
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PTB-ECG is an open access database and includes ECG data from 290 people. However, the data
from 211 people were used to construct the PTB-ECG database as the ECG data from the remaining
79 had only few R peak points. The R peak points from 211 people were compared and adjusted
to ensure that the maximum number of data per class was 120. The database size of PTB-ECG was
784 × 25, 320 (120 data/class × 211 classes). The row refers to the dimension of the data, while the
column indicates the number of data. To train the CNNs, PTB-ECG was divided into the training,
validation, and test datasets with ratios of 0.45, 0.05, and 0.5, respectively. To shorten the training time,
the training set was composed of 45% normally less than other literature works in the field of machine
learning, and a larger ratio for the training set results in too high accuracy to compare performance.
The sizes of the training, validation, and test datasets were 784 × 11,394, 784 × 1266, and 784 × 12,660,
respectively. Figure 11 shows the structure of PTB-ECG. The CNNs were trained using a mini-batch
size of 30, an initial learning rate of 0.0001, the Adam (adaptive moment estimation) training optimizer,
and an epoch varied according to the model. PCA (principle component analysis)-L2 was executed by
entering vectors reshaped from the diminished input image and measuring Euclidean distance (L2).
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The PCA dimension was 20. Table 1 shows the accuracies achieved by PCA-L2 using time-frequency
representations on PTB-ECG. PCANet [42] is a neural network that has a CNN architecture based
on PCA. PCANet was executed with 4 as the patch size, 4 filters, 4 as the block size, and 0.5 as
the block overlap ratio. Table 2 shows the accuracies achieved by PCANet using time-frequency
representations on PTB-ECG. Table 3 presents the accuracies achieved by the different models based
on CNN using time-frequency representations on PTB-ECG. Considering MFCC on PTB-ECG, CNN
failed to train VGGNet-19. The best accuracies achieved by the time-frequency representations on
PTB-ECG were 98.99% for DenseNet-201 in MFCC, 98.85% for Xception in spectrogram, 97.16% for
Xception in log spectrogram, 96.92% for Xception in mel spectrogram, and 97.83% for ResNet-101 in
scalogram. This paper did not consider a potential issue from the variability from the selection of the
ECG sensor devices. A different ECG sensor device (or product) would change the shape of the ECG
signals and accuracy. The MFCC input to the DenseNet-201 model achieved the best accuracy for the
PTB-ECG dataset. Figure 12 shows the training processes that achieved the best accuracies for the
time-frequency representations applied to PTB-ECG.Appl. Sci. 2019, 9, 4810 12 of 23 
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Table 1. Accuracies achieved by PCA-L2 using time-frequency representations on PTB-ECG.

Input Type Model Test Accuracy

MFCC

PCA-L2

97.59

Spectrogram 98.16

Log spectrogram 97.76

Mel spectrogram 97.76

Scalogram 97.96
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Table 2. Accuracies achieved by PCANet using time-frequency representations on PTB-ECG.

Input Type. Model
Accuracy

Training Test

MFCC

PCANet

99.72 98.56

Spectrogram 99.72 98.15

Log spectrogram 99.70 98.74

Mel spectrogram 99.78 98.37

Scalogram 99.78 98.89

Table 3. Accuracies achieved by various models based on the CNN using different time-frequency
representations on PTB-ECG.

Input Type Model Epoch Accuracy

Training Validation Test

MFCC

VGGNet-19 20 0.47 0.47 0.47

Xception 20 99.72 99.45 98.84

ResNet-101 20 99.46 99.13 97.84

DenseNet-201 5 99.77 99.61 98.99

Spectrogram

VGGNet-19 20 98.80 97.71 96.58

Xception 20 99.76 99.53 98.85

ResNet-101 20 99.57 99.37 98.08

DenseNet-201 5 98.90 98.50 97.83

Log spectrogram

VGGNet-19 20 98.03 96.52 94.99

Xception 20 99.18 98.50 97.16

ResNet-101 20 99.45 97.95 96.79

DenseNet-201 5 97.12 95.26 94.38

Mel spectrogram

VGGNet-19 20 95.08 91.00 89.11

Xception 20 98.68 98.18 96.92

ResNet-101 20 97.80 98.42 96.85

DenseNet-201 5 97.48 96.92 95.98

Scalogram

VGGNet-19 20 98.46 98.66 97.02

Xception 20 98.75 98.82 97.33

ResNet-101 20 99.43 98.74 97.83

DenseNet-201 5 99.13 98.74 97.16

The CU database directly constructed for this study was acquired at 500 kHz. The dataset was
resampled to 1 kHz because it was too large for data processing. The CU database included ECG data
from 100 people. However, the data from 99 people were used to construct CU-ECG as the ECG data
from one subject had very few R peak points. The R peak points from 99 people were compared and
adjusted to ensure that the maximum number of data per class was 300. The size of the CU-ECG
database was 784 × 29,700 (300 data/class × 99 classes). The row represents the dimension of the data,
while the column indicates the number of data. To train the CNNs, CU-ECG was divided into the
training, validation, and test datasets with ratios of 0.45, 0.05, and 0.5, respectively. The sizes of the
training, validation, and test datasets were 784 × 13,365, 784 × 1485, and 784 × 14,850, respectively.
Figure 13 shows the structure of CU-ECG. The CNNs were trained using a mini-batch size of 30, an
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initial learning rate of 0.0001, the Adam training optimizer, and an epoch varied according to the model.
PCA-L2 was executed by entering vectors reshaped from the diminished input image and measuring
Euclidean distance. The PCA dimension was 20. Table 4 shows the accuracies achieved by PCA-L2
using time-frequency representations on CU-ECG. PCANet was executed with 4 as the patch size, 4
filters, 4 as the block size, and 0.5 as the block overlap ratio. Table 5 shows the accuracies achieved by
PCANet using time-frequency representations on CU-ECG. Table 6 presents the accuracies achieved
by the different models based on the CNN using time-frequency representations on CU-ECG. The best
accuracies achieved by the time-frequency representations on CU-ECG were 93.82% for DenseNet-201
in MFCC, 94.03% for Xception in spectrogram, 90.65% for Xception in log spectrogram, 88.84% for
Xception in mel spectrogram, and 93.49% for Xception in scalogram. The spectrogram input to the
Xception model achieved the best accuracy for the CU-ECG dataset. Figure 14 shows the training
processes that achieved the best accuracies for the different time-frequency representations applied
to CU-ECG.
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Figure 12. Training processes that achieved the best accuracies for the time-frequency representations
applied to PTB-ECG. (a) Accuracy of DenseNet-201 using MFCC; (b) loss of DenseNet-201 using MFCC;
(c) accuracy of Xception using spectrogram; (d) loss of Xception using spectrogram; (e) accuracy of
Xception using log spectrogram; (f) loss of Xception using log spectrogram; (g) accuracy of Xception
using mel spectrogram; (h) loss of Xception using mel spectrogram; (i) accuracy of ResNet-101 using
scalogram; (j) loss of ResNet-101 using scalogram.



Appl. Sci. 2019, 9, 4810 16 of 24

Appl. Sci. 2019, 9, 4810 15 of 23 

training, validation, and test datasets were 784 × 13,365, 784 × 1485, and 784 × 14,850, respectively. 
Figure 13 shows the structure of CU-ECG. The CNNs were trained using a mini-batch size of 30, an 
initial learning rate of 0.0001, the Adam training optimizer, and an epoch varied according to the 
model. PCA-L2 was executed by entering vectors reshaped from the diminished input image and 
measuring Euclidean distance. The PCA dimension was 20. Table 4 shows the accuracies achieved 
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Table 4. Accuracies achieved by PCA-L2 using time-frequency representations on CU-ECG.

Input Type Model Test Accuracy

MFCC

PCA-L2

90.36

Spectrogram 89.41

Log spectrogram 86.43

Mel spectrogram 87.39

Scalogram 90.14

Table 5. Accuracies achieved by PCANet using time-frequency representations on CU-ECG.

Input Type Model
Accuracy

Training Test

MFCC

PCANet

96.05 89.88

Spectrogram 95.99 90.88

Log spectrogram 96.03 89.94

Mel spectrogram 95.99 89.10

Scalogram 95.92 92.29
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Table 6. Accuracies achieved by various models based on the CNN using time-frequency representations
on CU-ECG.

Input Type Model Epoch Accuracy

Training Validation Test

MFCC

VGGNet-19 20 93.35 90.24 86.21

Xception 20 96.07 95.56 93.62

ResNet-101 20 95.56 95.15 92.46

DenseNet-201 5 96.17 95.08 93.82

Spectrogram

VGGNet-19 20 91.95 91.99 87.87

Xception 20 96.01 95.62 94.03

ResNet-101 20 95.69 94.48 91.64

DenseNet-201 5 94.71 94.01 91.83

Log spectrogram

VGGNet-19 20 93.76 91.92 87.56

Xception 20 95.26 93.80 90.65

ResNet-101 20 94.01 92.53 89.29

DenseNet-201 5 93.92 92.79 88.75

Mel spectrogram

VGGNet-19 20 88.80 89.29 86.28

Xception 20 92.65 91.99 88.84

ResNet-101 20 91.55 91.45 88.42

DenseNet-201 5 90.76 90.03 86.77

Scalogram

VGGNet-19 20 93.55 93.60 90.56

Xception 20 95.68 95.56 93.49

ResNet-101 20 95.71 94.75 92.11

DenseNet-201 5 95.58 95.08 92.84
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Figure 14. Training processes that achieved the best accuracies for the time-frequency representations
applied to CU-ECG. (a) Accuracy of DenseNet-201 using MFCC; (b) loss of DenseNet-201 using MFCC;
(c) accuracy of Xception using spectrogram; (d) loss of Xception using spectrogram; (e) accuracy of
Xception using log spectrogram; (f) loss of Xception using log spectrogram; (g) accuracy of using
Xception mel spectrogram; (h) loss of Xception using mel spectrogram; (i) accuracy of Xception using
scalogram; (j) loss of Xception using scalogram.
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The MIT(Massachusetts Institute of Technology)-BIH(Beth Israel Hospital) arrhythmia database
consists of ECG signals from 48 subjects. The data had a sample rate of 360 Hz and a 10 s length.
Most data had the MLII (Modified Limb lead II) signal except two subjects. Therefore, MLII data
from 46 subjects were used for biometrics. Noise was eliminated from the signal, and the R peaks
were detected by the Pan–Tompkins algorithm. The number of detected R peaks was small because
the length of MIT-BIH arrhythmia had a short length signal. The R peak points from 46 people were
compared and adjusted to ensure that the maximum number of data per class was five. Data were
captured with 289 samples putting the R peak as the center. The size of the MIT-BIH-arrhythmia-ECG
database was 289 × 230 (5 data/class × 46 classes). The row represents the dimension of the data,
while the column indicates the number of data. To train the CNNs, MIT-BIH-arrhythmia-ECG was
divided into the training and test datasets with ratios of 0.6 and 0.4, respectively. The sizes of the
training and test datasets were 289 × 138 and 289 × 92, respectively. The CNNs were trained using
a mini-batch size of 10, an initial learning rate of 0.0001, a max epoch of 5, and the Adam training
optimizer. PCA-L2 was executed by entering vectors reshaped from the diminished input image and
measuring Euclidean distance. The PCA dimension was 20. Table 7 shows the accuracies achieved by
PCA-L2 using time-frequency representations on MIT-BIH-arrhythmia-ECG. PCANet was executed
with 4 as the patch size, 4 filters, 4 as the block size, and 0.5 as the block overlap ratio. Table 8 shows the
accuracies achieved by PCANet using time-frequency representations on MIT-BIH-arrhythmia-ECG.
Table 9 presents the accuracies achieved by the different models based on CNN using time-frequency
representations on MIT-BIH-arrhythmia-ECG. The best accuracies achieved by the time-frequency
representations on MIT-BIH-arrhythmia-ECG were 48.91% for DenseNet-201 in MFCC, 63.04% for
DenseNet-201 in spectrogram, 84.78% for DenseNet-201 in log spectrogram, 38.04% for DenseNet-201
in mel spectrogram, and 75.00% for DenseNet-201 in scalogram. The log spectrogram input to the
DenseNet-201 model achieved the best accuracy for the MIT-BIH-arrhythmia-ECG dataset. There were
some cases of learning failure because the size of the dataset was too small.

Table 7. Accuracies achieved by PCA-L2 using time-frequency representations on MIT (Massachusetts
Institute of Technology)-BIH (Beth Israel Hospital)-arrhythmia-ECG.

Input Type Model Test Accuracy

MFCC

PCA-L2

4.35

Spectrogram 1.09

Log spectrogram 2.17

Mel spectrogram 3.26

Scalogram 1.09

Table 8. AccuraciesachievedbyPCANetusingtime-frequencyrepresentationsonMIT-BIH-arrhythmia-ECG.

Input Type Model
Accuracy

Training Test

MFCC

PCANet

100 78.26

Spectrogram 100 89.13

Log spectrogram 100 86.96

Mel spectrogram 100 82.61

Scalogram 100 86.96
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Table 9. Accuracies achieved by various models based on the CNN using different time-frequency
representations on MIT-BIH-arrhythmia-ECG.

Input Type Model Epoch Accuracy (%)

Training Validation

MFCC

VGGNet-19 5 2.17 2.17

Xception 5 2.17 5.43

ResNet-101 5 18.12 22.83

DenseNet-201 5 66.67 48.91

Spectrogram

VGGNet-19 5 2.9 2.17

Xception 5 14.49 8.7

ResNet-101 5 36.96 38.04

DenseNet-201 5 75.36 63.04

Log spectrogram

VGGNet-19 5 2.17 2.17

Xception 5 94.06 70.65

ResNet-101 5 86.96 72.83

DenseNet-201 5 97.10 84.78

Mel spectrogram

VGGNet-19 5 2.17 2.17

Xception 5 2.9 5.43

ResNet-101 5 24.64 32.61

DenseNet-201 5 50.72 38.04

Scalogram

VGGNet-19 5 3.62 4.35

Xception 5 96.38 67.39

ResNet-101 5 96.38 67.39

DenseNet-201 5 99.28 75.00

The mean accuracies of the different time-frequency representations applied to PTB-ECG were
98.56% for MFCC, 97.84% for spectrogram, 95.83% for log spectrogram, 94.72% for mel spectrogram,
and 97.34% for scalogram. The mean accuracies of the different time-frequency representations applied
to the CU-ECG were 91.53% for MFCC, 91.34% for spectrogram, 89.06% for log spectrogram, 87.58%
for mel spectrogram, and 92.25% for scalogram. The mean accuracies of PTB-ECG and CU-ECG
corresponding to the time-frequency representations were 95.04% for MFCC, 94.59% for spectrogram,
92.45% for log spectrogram, 91.15% for mel spectrogram, and 94.79% for scalogram. The MFCC
accuracies were 0.45%, 2.60%, 3.90%, and 0.25% higher than the spectrogram, log spectrogram, mel
spectrogram, and scalogram accuracies, respectively. Figure 15 shows a comparison between the
accuracies of the different time-frequency representations.
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The mean accuracies of the different models in PTB-ECG were 94.43% for VGGNet-19, 97.82% for
Xception, 97.48% for ResNet-101, and 96.87% for DenseNet-201. The mean accuracies of the different
models in CU-ECG were 87.70% for VGGNet-19, 92.13% for Xception, 90.78% for ResNet-101, and
90.80% for DenseNet-201. The mean accuracies of PTB-ECG and CU-ECG for the different models were
91.06% for VGGNet-19, 94.97% for Xception, 94.13% for ResNet-201, and 93.84% for DenseNet-201.
The Xception accuracies were 3.91%, 0.84%, and 1.14% higher than the VGGNet-19, ResNet-101, and
DenseNet-201 accuracies, respectively. Figure 16 shows a comparison between the accuracies of various
models based on the CNN. The mean accuracies of PCA-L2 and PCANet were 97.81 and 98.54 in
PTB-ECG, 88.75 and 90.42 in CU-ECG, and 2.4 and 84.78 in MIT-BIH-arrhythmia-ECG, respectively.
The Xception in PTB-ECG was 0.1% higher than PCA-L2 and 0.72% lower than PCANet. The Xception
in CU-ECG was 3.38% and 1.71% higher than PCA-L2 and PCANet, respectively.
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5. Conclusions

We evaluated ECG biometrics using pre-configured models of CNNs with various time-frequency
representations. Biometrics technology records a person’s physical or behavioral characteristics in a
digital signal via a sensor and analyzes it to identify the person. Biometrics offer great convenience to
human lifestyles throughout society. An ECG signal is obtained by detecting and amplifying a minute
electrical signal flowing on the skin using a noninvasive electrode when the heart muscle depolarizes at
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each heartbeat. In biometrics, the ECG is especially advantageous in security applications because the
heart is located within the body and moves while the subject is alive. However, a few body states generate
noisy biometrics. The analysis of signals in the frequency domain has a robust effect on the noise. As the
ECG is noise-sensitive, various studies have applied time-frequency transformations that are robust to
noise, with CNNs achieving a good performance in image classification. Various studies have applied
the time-frequency representations of 1D ECG signals to 2D CNNs. Combinations of the time-frequency
representations and CNN deep models have not been investigated. In this study, we employed MFCC,
spectrogram, log spectrogram, mel spectrogram, and scalogram time-frequency transforms and the
VGGNet, GoogLeNet, ResNet, and DenseNet deep CNN models. The PTB-ECG and CU-ECG databases
were used in this study. The MFCC accuracies were 0.45%, 2.60%, 3.90%, and 0.25% higher than the
spectrogram, log spectrogram, mel spectrogram, and scalogram accuracies, respectively. The Xception
accuracies were 3.91%, 0.84%, and 1.14% higher than the VGGNet-19, ResNet-101, and DenseNet-201
accuracies, respectively. The mean accuracies of PCA-L2 and PCANet were 97.81 and 98.54 in PTB-ECG,
88.75 and 90.42 in CU-ECG, and 2.4 and 84.78 in MIT-BIH-arrhythmia-ECG, respectively. The Xception
in PTB-ECG was 0.1% higher than PCA-L2 and 0.72% lower than PCANet. The Xception in CU-ECG
was 3.38% and 1.71% higher than PCA-L2 and PCANet, respectively. The Xception with time-frequency
representation showed close accuracy in PTB-ECG, which was easily successfully classified. However,
the Xception outperformed other methods in CU-ECG, which was not easily successfully classified.
Further studies would focus on new and better time-frequency representations.
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