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Featured Application: This technique of improving the accuracy of g(2)(τ) measurement is useful
to extract higher order coherence and achieve desired laser source for quantum imaging and
secure communication.

Abstract: The second order photon correlation g(2)(τ) of a chaotic optical-feedback semiconductor
laser is precisely measured using a Hanbury Brown–Twiss interferometer. The accurate g(2)(τ) with
non-zero delay time is obtained experimentally from the photon pair time interval distribution
through a ninth-order self-convolution correction. The experimental results agree well with the
theoretical analysis. The relative error of g(2)(τ) is no more than 5%� within 50 ns delay time. The
bunching effect and coherence time of the chaotic laser are measured via the precise photon correlation
technique. This technique provides a new tool to improve the accuracy of g(2)(τ) measurement and
boost applications of quantum statistics and correlation.

Keywords: photon correlation; quantum optics; photon statistics; chaos; optical feedback;
semiconductor lasers

1. Introduction

Semiconductor lasers subject to external optical feedback exhibit a rich variety of nonlinear
dynamical behaviors and are used to generate high-dimensional chaotic lasers [1,2]. This configuration
has attracted great interest for a wide range of applications, like optical chaos communication [3–7],
secure key distribution [8], high-speed physical random number generation [9–12], chaos-based optical
computing [13] and sensing [14–16]. It is fundamentally important to understand the underlying
physical mechanisms of the chaotic laser, and practically useful to improve the laser performance
and motivate its applications. Previous research mainly focused on clarifying intensity statistics and
autocorrelation (AC) of chaotic lasers to characterize chaotic processes [17–21]. Intensity statistics are
closely relevant to the extractable rate of random numbers [9,10,22] and the AC is a good indicator of
a chaotic modulating bandwidth in optical chaos communications [4,19]. However, the macro-scale
intensity statistics and AC are not sufficient to reveal all properties of a given chaotic laser, and there is
also a significant discrepancy between experimental and theoretical probability density distributions of
the laser intensity [19]. Recent research reveals that quantum correlation is more accurate in assessing
statistical properties and more sensitive to control parameters compared to the AC function [23,24].
However, the previous research is concentrated on the properties of the quantum dot laser in the
low-intensity (low-gain) situation, and the bunching effect of the chaotic laser, i.e., g(2)(0) > 1 at τ = 0,
is only revealed in the fully developed chaotic (high-gain) regime. Studies on high order photon
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correlation of high-dimensional chaotic lasers are sparse, especially second order photon correlation
g(2)(τ) at non-zero delay time.

The landmark experiment on photon correlation was first conducted by Hanbury Brown and
Twiss (HBT), demonstrating spatial second order photon correlation g(2) of a thermal light [25]. Soon
afterwards, this experiment inspired Glauber’s seminal work on quantum optics theory, which described
the photon correlation of different light fields by correlation functions of quantum statistics [26–28].
The photon correlation g(2) is fundamentally different from the first order correlation and is harnessed
in many applications, such as photon bunching and anti-bunching measurement [29–32], spatial
interference [33,34], ghost imaging [35–37], the azimuthal HBT effect [38], single photon detection [39],
etc. The g(2)(τ) also carries a wealth of information on the statistical probability of different photons
arriving at time delay τ [40]. Up until now, there are many approaches to obtain photon correlation
g(2)(τ), typically including two-photon absorption (TPA) measurement [41,42], photon coincidence
counting [43], time interval measurement of photon pairs [44]. Recently, the HBT experiment was
explored to observe chaos from quantum dot lasers with external feedback [23]. However, research
on photon correlation g(2)(τ) of high-dimensional chaotic waveforms is rare and there is still an
obvious disagreement between experimental and theoretical g(2)(τ). The calculation of g(2)(τ) from
the photon pair time interval distribution provides a good way to measure the photon correlation of
pseudo-thermal light with microsecond coherence time [44]. But for a chaotic laser, the coherence time
is much shorter than that of pseudo-thermal light, and the resolution time must be shorter than the
coherence time of the laser in the measurement. Although the shorter coherence time does not affect
the bunching effect or g(2)(0) of the chaotic laser [24], that makes the measurement of g(2)(τ) (τ , 0) at
very short timescales using the HBT technique more difficult, owing to the limited response time of
single-photon detectors [45]. It remains an important challenge to ravel the g(2)(τ) (τ , 0) of the chaotic
laser at high precision, whose coherence time is below 1 ns. Accordingly, high precision and ultrashort
resolution time are required to acquire an accurate g(2)(τ) of the chaotic laser. That is, it is potentially
useful to extract higher order coherence and achieve a desired laser source for quantum imaging and
secure communication.

In this paper, we theoretically and experimentally investigate the second order photon correlation
g(2)(τ) of a chaotic optical-feedback semiconductor laser. The g(2)(τ) is precisely measured using
self-convolution HBT detection at tens of picoseconds resolution time. A different high order correction
of g(2)(τ) is analyzed and confirmed experimentally, which has a low relative error in wide range of
delay time. It shows a good agreement between experimental results and theoretical analysis. We
also measure the bunching effect and coherence time of the chaotic laser using the precise photon
correlation technique. This technique, avoiding the photon overlapping, can give a g(2)(τ) with a high
accuracy. To the best of our knowledge, the accurate measurement of g(2)(τ) for the chaotic laser has
not been investigated and reported. In view of this demonstration, we present first some highlights of
precise photon correlation measurement that are necessary for a better understanding of quantum
statistics of the chaotic laser. The demonstration well reveals photon correlation g(2)(τ) of the chaotic
laser and provide a way of studying chaos with quantum optics technique.

2. High Order Correction of g(2)(τ)

Theoretically, second order photon correlation of g(2)(τ) can be obtained from an ideal photon pair
time interval distribution P1(τ). Using the self-convolution method, one can obtain any desired high
order n, and the higher n of g(2)n (τ) is, the more accurate g(2)n (τ) tends to the ideal g(2)(τ). But due to the
actual operation capacity of data processing and the difficulty of convolving complex form to very
high order, we reasonably convolve g(2)n (τ) to the ninth order so the relative error is small enough to
obtain high accuracy.

In our experiment, photon pair time interval distribution is collected by single photon counters
and the time distribution is D1(τ). Furthermore, g(2)(τ) can be calculated from the self-convolution
of D1(τ).
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The second order photon correlation g(2)(τ) has a proportional relation to G(τ), as follows:

G(τ) = Ig(2)(τ), (1)

where I is the average photon counting rate per time bin of the light field. G(τ) is the histogram of
photons at delay time τ between two photon detection events. The relation between G(τ) and P1(τ) is
given by:

G(τ) = P1(τ) + P1(τ) ∗ P1(τ) + . . . . . . =
∞∑

n=1

Pn(τ), (2)

where P1(τ) is an ideal photon pair time interval distribution of light field which can be obtained based
on HBT experiment, and Pn(τ) is nth order self-convolution of P1(τ). When P1(τ) is less than one, the
sum of Pn(τ) is convergence [40], then we can obtain:

P1(τ) = L−1(
L(G(τ))

1 + L(G(τ))
), (3)

where L denotes the Laplace transformation, and L−1 denotes the inverse Laplace transformation.
When the above theory is applied to a Lorentzian chaotic laser field, we can get the relation

between G(τ) and Pn(τ) of a chaotic laser. The first order correlation of a Lorentzian chaotic laser is
as follows:

g(1)(τ) = e−
|τ|
τc . (4)

The relation between g(2)(τ) and g(1)(τ) for a Lorentzian chaotic laser is:

g(2)(τ) = 1 +
∣∣∣g(1)(τ)∣∣∣2. (5)

Using Equations (4) and (5), we obtain:

g(2)(τ) = 1 +
∣∣∣e−|τ|/τc

∣∣∣2. (6)

According to Equations (1) and (6), we obtain:

G(τ) = I(1 +
∣∣∣e−|τ|/τc

∣∣∣2). (7)

The relation between g(2)(τ) and Pn(τ) is shown as follows.
P2(τ) is the self-convolution of P1(τ):

P2(τ) =

∫ +∞

0
P1(τ)P1(t− τ)dt = P1(τ) ∗ P1(τ). (8)

P3(τ) is the convolution of P1(τ) and P2(τ):

P3(τ) =

∫ +∞

0
P2(τ)P1(t− τ)dt = P2(τ) ∗ P1(τ). (9)

Pn(τ) is the convolution of P1(τ) and Pn−1(τ):

Pn(τ) =

∫ +∞

0
Pn−1(τ)P1(t− τ)dt = Pn−1(τ) ∗ P1(τ). (10)
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The integration upper bound of Equation (10) should be replaced by the maximum time interval τ
practically. Now the new equation is:

Pn(τ) =

∫ τ

0
Pn−1(τ− t)P1(τ)dt = Pn−1(τ) ∗ P1(τ). (11)

Using Equations (3), (8), (9), (10), and (11), we obtain all of the self-convolution of P1(τ)
Then we obtain the following equations:

P2(τ) = L−1(
L(G(τ))

1 + L(G(τ))
) ∗ L−1(

L(G(τ))

1 + L(G(τ))
) (12)

Pn(τ) =

N︷                                                   ︸︸                                                   ︷
L−1(

L(G(τ))

1 + L(G(τ))
) ∗ · · · ∗ L−1(

L(G(τ))

1 + L(G(τ))
) (13)

g(2)n (τ) = (L−1(
L(Ig(2)(τ))

1+L(Ig(2)(τ))
)

+L−1(
L(Ig(2)(τ))

1+L(Ig(2)(τ))
) ∗ L−1(

L(Ig(2)(τ))
1+L(Ig(2)(τ))

) + · · ·

+

N︷                                                           ︸︸                                                           ︷
L−1(

L(Ig(2)(τ))

1 + L(Ig(2)(τ))
) ∗ · · · ∗ L−1(

L(Ig(2)(τ))

1 + L(Ig(2)(τ))
))/I

(14)

Inserting Equation (7) to Equation (13) we can get different Pn(τ). The form of Pn(τ) can be
obtained by numerical self-convolution. The sum of Pn(τ) is G(τ), and in theory g(2)n (τ) is comparable
to g(2)(τ) for sufficiently high n. In fact, with the increase of n, g(2)n (τ) is closer to ideal g(2)(τ). Using
Equation (14) and increasing the order of n, we can obtain high order g(2)n (τ). Considering the realistic
experiment condition and the data-processing ability, the maximum order of n we take is nine. The
theoretical high order correction of g(2)(τ) is given above, which can help us to know the influences
of the experimental parameters. Here, the direct self-convolution method is used to get g(2)n (τ) from
experimental data. In that case, P1(τ) is related to the experimentally measured photon pair time
interval distribution D1(τ). Dn(τ) is nth order self-convolution of D1(τ). Experimental results of g(2)n (τ)
can be obtained from D1(τ) [44]:

D1(τ) =
∞∑

n=1

1
2n Pn(τ), (15)

and the relation between G(τ) and Dn(τ) is:

G(τ) = 2
∞∑

n=1

Dn(τ). (16)

Thus, when we obtain the D1(τ), the high order correction g(2)n (τ) can be deduced from the
experimental photon pair time interval distribution as follows:

g(2)n (τ) =
1

I
· 2
∞∑

n=1

Dn(τ). (17)
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The above analysis basically solves the high order correction g(2)n (τ) of the chaotic laser in theory
and experiment. One can also use this method to analyze the error caused by the variations of the
mean photon intensity and the coherence time of the laser. In addition, high order correction of g(2)(τ)
for coherent light can be achieved and the g(2)(τ) is perfectly equal to one.

Using Equation (14), g(2)n (τ) is calculated to ninth order, and higher order terms than ninth can be
omitted. Relative error δ varying with the delay time τ at the correction order of nine is calculated as:

δ =

∣∣∣∣g(2)n (τ) − g(2)(τ)
∣∣∣∣

g(2)(τ)
× 100%. (18)

3. Experiment Setup

The experimental setup is shown in Figure 1, which can be used to determine time and frequency
domain of the laser characteristics and measure photon pair time interval distribution. A 1550 nm
laser was generated by a distributed feedback laser diode (DFB-LD), and a thermoelectric temperature
controller (TTC, ILX-Lightwave LDT-5412) was used to stabilize the temperature with an accuracy of
0.01 K. A precision current source controller (CSC, ILX-Lightwave LDC-3412) controlled the output
intensity of the DFB-LD laser nearly 1.5 times the threshold current with a value of 15.9 mA. The
output laser passed through a polarization controller (PC) which maintained the polarization of the
feedback beam paralleling to that of the output laser. With the help of an optical circulator (OC),
the optical feedback loop was realized. The output of the OC was connected to a 20:80 fiber coupler
(FC). A total of 80% of the output light passed through the variable optical fiber attenuator (VA1)
and went back to the OC. Another output was connected with a 50:50 FC, and one port of output
was detected by a high-speed photodetector (PD, FINISAR XPDV2120RA). Signal time series were
recorded by an oscilloscope (OSC, Lecroy LabMaster10-36Zi) and the frequency spectrum was obtained
by a frequency spectrum analyzer (Agilent N9020A). On the same output port of the 50:50 FC, the
optical spectrum was also measured by an optical spectrum analyzer (Yokogawa AQ6370C). The
other output port of this 50:50 FC was connected with another attenuator (VA2) followed by an HBT
system, which was based on a 50:50 beam splitter (BS) with a dual channel single photon detector
(SPD, Aurea Technology LYNXEA. NTR. M2). When the photons impinged on the SPD, the SPD
delivered pulses to a time to digital converter (TDC). An internal clock triggered two channel gates
simultaneously. Then precise time information (i.e., the time between photons arrival at different
channels) was extracted via a subtractor and an integrator. Each photon pair time interval was placed
in the one-time bin. The histogram of the photon pair time interval distribution was obtained through
cumulative measurement. The data were read out to a laptop computer (LC) via universal serial bus
(USB) connection. When the laser beam passed from the fiber to space or space to fiber, the fiber lens
collimators were required. In Figure 1, L1, L2, L3 represents the aspheric lens collimators, and F is an
optical filter used to filter out the background noise. The chaotic laser was divided into two equal
intensity beams whose intensity were measured by the detectors SPD1 and SPD2. One could adjust
the mean photon intensity of the light through the VA2. After the above steps, the photon pair time
interval distribution was attained.
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Figure 1. Schematic diagram of the experimental setup for measuring photon correlation g(2)(τ) of a
chaotic optical-feedback laser. DFB-LD: distributed feedback 1550 nm laser diode; PC: polarization
controller; OC: optical circulator; VA1 and VA2: variable optical fiber attenuator; FC1 and FC2: fiber
coupler; PD: high-speed photodetector; L1, L2 and L3: aspheric lens collimator; BS: beam splitter; F:
optical filter; SPD: single photon detector; TDC: time to digital converter; LC: laptop computer; OSC:
oscilloscope; TTC: thermoelectric temperature controller; CSC: current source controller.

4. Experimental Results

The chaotic laser was firstly attenuated by a variable attenuator and then passed through the HBT
setup. In the photon detection system, an internal clock triggered two channel gates simultaneously.
When a photon was detected on one channel, the arriving time was recorded. During the same
clock period, a subsequent photon was received from another channel and then the time interval
was measured. The desired distribution was obtained with many records, and if the detection
quantum efficiency was higher, the better the photon pair distribution was close to the real light source
distribution. Otherwise, the single photon detector would mistake dark noise for photon signals.
Moreover, as the incident photon number increased, the noise level would be higher due to the after
pulsing effect. In that case, the time interval distribution of photon pairs was also affected by noise.
When the coherence time of light source was short, high resolution time was required in the detection.
Besides, the unbalance of the two light intensities after the BS had an adverse effect on the acquired
distribution. It was difficult to obtain an accurate time interval distribution of photon pairs with a very
low quantum efficiency. In our experiment, the detection quantum efficiency was 25%. We investigated
how different average photon intensity and coherence time affected the accuracy of different order
corrections. We used the relative error to compare different high order corrections with the ideal second
order photon correlation. According to Equation (2), we calculated P9(τ) with high order terms and
omitted the terms higher than ninth order. Likewise, we took the photon pair time interval distribution
D1(τ) and then convolved D1(τ) to D9(τ). The terms higher than ninth order were also omitted. Using
Equation (17) we obtained a different high order correction of g(2)(τ) with experimental data. The
influences of different average photon intensity and the coherence time were investigated theoretically.

At 1.5 times the threshold current (J = 1.5Jth) and 25 ◦C temperature (T = 25 ◦C), central wavelength
was stabilized near 1548 nm. We adjusted the attenuator VA1 and polarization controller to accurately
control the optical feedback strength. The feedback strength ηwas obtained as the ratio of the feedback
power to the output power of the laser. With the increase of the feedback strength, the laser experienced
a transition from period-1 and period-2, to the steady chaos oscillation. Among them, we selected three
typical states, including period-2 (weak chaos) with the feedback strength η of 2.66%, the intermediate
chaotic state (chaos) with η of 8.87%, and steady chaotic oscillation state (strong chaos) with η of 30.31%.
Figure 2a shows the three typical frequency spectrums of the chaotic laser. To quantify the bandwidth
of the chaotic laser, we used the definition that is expounded as the frequency spectrum region the DC
and the frequency where 80% of the energy is contained within [46]. According to the 80% bandwidth
definition, the bandwidth of the chaotic laser was 4.98 GHz, 9.84 GHz, and 11.71GHz, respectively.
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Figure 2b is the optical spectrum of the chaotic laser. Environmental changes slightly influenced the
optical feedback strength and the coherence length [47]. Based on the repeated measurements we
obtained the range of coherent time variation. Figure 3 is the three corresponding time series of the
chaotic laser.
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Figure 2. (a) Measured frequency spectrum and (b) optical spectrum of the chaotic laser, when J = 1.5Jth
and η = 2.66% (weak chaos), 8.87% (chaos), 30.31% (strong chaos).
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Figure 3. Measured three corresponding time series of the chaotic laser. The bias current J = 1.5Jth and
feedback strength (a) η = 2.66%, (b) 8.87%, (c) 30.31% are the same as those used in Figure 2.

The bandwidth of the chaotic laser was in the order of GHz and we obtained the coherence time of
chaotic laser through 3dB linewidth spectrum. Considering that the ninth order correction of the second
order photon correlation g(2)(τ) was close enough to the theoretical limit, we experimentally took the
ninth order correction within 10 ns and theoretically employed the same order fitting. The experimental
photon correlations g(2)(τ) were fitted by ideal expressions, as shown in Figure 4. For photon-bunching
chaotic light, the g(2)(τ) can be written as g(2)(τ) = 1 + bexp(−2τ/τc) (b: bunching amplitude, τc: coherence
time) [23]. Figure 4 shows the experimental and theoretical fitting results for weak chaos (b = 0.479,
τc = 0.768 ns), chaos (b = 0.524, τc = 0.651 ns), and strong chaos (b = 0.626, τc = 0.535 ns).
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Figure 4. The ninth order correction of second order photon correlation and the theoretical fitting. The
bias current J = 1.5Jth and feedback strength (a) η = 2.66%, (b) 8.87%, (c) 30.31% are the same as those
used in Figure 2.
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5. Influences of Detector Time Resolution and High Order Omitted Terms

In our experiment, the resolution time of the detection (65 ps) was not significantly small compared
to the coherence time (~0.5 ns) of the chaotic laser, resulting in a little fluctuation of measured g(2)(τ).
In Figure 5a, the experimental results of g(2)n (τ) within 100 ns delay time is shown and the magenta
curve represents the original photon pair time interval distribution. The original experimental data
is the same as those used in Figure 4b. The bottom-up colored curves indicate the increasing order
corrections of second order photon correlation. The orange curve is the third order correction of g(2)(τ),
and the others are fifth, seventh, and ninth order corrections of g(2)(τ). For an accurate measurement of
photon correlation, a very low photon flux rate I was required to ensure Iτc < 1 [39]. The counting rate
of the SPD was controlled below 0.3 Mcounts/s by using the VA2 and the overall detection efficiency
was 25%. In Figure 5a, the counting rate was 270 kcounts/s and the dead time of the SPD was 4 µs.
Within 100 ns sampling time (i.e., τ = 100 ns), the incident light intensity was estimated to be about
4 × 107 photons/s. Figure 5b shows the theoretical results when τc was 0.5 ns and the incident light
intensity was 4 × 107 photons/s. The experimental results are in good agreement with the theory.
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Figure 5. The (a) experimental and (b) theoretical results of g(2)n (τ) within the delay time 100 ns.

6. Relative Error of g(2)
n (τ) With Mean Photon Intensity and Coherence Time of the Chaotic Laser

The coherence time of our experiment was below 1 ns and we can set the maximum coherence
time in the theoretical analysis. Following this, g(2)(τ) was obtained by using Equation (6), which
is independent on the mean photon intensity. Furthermore, according to Equation (18), it is found
that the mean photon intensity and coherence time have effects on the relative error. The maximum
photon intensity in our experiment did not exceed 0.05 photons/ns. Given this finding, we changed the
mean photon intensity from 0.03 photons/ns to 0.05 photons/ns. For the low order correction of g(2)(τ),
it cannot provide sufficient information and accuracy according to Equation (2). For the ninth order
correction, there was almost no difference between g(2)9 (τ) and g(2)(τ) and the loss information can be

ignored. Figure 6 shows the relative error of g(2)9 (τ) for photon intensity changes from 0.03 photons/ns
to 0.05 photons/ns and different delay times with the ninth order correction. The relative error varied
with the photon intensity and delay time. When the delay time is shorter than 40 ns the relative error
can be ignored, while the relative error is increased when the delay time is close to 100 ns. It should
be noted that higher order correction can reduce the relative error for longer delay time. In Figure 6,
it is also indicated that larger photon intensity brings bigger error. But when the photon intensity is
too low, the photon pair time interval distribution contains a lot of dark noise that deteriorates the
detection performance.
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Following this, we theoretically analyzed the coherence time from 0.3 ns to 0.7 ns under the
condition that the photon intensity was near 4 × 107 photons/s. Figure 7 shows the relative error as
functions of the coherence time τc and the delay time τ. The coherence time τc varied from 0.3 ns
to 0.7 ns and the delay time τ was within 100 ns. In this case, corresponding to our experimental
condition, the relative error did not exceed 5%� within 50 ns delay time. It is worth noting that a long
τc leads to big relative error, but the change of relative error was subtle. The relative error caused by
the coherence time was smaller than that of the photon intensity.
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Figure 7. Relative error as functions of coherence time and delay time. The photon intensity was
0.04 photons/s and the yellow dashed line corresponds to the experimental condition.

We compared the relative error caused by the above two factors (photon intensity and coherence
time). The yellow dashed line in Figure 7 indicates the case that the coherence time was 0.5 ns,
which corresponds to the experiment condition. For the same delay time, the relative error caused by
coherence time was lower than that caused by photon intensity. Thus, high accuracy g(2)(τ) requires
well controlling the photon intensity [24].

From the above discussion, the high order correction of second order photon correlation was
affected by the variations of the mean photon intensity and coherence time of the laser, and we analyzed
the relative error caused by the two factors respectively. The relative error from incident photon
intensity was larger than that from coherence time. In Figure 7, the dashed line on the error surface
was under the condition that the intensity was 0.04 photons/ns and τc was 0.5 ns, which corresponds to
the experimental condition. In our experiment, the maximum relative error in ninth order correction of
g(2)(τ) did not exceed 5%� within 50 ns delay time. The relative errors caused by the photon intensity
and coherence time retained the uncertainty ±0.01 photon/ns and ±0.2 ns respectively, and the overall
error within 50 ns delay time did not exceed 1% in our condition.
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7. Conclusions

In conclusion, we precisely measured the second order photon correlation g(2)(τ) of a chaotic
semiconductor laser using self-convolution HBT interferometer. Based on the theoretical analysis,
the ninth order self-convolution correction was sufficient to obtain experimentally the accurate g(2)(τ)
from the photon pair time interval distribution. The experimental results were in good agreement
with the theory. The relative error caused by coherence time and mean photon intensity was analyzed,
which was no more than 5%� within 50 ns delay time. As the order of convolution increased, the
accuracy improved within a long delay time. In comparison with the traditional HBT measurement,
this technique, which does not require high intensity and long optical or electric delay, is more useful
for a weak light source, such as atomic fluorescence and single photon emission, whose quantum
correlation is difficult to be detected. It is demonstrated that this technique provides a new way to
measure high order quantum coherence precisely and will bridge the gap between nonlinear optics of
chaotic lasers and quantum physics.
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