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Abstract: Failure mode and effect analysis (FMEA) is one of the most widely employed pre-evaluation
techniques to avoid risks that may occur during product design and manufacturing phases. However,
use of the risk priority number (RPN) in traditional FMEA results in difficulties being encountered
with regard to quantification of the degree of risk involved. This study proposes the use of a
probabilistic time-dependent FMEA (TD-FMEA) approach to overcome limitations encountered
during implementation of traditional FMEA approaches. To this end, the proposed method defines
the risk priority metric (RPM) as a priority decision value. RPM corresponds to the product of the
expected loss and occurrence rate of the failure-cause. By assuming exponential and case functions
for each occurrence and detection time instant, the expected loss corresponding to each failure-cause
can be evaluated. Utility of the proposed approach has been described in the light of results obtained
via its implementation during an automotive-manufacturing case study performed for the purpose
of illustration.
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1. Introduction

Failure mode and effect analysis (FMEA) is an analysis technique for defining, identifying, and
eliminating known and/or potential failures, problems, errors, etc. from systems, designs, processes,
and/or services before they reach the customer [1]. The results of the FMEA can help analysts to
identify and correct the failure modes that have a detrimental effect on the system and improve its
performance during the stages of design and production [2]. Since its introduction as an analysis
tool for reducing failures, FMEA has been extensively used in a wide range of industries, including
automotive, semiconductor, aircraft medical, and steel industries [3–6].

In traditional FMEA approaches, the risk associated with a failure-cause is usually evaluated using
the risk priority number (RPN), which corresponds to the mathematical product of the occurrence
(O), severity (S), and detection (D) of a failure-cause (i.e., RPN = O × S × D, where O is related to
failure occurrence, D to failure detection, and S to failure severity). RPN evaluation of a potential
failure-cause requires evaluation of three risk factors via the use of the 1-to-10 scale. The higher the
RPN of a failure-cause, the greater is the associated risk with regard to system/product reliability.
However, this traditional FMEA risk-evaluation approach has often been extensively criticized in
extant literature for a variety of reasons [2]. Noteworthy drawbacks of the traditional RPN-based
approach include (i) no consideration of relative importance among O, S, and D parameters [7–10];
(ii) difficulties involved in precise evaluation of the three risk factors [5,11–17]; (iii) no consideration
of interdependencies among different failure-causes and the corresponding effects [6,18–20]; and
(iv) over-dependence on expert intuition and experience instead of scientific methods for evaluation of
the three risk components [21,22].
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Many researchers have attempted to overcome the above-mentioned drawbacks, thereby
improving the FMEA risk-evaluation method in the process. Liu et al. [2] reported that the most
popular FMEA approach corresponds to the fuzzy rule-based system [10,23–25], followed by the
grey theory [9,10], cost-based model [11–13], AHP/ANP [7,19,26,27], and linear programming. Others
included an integration-based approach [8,15–17,21,22,28] and probability-based methodology [14,29].
Apart from these approaches, the use of a time-dependent probabilistic approach for FMEA
risk-evaluation has been proposed in this study. In the proposed model, two additional factors—time
(failure occurrence and detection) and loss (repair and opportunity cost)—have been considered owing
to them being directly associated with the criticality of the risks.

Typically, failures occur on account of the occurrence of even one of their causes. Additionally,
occurrence of a failure may not be detected in real time, and there may exist some intermediate time
delay. The loss incurred owing to the effect of a failure depends on this time delay. If a potential
failure-cause can be detected prior to occurrence of actual failure, only a certain repair cost would
be incurred. However, in the event of an actual failure, substantial monetary loss, including the
expense due to failure and the corresponding repair cost, may be incurred. Figure 1 depicts typical
scenarios of failure occurrence along with crude estimates of the expected loss depending on the time
elapsed between failure occurrences and detection of their possible causes. The scenarios are based
on the assumption that (i) each cause can independently lead to failure; (ii) the time elapsed between
occurrence of a probable cause and that of the consequent failure is different in each case; (iii) the time
required for detection of the failure-cause is different in each case; and (iv) failure effects are realized
after failure occurrence. The failure-cause in case A is detected prior to failure occurrence. In case B,
the failure-cause is detected long after failure occurrence, and this results in realization of significant
failure effects. In general, it is well known that losses incurred after failure occurrence are much greater
when compared to those incurred prior to failure occurrence. Thus, the risk involved in case B can be
considered the greatest under the assumption that the failure effect per unit time remains the same in
case A.
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Figure 1. Effect of failure-cause detection time on the loss of a failure: If a detection is later than a
failure, the loss increases rapidly.

In this study, a time-dependent probabilistic approach is proposed considering the real situation
that the loss increases as detection of a failure or its causes late, and the risk of the failure-cause is
quantitatively evaluated based on this. Assuming a case function for detection time of a failure and its
probable causes, an approximate loss function can be deduced for each failure-cause. Based on the
value of the expected loss for each failure-cause, the risk priority metric (RPM) can be evaluated as the
expected loss per unit time by multiplying the expected loss, which is determined by integration of
loss function with its probability density function, and the occurrence rate of each failure-cause.
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This manuscript has been organized as follows. Section 2 describes the proposed TD-FMEA
model. In Section 3, a comparative analysis is conducted with the proposed TD-FMEA approach and
traditional FMEA based on the design FMEA case of automotive leaf springs. Finally, we will draw
conclusions and make suggestions for future research in Section 4.

2. Time-Dependent FMEA Model (TD-FMEA Model)

2.1. Modeling Procedure

The risk evaluation scheme of TD-FMEA proposed in this study is shown in Figure 2. First,
probability density functions for occurrence time of failure hT(t), occurrence time of failure-cause
h′T′(t), and detection time gS|T=t(s) are defined. Next, the loss function L(s, t) is defined. For evaluating
the expected loss, it must be set parameter values λ, ε, µ, α, β, and θ. By integrating the loss function,
we deduce the expected loss E[L]. Finally, by multiplying the occurrence rate of failure-cause ε by E[L],
we get the expected loss per unit time (RPM) for a focused failure-cause.
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2.2. Risk Evaluation Modeling

Consider a random variable T as an elapsed time from a failure-cause to the failure occurrence.
Likewise, the detection time S is defined by the elapsed time between a failure-cause and its detection.
By defining an appropriate loss function L as a function of the occurrence time T and detection time S,
the expected loss E[L] can be calculated accurately. A typical failure scenario is depicted in Figure 1.



Appl. Sci. 2019, 9, 4939 4 of 16

2.2.1. Occurrence Time of a Failure and Its Failure-Cause

Under the assumption of a homogeneous Poisson process (HPP), the occurrence time T becomes
a function of the failure occurrence rate λ. T can be considered exponentially distributed with mean
1/λ, and its probability density function is expressed as

hT(t) = λe−λt, t > 0. (1)

Additionally, T′ is defined by the occurrence time of the failure-cause from its operation. As in
Equation (1), T′ can be considered as a function of the failure-cause occurrence rate ε with its average
value 1/ε. The corresponding probability density and cumulative distribution functions are

h′T′(t) = εe−εtand (2)

H′T′(t) = 1− e−εtwith t > 0. (3)

2.2.2. Detection Time of a Failure-Cause

The probability density function of a corresponding failure-cause detection is generally assumed
to be uniform before a failure occurrence, because a failure-cause is usually detected in accordance
with the regularized detection schedule of a uniform time interval. Now, assume that we do not
detect the failure-cause until the failure occurs. In the early stages of a failure, intensive detection
will be attempted to detect failure-cause, so the probability density function of detection will be high
at the initial state and will then gradually reduce. Thus, we considered an exponential function in
this study, because it is the easiest to integrate and demonstrates excellent expansion. Therefore,
probability density function of a failure-cause detection will be a case function conditioned by the time
of occurrence.

Now, set up the following variables for obtaining the exact probability density function of detection
time. Let us consider a failure and its failure-cause. Here, s is the elapsed time between occurrence and
detection of the failure-cause. Similarly, t is the elapsed time between occurrence of failure and that of
its failure-cause. As mentioned before, the conditional probability density function gS|T=t(s) is uniform
in the domain where a detection time s is less than the given occurrence time t. Otherwise, gS|T=t(s) has
an exponential form. Next, we have to determine the weight of the uniform and exponential section
among the total probability 1. Let w(t) be the cumulative probability of the uniform distribution;
then, 1−w(t) is the cumulative probability of the exponential distribution as shown in Figure 3. Thus,
the conditional probability density function gS|T=t(s) is expressed as a function of the failure-cause
detection rate µ, given the failure occurrence time T = t.

gS|T=t(s) =
{

w(t) 1
t , s < t

[1−w(t)]µe−µ(s−t) , s ≥ t
. (4)

The function gS|T=t(s) may jump up at s = t. This is because more efforts are expected to be made
to repair the failure and normalize the system at a time t. Thus, for s = t with jump up coefficient c,

cw(t)
1
t
= [1−w(t)]µe−µ(t−t) = [1−w(t)]µ. (5)

Rearrangement of Equation (5) yields

w(t) =
µt

c + µt
. (6)

The weight function w(t) equals zero when t is zero and becomes unity as t approaches infinity.
This result is intuitively appropriate, since the probability of detection before failure would nearly
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equal zero when t approaches zero, and as t becomes infinitely large, the detection probability must
approach unity. Thus,

gS|T=t(s) =


µ

c+µt , s < t
cµ

c+µt e−µ(s−t) , s ≥ t
. (7)
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2.2.3. Loss of Failure

If an inherent failure-cause exists within a system, there must be a cost associated with its
elimination or prevention of the failure-cause. If a failure-cause is not detected until system failure
occurs, it will add not only the failure-cause removal cost but also the system failure cost. The additional
costs incurred as a result of system failure are the fixed cost and variable cost, i.e., a threshold cost and
opportunity cost for system non-operation due to the system failure. The opportunity cost depends
on the difference between failure-cause detection time s and failure occurrence time t. Let L(s, t)
be a loss function for a system with several failure-cause. As we mentioned above, the loss is only
the failure-cause removal cost for s < t. However, for s ≥ t, the loss is the sum of a failure-cause
removal cost, threshold cost of the system failure, and an opportunity cost of the system non-operation
proportional to s− t. That is,

L(s, t) =
{
α , s < t
α+ β+ θ(s− t) , s ≥ t

. (8)

Here, α, β, and θ denotes a failure-cause removal cost, threshold cost of the system failure, and
proportional factor of opportunity cost because of the system non-operation.

2.3. Loss Evaluation

2.3.1. Expected Value of Loss

The expected value of the loss function is calculated by integrating the loss function.
From Equations (1), (4), and (8), the probability density function of failure occurrence time hT(t),
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failure-cause detection time gS|T=t(s), and the loss function L(s, t) are easily multiplied. Then, the
expected value of the loss E[L] is calculated by the following.

E[L]=
∫
∞

0

∫
∞

0
L(s, t)gS|T=t(s)hT(t)dsdt

=

∫
∞

0

∫ t

0
L(s, t)gS|T=t(s)hT(t)dsdt +

∫
∞

0

∫
∞

t
L(s, t)gS|T=t(s)hT(t)dsdt

=

∫
∞

0

∫ t

0
α

µ

c + µt
λe−λtdsdt +

∫
∞

0

∫
∞

t
[α+ β+ θ(s− t)]

cµ
c + µt

e−µ(s−t)λe−λtdsdt

=

∫
∞

0
α

[∫ t

0

µ

c + µt
ds +

∫
∞

t

cµ
c + µt

e−µ(s−t)ds
]
λe−λtdt +

∫
∞

0

∫
∞

t
[β+ θ(s− t)]

cµ
c + µt

e−µ(s−t)λe−λtdsdt

= α+

(
β+

θ
µ

)
cλ
µ

e
cλ
µ E1

(
cλ
µ

)
(9)

(See Appendix A)
For x > 0, E1(x) is the exponential integral function defined by

E1(x) =
∫
∞

1

e−xt

t
dt =

∫
∞

x

e−t

t
dt = −γ− ln x−

∞∑
k=1

(−x)k

kk!
. (10)

where γ = lim
n→∞

(∑n
k=1

1
k − ln n

)
= 0.577 . . . is an irrational number called the Euler constant.

2.3.2. Risk-Prioritization Metric

Consider an occurrence of failure and failure-cause in a system. Suppose that a failure-cause of
the failure occurs according to a homogeneous Poisson process (HPP) with a failure-cause occurrence
rate ε. This statement is in fact equivalent to Equation (2). Finally, we propose the RPM compared
with the RPN in the representative standard of FMEA. The RPM is easily calculated by

RPM = εE[L] = ε

[
α+

(
β+

θ
µ

)
cλ
µ

e
cλ
µ E1

(
cλ
µ

)]
. (11)

3. Application

3.1. Parameters Setting of RPM and RPN Values

FMEA of product design, performed by Santhosh and Vinodh [4] for an organization that
manufactures automotive leaf springs, was adopted in this research as a case study to demonstrate the
utility of the proposed TD-FMEA model. Table 1 describes the FMEA chart for design documented as
part of this case study. The modified chart describes analysis of various failure causes—from FC11 to
FC23—listed under column 1 with O, S, and D. Numerical values were assigned to parameters ε, λ, α,
β, and θ, or simulations of the TD-FMEA model for design FMEA. A few of these parameter values
were slightly modified as necessary to suit the proposed model. Values concerning the detection and
occurrence rates—µ and ε—were obtained by modifying the corresponding ratings of factors O and
D, respectively, in accordance with Table 2, which in turn, was modified with reference to the FMEA
handbook [30].
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Table 1. Parameter setting for simulations of the time dependent FMEA (TD-FMEA) model for design
FMEA: As shown in Equation (11), there are many parameters such as failure-cause detection rate µ,
failure-cause occurrence rate ε, failure occurrence rate λ, and coefficients α, β, and θ of loss function
L. We set the parameters to compare risk prioritization metric (RPM) and risk prioritization number
(RPN) by various simulations, fixing, and modifying each parameter.

Potential
Failure-Causes

(O, S, D)

Modified Fixed Variable

µ ε λ

Coefficients of
Loss Function λ

Coefficients of
Loss Function

α β θ α β θ

Insufficient
specification of

Thickness
(5, 7, 6)

FC11 6.01·E−02 3.61·E−03 1.81·E−02 350 700 1000 1.81·E−02 400 800 1000

Insufficient room
between plates

(6, 7, 4)
FC12 2.72·E−01 1.81·E−02 1.81·E−02 350 700 1000 7.22·E−04 450 900 2000

Design aspect of
Improper

variation in
length
(4, 7, 5)

FC13 1.35·E−01 7.22·E−04 1.81·E−02 350 700 1000 1.93·E−01 100 200 2500

No. of layers not
meeting

Requirements
(3, 6, 4)

FC21 2.72·E−01 9.60·E−05 1.81·E−02 350 600 1000 7.22·E−04 150 300 3000

Young’s modulus
of material

changing with
temperature

(8, 6, 5)

FC22 1.35·E−01 1.93·E−01 1.81·E−02 350 600 1000 9.60·E−05 250 500 1500

Corner design of
holding clamps

(8, 6, 4)
FC23 2.72·E−01 1.93·E−01 1.81·E−02 350 600 1000 7.40·E−02 340 680 3500

Potential Failure mode Reduced thickness of sheet

µ: Failure-cause detection rate; ε: Failure-cause occurrence rate; λ: Failure mode occurrence rate.

Table 2. Standardization of parameters for failure-cause occurrence rate ε, failure occurrence rate λ,
and failure-cause detection rate µ: The guideline is referenced by Ford Motor Company [30].

Occurrence Severity Detection

Guideline Rank for
RPN

ε, λ for
RPM Guideline Rank for

RPN RPM Guideline Rank for
RPN

µ for
RPM

≥ in 2 10 1.00·E+00 Hazardous 10

E[L]

Absolute
uncertainty 10 9.81·E−04

1 in 3 9 5.85·E−01 Serious 9 Very remote 9 3.10·E−03
1 in 8 8 1.93·E−01 Extreme 8 Remote 8 9.81·E−03

1 in 20 7 7.40·E−02 Major 7 Very low 7 2.69·E−02
1 in 80 6 1.81·E−02 Significant 6 Low 6 6.01·E−02
1 in 400 5 3.61·E−03 Moderate 5 Moderate 5 1.35·E−01

1 in 2000 4 7.22·E−04 Low 4 Moderately
high 4 2.72·E−01

1 in 15,000 3 9.62·E−05 Minor 3 High 3 4.39·E−01
1 in 150,000 2 9.62·E−06 Very minor 2 Very high 2 7.65·E−01
≤1 in 1,500,000 1 9.62·E−07 None 1 Almost certain 1 1.00·E+00

Severity is not input of RPM, but the result of calculation such a name of expected value of loss E[L].
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In Table 2, occurrence rate of failure-cause and failure mode—ε and λ—for RPM are set to satisfy
the given guideline such that cumulative probability of failure occurrence during unit time for the
exponential distribution can be determined. Moreover, detection rate—µ for RPM is 1 over square-root
of λ. This is because the effect of µ is opposite to that of λ, and µ is related to inspection policy
compared to λ as an inherent property of the system. So, it assumes that the µ does not have dramatic
range compared to λ. Parameters concerning the coefficient loss function—α, β and θ—were randomly
assigned with reference to the S (severity) value of first column in Table 1. For parameters α, β, and θ,
fixed and variable parameters were allocated to derive various simulation results.

3.2. Comparative Analysis of RPM and RPN

To illustrate the effectiveness of the proposed risk-evaluation technique, the above-described case
study was used to analyze and compare results obtained using the proposed TD-FMEA model and
conventional design FMEA techniques. The results are described in Table 3, that lists values of the
conventional RPN, proposed RPM, and E[L] for each probable failure-cause in terms of both score and
priority. To facilitate the robust evaluation of risks during the case study, results obtained for four cases
((a)–(d)) have been discussed herein considering, in each case, the effect of variation in the value of any
one parameter among λ, α, β, and θ. Figure 4 shows the correlation of priority of RPN and RPM in
Table 3, respectively, in four cases. The square root of R2 is 0.8 or higher, it is determined that there is a
strong correlation [31]. The square root of R2 always satisfies −1 ≤ r ≤ 1, the positive correlation is
r > 0, the negative correlation is r < 0. Moreover, when it is free, it becomes r = 0.

Table 3. Comparison between RPN of conventional FMEA model and RPM of TD-FMEA model for
design FMEA: The priority of RPN and RPM is similar, so we may confirm the validity of the TD-FMEA
model to some extent. (※ set µ and ε to the modified values in Table 1).

Case Failure-Causes
RPN RPM E[L]

Score Priority Score Priority Score Priority

(a)
Fixed

λ, α, β and θ

FC11 210 2 22 3 6180 1
FC12 168 4 17 4 958 4
FC13 140 5 2 5 2103 2
FC21 72 6 9·E−02 6 945 5
FC22 240 1 401 1 2081 3
FC23 192 3 182 2 945 5

(b)
Fixed λ

and
Variable
α, β and θ

FC11 210 2 23 4 6263 1
FC12 168 4 29 3 1597 6
FC13 140 5 3 5 4147 2
FC21 72 6 2·E−01 6 1725 5
FC22 240 1 532 1 2760 3
FC23 192 3 428 2 2224 4

(c)
Fixed

α, β and θ,
and

Variable
λ

FC11 210 2 22 3 6180 1
FC12 168 4 7 4 404 4
FC13 140 5 4 5 5465 2
FC21 72 6 4·E−02 6 402 5
FC22 240 1 74 2 383 6
FC23 192 3 330 1 1713 3

(d)
Variable

λ, α, β and θ

FC11 210 2 23 3 6263 2
FC12 168 4 10 4 551 4
FC13 140 5 9 5 11,911 1
FC21 72 6 3·E−02 6 289 6
FC22 240 1 57 2 297 5
FC23 192 3 897 1 4658 3
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In Figure 4, regarding case (a), the square root of R2 between RPN and RPM was 0.943, indicating
a strong correlation. In Table 3, however, in terms of score, they are different. Based on RPN values,
the FC22 (score = 8× 6× 5 = 240) demonstrates the highest priority and can be considered the most
critical risk closely followed by FC11 (score = 210) and FC23 (score = 192) ranked second and third,
respectively. The difference in RPN scores corresponding to the FC22 and FC11 is 30 (= 240 − 210),
whereas that between the FC11 and FC23 is 18 (210 − 192). This, however, does not imply that 30 equals
two times 18 from the viewpoint of risk size. In the case of RPM, the FC22 (score = 401) demonstrates
the highest priority and can be considered the most critical risk followed by FC23 (score = 182) and
FC11 (score = 22) ranked second and third, respectively. The difference in score corresponding to the
FC22 and FC23 is 219 (401 − 182), whereas that between the FC23 and FC11 is 160 (182 – 22). This means
that 219 is about 1.37 times larger 160 from the viewpoint of risk size. Moreover, as depicted in Figure 4
for case (a), the FC11 and FC23 are prioritized as three and two, respectively, when employing the
RPM-based approach, whereas the same failure-causes are prioritized as two and three, respectively,
in accordance with RPN values. This is because the occurrence rate ε for the FC23 is considerably
higher compared to that for FC11, although the parameter µ is not significantly different for both risks
(refer Table 1). This result is also reflected in RPM scores corresponding to the two cases. The score
corresponding to the FC23 (score = 182) equals eight times that corresponding to FC11 (score = 22);
that is, the loss incurred per hour in the event of a failure-caused by FC23 would be eight times that
incurred in the event of a failure that was caused by FC11. On the other hand, this result is different in
terms of E[L]. As described in Table 3, the FC23 with E[L] = 945 assumes the least priority. This implies
that there is a high probability of detecting the FC23 before the failure occurs; thus, its corresponding
E[L] score is low.
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Regarding case (b), in Table 3, FC22, FC13, and FC21 are consistently assigned priorities of 1, 5, and
6, respectively, using both the RPN- and RPM-based approaches. As depicted in Figure 4 for case (b),
the square root of R2 between RPN and RPM was 0.829, indicating a strong correlation. Additionally,
the FC11, FC23, and FC12 are assigned of 4 (score = 23), 2 (score = 428), and 3 (score = 29), respectively,
when employing the RPM-based approach, whereas the same failure-causes are prioritized as two
(score = 210), 3 (score = 192), and 4 (score = 168), respectively, when employing the RPN-based
approach. This is because, as described in Table 1, variable parameters α, β, and θ for FC23 and FC12

exceed those for fixed parameters. On the other hand, in terms of E[L], the FC11 with the smallest value
of parameter µ assumes the highest priority, whereas risk FC12 with the largest values of µ assumes
the lowest priority (refer Table 1).

In case (c), compared to RPM-based results obtained for case (a) (refer Figure 4), it can be realized
that the RPM-based priority assigned to the FC22 changes from one to two while that of the FC23

changes from two to one. This is because the value of parameter λ for the FC23 exceeds that for the
FC22 by a fairly large magnitude (refer Table 1). In contrast, in terms of E[L], the FC11 with medium
value of λ and the smallest value of µ assumes the highest priority, whereas the FC22 with small value
of λ and large value of µ is assigned the lowest priority.

Lastly, in case (d), compared to RPM-based results, for case (d) are identical to those obtained
for case (c) in terms of priority, and they are quite similar on the score side. In Figure 4, the square
root of R2 between RPN and RPM was also 0.829, indicating a strong correlation. On the other hand,
in terms of E[L], results are quite different. For example, for the FC13, the score of E[L] is more than
double in case (d) than in case (c). This is because the λ and θ increased at the same time for case (d)
(refer Table 3).

In most cases, the rankings cannot be fully matched because the method of derivation of RPN
and RPM is completely different. Since RPN is not a perfect risk measurement tool currently, it is
difficult to distinguish the superiority of RPN and RPM for the difference in rank. However, since
correlation coefficients are high enough (higher than 0.8 for most cases), it is hard to say that RPN
and RPM make a significant difference. RPM means the size of risk or loss unlike RPN, so RPM
may have a wider range of applications than RPN. Above all, the parameters O, S, and D of RPN
have over-dependence on expert intuition and experience instead of scientific methods for evaluation.
However, the parameters of RPM are derived from statistical inference (ε, λ, and µ) and cost analysis
(α, β, and θ). Thus, we may say the RPM measured by TD-FMEA model is more objective than RPN
evaluated by the conventional FMEA model.

4. Conclusions

So far, we have proposed a time-dependent FMEA model (TD-FMEA model) and obtained an
expected loss value E[L] according to the occurrence of failure-cause through accurate calculation
(Equation (9)). Then, we derived risk prioritization metric (RPM), which is a defined index measuring
the risk of failure-cause in this study, multiplying by the failure-cause occurrence rate ε and the
expected loss value E[L] (Equation (11)).

The mathematical model proposed in this study performs an associated calculation on system
failure, failure-cause, and its detection. The probability density function of failure and failure-cause are
exponential by homogeneous Poisson process (HPP) assumption (Equations (1) and (2)), and that of
failure-cause detection is a case function combined in a uniform and exponential manner (Equation (4)).
The loss function is also a case function conditioned by detection time of failure-cause and occurrence
time of failure (Equation (8)). Time-dependent probabilistic approach pursues logical improvement
compared to previous models. Conventional RPN approach assumes that O (occurrence of failure),
S (severity of failure), and D (detection of failure-cause) are independent. However, RPM in our
model does not assume the independence because it combines failure occurrence rate, detection rate of
failure-cause, and loss function to derive the risk of failure-cause. Table 4 compared the traditional
FMEA and our TD-FMEA model.



Appl. Sci. 2019, 9, 4939 11 of 16

Table 4. Comparison of traditional FMEA and TD-FMEA.

Division Conventional FMEA TD-FMEA

Risk Parameter (i)

O, S, and D ε, λ, µ, α, β, and θ

• Expert intuition and experience
• Relative order-based
• Range from 1 to 10 for O, S, and D

• Statistical inference (ε, λ, and µ)
and cost analysis (α, β and θ)

• No limit of range

Risk Measure (ii)

RPN score (ranking of O × S × D) RPM score (εE[L])

• Qualitative
• Subjective
• Relative Risk Priority

• Quantitative
• Objective
• Exact Loss per Unit Time

O: Occurrence; S: Severity; D: Detection;
ε: Occurrence rate of failure-cause; λ: Occurrence rate of failure;
µ: Detection rate of failure-cause; α: Repair cost of failure-cause (coefficient of loss function);
β: Repair cost of failure (coefficient of loss function);
θ: Opportunity cost per unit time because of the system down (coefficient of loss function).

The RPM derived in this way provides room to supplement the disadvantages of traditional risk
prioritization number (RPN). The coefficient of determination R2 between the priority of RPM and
RPN has a range of 0.686~0.889 in our example (Figure 4). That is the rank correlation has a range
of 0.828~0.943, so that RPM and RPN have very strong correlations. From this, we can say that the
validity of our model has been empirically proven. Furthermore, our model has the advantage that the
RPM value represents the relative size of the actual risk. In contrast, the product of O, S, and D derived
from RPN of conventional approaches is only an auxiliary value to derive the priority without having
any substantial meaning (Table 3). Utility of both indicators E[L] and RPM with regard to evaluation of
the risk associated with each failure has been described in great detail in Section 3 of this paper. For a
reasonable calculation, we provide a standardization of parameters for failure-cause occurrence rate ε,
failure occurrence rate λ, and failure-cause detection rate µ, which is a variation of our model from the
guideline of Ford Motor Company (Table 2). In addition, the results of the sensitivity analysis of RPM
can be found in Appendix B.

In future endeavors, our future prospect is to examine actual cases based on actual parameters.
The purpose of the study is to derive correlation coefficients of RPN and RPM rankings to infer the
validity of RPM, and to verify the effectiveness by deriving risks from RPM values. Moreover, we
intend to focus on development of an FMEA risk-assessment methodology for a single failure with
multiple causes along with determination of an optimal inspection period to enhance the detection rate
based on E[L] values. In addition, if the failure-causes are analyzed hierarchically, a time-dependent
probabilistic model will be developed based on undetected time.

(i) In traditional FMEAs, risks can be assessed on a ranking basis, making it an easy-to-use
approach when data is difficult to obtain. In the big data world, however, the application of a
numerical-based TD-FMEA approach will enable more accurate assessment of risk.

(ii) In traditional FMEAs, the results of a risk assessment may depend on the subjective opinion of
the expert. On the other hand, in the case of the TD-FMEA approach, the objectivity of the result
is secured based on probability.
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For x > 0, E1(x) is the exponential integral function defined by

E1(x) =
∫
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= 0.577 . . . is an irrational number called the Euler constant. Therefore,
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Appendix B

A sensitivity analysis was performed in this study to investigate the influence of
distribution-parameter values on those of RPM. Sensitivity of RPM values to values of parameters—µ
and λ—can be readily analyzed. In this study, sensitivity of the value of RPM was analyzed by assigning
parameters ε, α, β, and θ with constant of 1.81E−02, 200, 1000, and 1200, respectively. Variations in
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the value of RPM corresponding to changes in values of µ and λ are listed in Table A1 and depicted
in Figure A1, respectively. Results obtained demonstrate that smaller values of µ result in enhanced
sensitivity of RPM. Figure A1a demonstrates that the value of RPM steeply increases with reduction in
the value of µ. Secondly, as depicted in Figure A1b, it can be realized that the value of RPM is nearly
insensitive to small values of λ, and that the corresponding sensitivity increases with increase in the
value of λ.

Figure A1 demonstrates that the maximum value of RPM is realized for the case wherein µ = 10
and λ = 10. This implies that maximization of a given risk of failure with the corresponding
failure-cause is hardly detectable whilst having a high occurrence probability. As depicted in Figure A1,
there exists a big difference between RPM values obtained for each µ. This can be verified in terms
of the graph slope. In Figure A1a, the difference between RPM values is large for cases with µ = 10
and λ assuming values in the range of 2–7. On the other hand, the difference between RPM values is
small when µ = 1 and λ assumes values in the range of 1–6. This implies that the RPM value does not
demonstrate much difference when the failure probability is either very high or very low. Inferences
drawn from the above sensitivity analysis are that (i) each failure-cause with a high occurrence
probability must be taken care of; and (ii) a cause with a small occurrence probability need not be
assigned high priority.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 16 
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Figure A1. Risk-prioritization metric (RPM) graph with respect to the failure occurrence rate λ and
failure-cause detection rate µ (c = 1, ε = 0.0181, α = 200, β = 1000, and θ = 1200). (a) RPM as a
function of λ draws S-curve, and (b) RPM of µ increases rapidly more than exponential. Thus, the RPM
is more sensitive to µ than λ.
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Table A1. Risk-prioritization metric (RPM) table with respect to the failure occurrence rate λ and failure-cause detection rate µ (c = 1, ε = 0.0181, α = 200, β = 1000,
and θ = 1200).

µ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

λ 1.00·E+00 7.65·E−01 4.39·E−01 2.72·E−01 1.35·E−01 6.01·E−02 2.69·E−02 9.81·E−03 3.10·E−03 9.81·E−04

1st 9.62·E−07 3.6 3.6 3.6 3.6 3.6 3.7 3.9 5.2 17.6 122.3
2nd 9.62·E−06 3.6 3.6 3.6 3.7 3.7 4.1 5.5 15.6 101.8 779.1
3rd 9.62·E−05 3.7 3.7 3.7 3.8 4.4 6.7 16.6 81.7 582.8 3957.5
4th 7.22·E−04 3.8 3.9 4.2 4.8 7.5 19.1 65.1 335.4 2070.7 11,132.7
5th 3.61·E−03 4.3 4.5 5.7 8.0 17.0 53.0 182.3 833.3 4159.8 17,546.2
6th 1.81·E−02 5.9 6.8 10.5 17.3 42.4 131.6 405.0 1519.6 5981.7 20,942.4
7th 7.40·E−02 9.6 11.9 20.3 34.9 83.5 232.4 621.3 1965.1 6720.4 21,883.9
8th 1.93·E−01 14.2 17.9 30.9 52.1 116.8 296.2 725.7 2119.6 6912.5 22,092.6
9th 5.85·E−01 21.9 27.3 45.4 72.7 149.7 345.8 791.1 2198.9 6999.4 22,182.3
10th 1.00·E+00 26.0 32.2 52.0 81.1 160.9 360.0 807.3 2216.5 7017.6 22,204.6
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