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Abstract: (1) Background: We previously demonstrated that customary regression protocols for
curvature in geometrical space all derive from a generalized model of complex allometry combining
scaling parameters expressing as continuous functions of covariate. Results highlighted the relevance
of addressing suitable complexity in enhancing the accuracy of allometric surrogates of plant
biomass units. Nevertheless, examination was circumscribed to particular characterizations of the
generalized model. Here we address the general identification problem. (2) Methods: We first
suggest a log-scales protocol composing a mixture of linear models weighted by exponential powers.
Alternatively, adopting an operating regime-based modeling slant we offer mixture regression or
Takagi–Sugeno–Kang arrangements. This last approach allows polyphasic identification in direct
scales. A derived index measures the extent on what complexity in arithmetic space drives curvature
in arithmetical space. (3) Results: Fits on real and simulated data produced proxies of outstanding
reproducibility strength indistinctly of data scales. (4) Conclusions: Presented analytical constructs
are expected to grant efficient allometric projection of plant biomass units and also for the general
settings of allometric examination. A traditional perspective deems log-transformation and allometry
inseparable. Recent views assert that this leads to biased results. The present examination suggests this
controversy can be resolved by addressing adequately the complexity of geometrical space protocols.

Keywords: allometry; operating regimen based modelling; TSK fuzzy model; curvature index;
polyphasic loglinear allometry

1. Introduction

Carbon fixation by plant biomass units promotes reduction of concentration of greenhouse
gases in the atmosphere, thereby lessening global warming [1–6]. Therefore, the assessment of the
flux and storage of carbon in plant biomass is of great interest. Concomitantly important is the
adaptation of methods aimed at non-destructive estimation. For instance, aboveground tree biomass
in forest ecosystems has been estimated through remote sensing protocols [7–10]. Nevertheless,
a number of factors such as sample size, weather, complexity of biophysical settings, study area scale,
software, or spatial resolution can induce uncertainty of remote-sensed estimation [11–15]. Allometric
methods allow implementation of parallel cost-effective non-destructive estimation of plant biomass
units [16–24]. However, this approach is not also problem-free. Factors like analysis method sample
size and data quality can bear significant influences on precision [25–33]. Understanding the way
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procedural factors drive precision of allometric projection of plant biomass units is crucial for assuring
reliability. This paper centers on the influences of the analysis method and particularly aims at
proposing reliable methods for handling complexity. For clarification it is pertinent reviewing the
notions behind interpretation and identification of the allometric paradigm.

As was originally envisioned, the term allometry, also mentioned as biological scaling, refers to
the relation between the size of a given organismal trait and overall body size. The notion developed
from observations by Otto Snell in 1892 and D’arcy Thompson in 1917. Allometry as a study subject
was outlined by Julian Huxley in 1932, in his theory of constant relative growth by two body parts [34],
formulated though the scaling equation:

y = βxα (1)

where y and x are quantifiable traits, the parameter α is nominated as the allometric exponent and β is
recognized as the normalization constant. This model also known as the equation of simple allometry
has been widely used in research problems in many fields including, biology [25,35,36], biomedical
sciences [37–41], economics [42–46], earth and planetary sciences [47–51], resource management and
conservation [52–56]. The interest for this model lies essentially in its practical utility to produce
surrogates of a response y, that is difficult to measure in direct way, by using estimates of the parameters
β and α and easily gotten measurements of a covariate x.

Parallel to Equation (1) is the traditional analysis method of allometry (TAMA). This is a
widespread protocol that relies in logtransformation in order to transfer Equation (1) into a linear model
in geometrical space. Then, the fitted line is back-transformed to yield the original two parameter
power function in arithmetical scale. A logtransformation embraces a notion of multiplicative growth.
Moreover, in Huxley’s rationale the intercept lnβ of TAMA’s line was of no explicit biological relevance,
but the slope α was significant enough as to mean allometry itself. This interpretation maintains
nowadays as the only valid theoretical perspective for many practitioners of allometry [57–59].
However, in spite of TAMA’s prevalence, there are views asserting this scheme produces biased
results [60–64]. Also allometrical relationships express as power functions and fit in to a non-linear
form in the original scale of data. Thus, keeping the analysis in arithmetical scales is in some way
more adequate. Concomitantly for this perspective, direct non-linear regression in arithmetical scales
(DNLR) becomes a default standard [65–72]. From this slant, the failure of a TAMA fit manly obeys
to unsuitable complexity endured by Huxley’s formula of simple allometry. Amendment of this
circumstance has encouraged routing further away from Huxley’s perception on covariation among
different traits, in order to conceive allometry as centered on covariation between size and shape [73,74].
Alongside this it is necessary to consider of multiple-parameter complex allometry (MCA). Related
formulations can admit all sorts of nonlinear or discontinuous relationships intended to be fitted in
arithmetical scales by means of DNLR protocols [75–78].

However, opposing MCA-DNLR slants, defenders of a TAMA approach state that as conceived
in the original theoretical standpoint of allometry, a logarithmic transformation is deemed necessary
in the analysis [18,59,79–87]. Thus, embracing MCA-DNLR protocols feeds one of the most central
discrepancies among schools of allometric examination. Furthermore, from a traditional stance
MCA-DNLR schemes sacrifice appreciation of biological theory in order to privilege statistical
correctness [32,59,87]. Besides, a DNLR approach could stand unreliable results, for instance, an
inadequate consideration of intrinsic error structure can lead to substantial bias [88]. In addition,
largest values of covariate can be influential of parameter estimates [18]. From a practical point
of view depending on the complexity of MCA to be fitted in direct scales, there could be issues
related to initial parameter estimates as well as convergence of non-linear regression algorithms.
Therefore, there are also caveats in efficiency of allometric projection of plant biomass units derived
from MCA-DNLR arrangements. Then, defenders of traditional allometry assert that overcoming
MCA-DNLR inconveniences could be achieved by embracing suitable complexity in geometrical space.

Huxley marked a breakpoint in the log-log plot of chela mass vs. body mass of fiddler crabs
(Uca pugnax). This was endorsed by an abrupt change in relative growth of the chela approximately
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when crabs reach sexual maturity [34,89,90]. Admittance of a break point for transition to succeeding
growth phases readily adapts a notion of curvature in geometrical space. This paradigm is also referred
as non-loglinear allometry in Huxley’s original interpretation [70,91,92]. Extension of Huxley’s break
point idea allows consideration of polyphasic loglinear allometry (PLA) [91,93–95]. This approach
characterizes heterogeneity of the response in geometrical space by composing the range of covariate
into sectors separated by break points. Each tract associates to a linear sub model. Therefore, as opposed
to examination through MCA-DNLR schemes, endorsing PLA break-point borne curvature offers a
way to add complexity while maintaining the essence of traditional allometry. However, curvature
as comprehended in the traditional allometric perspective is also controversial. For instance, its
manifestation has been associated to distortion produced by the use of a logarithmic transformation
itself [64,96]. However, Mascaro et al. [88] emphasizes that the occurrence of curvature has nothing
to do with the use of logarithmic transformations since deviations from perfect log-linear allometry
can be explained on grounds of methodological factors related to data. In conceiving the aims of the
present research we abided by this perspective and offer methods that in our view allow efficient
identification of MCA patterns through logtransformation methods. Nevertheless, as we shall explain
ahead, present methods could also embrace efficient identification of MCA forms in direct scales.

Following Bervian et al. [77] and Echavarria-Heras et al. [92], we can conceive MCA as a
generalization of Huxley’s formula of simple allometry, namely,

y = β(x)xα(x) (2)

with y and x belonging to domains Y and X one to one, both contained in R+, and where β(x) and
α(x) are real functions, with β(x) having a range in R+. Moreover, as we explain in the methods
section, logtransformation of Equation (2) leads to a generalization of a TAMA arrangement that
hosts curvature in geometrical space in a direct and intuitive way. Moreover, Mascaro et al. [88]
recommends three ways of addressing this sort of curvilinearity. One adopts a PLA approach by
indorsing separation of data in order to contemplate local linear models with the aim of taking into
account heterogeneity of effects of the covariate [97–99]. A second one is by fitting a polynomial model
in geometrical space [100–102]. A final one is by fitting a heteroscedastic non-linear regression model
in arithmetical scales [43]. Echavarria Heras et al. [92] demonstrated that each one of the curvature
models suggested by Mascaro et al. [88] can be derived as logical consequents of suitably chosen
forms of the scaling functions α(x) and β(x) in Equation (2). Moreover, allometric proxies of plant
biomass units produced by agreeing protocols fitted in geometrical space exhibited high consistency
with observed values. This suggests that logarithmic transformation methods could be dependable
provided sustaining fitting schemes bear suitable complexity. In this sense, the model of Equation
(2) could provide the required approach. Nevertheless, procedures addressed by Echavarria-Heras
et al. [92] only amount to particular characterizations of β(x) and α(x). Moreover, the problem of
identification of these functions in a general set up has not been yet undertaken. The present research
is an attempt to address this subject. We advance two general identification procedures for the model
of Equation (2). One characterizes α(x) and β(x) one to one by means of independent polynomial
forms to be fitted in geometrical space. An alternative approach takes on an operating regime-based
modeling slant (ORBM) [103,104]. This also allows independent characterizations of α(x) and β(x)
from weighted mixtures of linear sub models. It turns out that a PLA perspective can be also hosted
by the paradigm of Equation (2) by choosing involved scaling functions in proper forms. Moreover,
the ORBM approach undertaken brings about an interpolation device aimed at identifying whatever
MCA form renders necessary in direct arithmetical scales. This regardless of complexity of inherent
allometric response-covariate linkage in named scales. This construct provides a criterion to test
performance of geometrical space methods resulting from the MCA model of Equation (2). Moreover,
the present approaches permit adaptation of an index denoted here through the symbol κ(x) and
aimed at detecting to what extent the complexity of the MCA form in arithmetic space drives curvature
in geometrical space. Performance metrics of fits achieved on both real and simulated data suggest
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that the presently offered geometrical space protocols could entail highly consistent projection of plant
biomass units. Beyond providing empirical convenience, the present examination demonstrates that
adoption of the MCA paradigm of Equation (2) and the offered identification approaches can overcome
controversial views pertaining to suitability of analysis method in allometry.

This paper is organized as follows. In the materials and methods, we specify datasets. Then, we
explain formulae and notation conventions behind the considered MCA identification approaches.
This specifies both geometrical space as well as direct scales regression protocols. We explain derivation
of curvature index formulae and simulation procedures aimed to verify dependability of the MCA
approach. The results section analyses the capabilities of the proposed MCA arrangements to produce
dependable fits based on real and simulated data. A discussion section highlights the advantages
of the present constructs for efficient allometric projection of plant biomass units several Apendices
provide details of derived formula and important complementary explanation. A supplementary files
section provides data and computational codes backing the results.

2. Materials and Methods

2.1. Data

For the aims of the present research, we relied on an eelgrass data set collected in San Quintin
Bay, México, and reported in Echavarria Heras et al. [92]. Data comprises measurements of length
(mm), width (mm) and dry weight (g) of a total of 10,412 individual eelgrass leaves taken from 20
randomly thrown 400 cm2 quadrats. The length times width proxy provided estimations of leaf area.
A second data set composing 47 measurements of aboveground tree biomass (ABG) and height (H)
was taken from Ramirez-Ramirez et al. [6]. by electronic scanning methods. Sampling protocols
acquiring data pairs are explained therein. Additionally, in order to test consistence of proposed
identification methods we produced simulated data. This compose replicates of reference values
resulting from Equation (2) for particular characterizations of the scaling functions α(x) and β(x) in
the MCA. Simulated replicates resulted from multiplying reference values by a factor expressed as an
exponential function of a random variable ε. This was taken as normally distributed or according to
another distribution type. (cf. Equation (42) through Equation (44)).

2.2. Multiple-Parameter Complex Allometry (MCA) Identification Protocols

The MCA of Equation (2) reduces to Huxley’s formula of simple allometry, when for all values of
x, β(x) and α(x) take on constant values one to one. Echavarria-Heras et al. [92] demonstrated that for
suitable characterizations of the functions β(x) and α(x) the curvature protocols suggested by Mascaro
et al. [88] can all be derived from the MCA formula of Equation (2). Additionally, since the response y
has been assumed to belong to R+ then embracing a perspective of a multiplicative error in allometry,
we can consider the general MCA regression model in direct arithmetical scales,

y = β(x)xα(x)eε (3)

being ε a residual error term conceived as ψ—distributed random variable having mean µ and variance
set by a function σ2(x) of the covariate x, that is, ε ∼ ψ

(
µ, σ2(x

)
).

2.2.1. Identification in Log Scales

In order to place analysis of MCA in geometrical scales we consider a log transformation v = lny,
and u = lnx. This sets domains U and V for u and v respectively. Thus, Equation (3) leads to the
regression model:

v = z(u) + ε (4)

z(u) = lnβ(eu) + α(eu)u (5)
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Then, Equation (4) provides the geometrical space MCA regression protocol. The resulting mean
response function denoted through the symbol Ez(v|u) becomes Ez(v|u) = z(u). A retransformation
y = exp(z(x(u)) + ε) of Equation (4) to direct scales yields a mean response function Ez(y

∣∣∣x) namely,

Ez(y
∣∣∣x) = exp(z(x(u))δ(ε) (6)

where δ(ε) = E(eε) is the required correction factor (CF) for bias of retransformation of the regression
error. Notice that a z subscript in Equation (6) is intended to signpost association to the mean response
function z(u) fitted in geometrical space. This notation convention will be maintained throughout.

Generally, the efficiency of analytical methods in geometrical space centers on suitability of the
retransformation step entailed by Equation (6). For instance, Mascaro et al. [88] asserted that biased
results that Packard [66] blamed on a TAMA fit can be explained by a missing CF. However, in spite
of such a factor being taken into account the suitability of its form becomes crucial in determining
reliable reproducibility of back transformed forms. What is more, there are restraints to be considered
about CF appropriateness. Properly, if ε represents error in the regression, then CF expresses as the
mean of the exponential ε random variable, that is CF = E(eε). Furthermore, assuming that ε is
normally distributed CF takes on a lognormal-mean form [105,106]. But, if ε fails to be normally
distributed, two possibilities arise. If ε has known distribution then E(eε) can be obtained and CF can
be represented in a closed form. Otherwise, if distribution of ε is not identified a priori, one commonly
taken approach is setting CF as given by Duan’s smearing estimator of bias [61,106–108]. Yet, there
are provisions for this since the chosen form can fail to appropriately compensate for downward bias
intrinsic to retransformation of logged data [61,109,110]. Thus, whenever ε turns unspecified, picking
of a suitable CF seems subtle. In order to offer an appropriate form for δ(ε), Echavarria-Heras et al. [92]
suggested an arrangement that generalizes CF as introduced by Zeng and Tang [52]. Adaptation of
δ(ε) first considers an approximation δn(ε) given by the n-term partial sum of series representation of
expected value of retransformed error ε, that is,

δn(ε) =
∑n

0

E
(
εk

)
k!

(7)

then, Lin’s concordance correlation coefficient (CCC) [111] between observed values and those projected
by Ez(y

∣∣∣x) as determined by δn(ε) is obtained. If a value nmax for n entails maximum reproducibility
of projections we take δ(ε) = δnmax(ε). We will keep this criterion to choose δ(ε) in retransformation
tasks through. The explicit CCC formulae is provided by Equation (A44).

2.2.2. Identification of z(u) Involving Polynomial Forms

The Weierstrass approximation theorem [112] offers an approach that lodges z(u) involving terms
lnβ(x) and α(x) that express through polynomials. Certainly, as we explain in Appendix A, for a proper
integer m we can consider polynomials Pm(x) for ln(β(x)) and Qm(x) for α(x) such that the MCA of
Equation (2) can be written in the form:

y = ePm(x) xQm( x) eε(x) (8)

where the function exp(ε(x)) stands for involved approximation error. We further assume that the
mth-degree polynomials Pm(x) and Qm(x) define through,

Pm(x) = p0 +
∑m

1
pkxk (9)

Qm(x) = q0 +
∑m

1
qkxk, (10)
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where pk and qk for k = 0, 1, . . . , m are coefficients. According to the Weierstrass approximation
theorem for m large enough ε(x) will display negligible values so we can consider that Equation (8)
associates to the regression model:

v = λm(u) + ε (11)

where
λm(u) =

∑m

0
(pk + qku )eku (12)

Then, λm(u) can be interpreted as a mixture of linear models f k(u) = pk + qku weighted by
exponential powers eku. Through, we will use the symbol PQ to symbolize the vector of parameters
characterizing λm(u). It turns out that by setting m = 0 Equation (11) returns the linear regression
model of the TAMA protocol.

The resulting mean response function is denoted by means of the symbol Eλm(v|u) and turns
out to be Eλm(v|u) = λm(u). Moreover, by defining auxiliary variables wk(u) = eku and gk(u) = ueku

Equation (11) becomes a multiple linear regression model. According to our notation convention,
the corresponding mean response function in arithmetical space is denoted by means of Eλm(y

∣∣∣x).
It becomes:

Eλm(y
∣∣∣x) = eλm(x(u))δ(ε) (13)

As given by Equation (12) the λm(u) function depends on both u and exp(ku), but, as it is explained
in Appendix A, it is possible to offer an equivalent form expressed as a (2m + 1)th-degree polynomial
of u plus a remainder, namely

λm(u) = πm(u) + Rm(u) (14)

where
πm(u) =

∑2m+1

n=0
cnun (15)

where Equation (A15) estates how the cn coefficients relate to those conforming Pm(x) and Qm(x).
Moreover, by the Weierstrass approximation theorem for m large enough we could expect Rm(u)
becoming negligible, so the regression Equation (11) can be also written in the form:

v = πm(u) + ε (16)

with,

πm(u) =
∑2m+1

k=0
ckuk. (17)

Corresponding mean response function Eπm(y
∣∣∣x) in arithmetical space becomes:

Eπm(y
∣∣∣x) = ehm(x(u))δ(ε). (18)

Identification of z(u) by means of an operating-regime-based modeling approach:
In order to place MCA into an ORBM scheme, we set U = {u|umin ≤ u ≤ umax}. Then, we

contemplate a collection of disjoint intervals Ik, with k = 1, 2, . . . , n, given by

Ik =


[umin b1) f or k = 1

[bk−1, bk) k = 2, 3 . . . n− 1

[bn−1, umax] k = n

. (19)

This way, the I′ks compose a partition Un+1
1 {Ik} for U. Now, for k = 1, 2, . . . , n, we take weight

functions ϑk(u) defined through,

ϑk(u) =

1 u ∈ Ik

0 elsewhere
. (20)
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Then, chosen ϑk(u) functions satisfy the normalizing condition,∑n

1
ϑk(u) = 1. (21)

Now, for k = 1, 2, . . . , n we contemplate parameters αk and lnβk, and also assume that β(eu) and
α (eu) setting z(u) in Equation (5) are defined through:

β(eu) = e
∑n

1 ϑ
k(u)lnβk (22)

α (eu) =
∑n

1
ϑk(u)αk (23)

This way regression Equation (4) hosts a characterization:

v = ΩBL(u) + ε (24)

where ΩBL(u) is the arranged ORBM form of z(u) that becomes,

ΩBL(u) =
∑n

1
ϑk(u ) f k(u) (25)

with
f k(u) = lnβk + αku. (26)

In a PLA arrangement, variability of the log-transformed response v, is interpreted through a
collection of linear sub models defined on domains conceived as disjoint subintervals composing
covariate range U. The local linear models switch on thresholds also called break points. This way a
PLA assemblage provides interpolation features for the identification of curvature in geometrical space.
But, beyond empirical gains, the parameters composing the local linear models admit an interpretation
as allometric exponents according to Huxley’s original formulation. Then, Equation (19) through
Equation (26), readily bring about a PLA arrangement. Certainly, for k = 1, 2, . . . , n− 1 a threshold bk
interprets as a break point for transition from a kth allometric phase associated to a linear sub model
f k(u) to one (k + 1)th for local model f k+1(u). Moreover, ΩBL(u) as given by Equation (25) entails a
mixture of linear models f k(u) weighted by factors ϑk(u). Along with this, Equation (24) becomes a
mixture regression model [104,113,114]. For the piecewise linear setting of Equation (25) identification
can be achieved by means of the segmented package in R [115].

Alternatively, we can conceive the regression model:

v = ΩML(u) + ε (27)

where
ΩML(u) =

∑n

1
ϑk(u ) f k(u) (28)

but, this time, we let ϑk(u) vary continuously over the whole domain U, with range 0 ≤ ϑk(u) ≤ 1 and
also satisfying the normalization condition of Equation (21). Then, Equation (28) entails a mixture of
weighted linear models [114,116–119]. For instance, for a biphasic characterization (n = 2) of ΩML(u)
we may take ϑ1(u) as a normal survival function. Consequently, Equation (21) sets ϑ2(u) = 1− ϑ1(u).
Details of the related fitting procedure are provided in Equations (A24) through (A27) in Appendix B.
Nevertheless, this slant poses significant technical difficulties for the case n > 2.

Moreover, a Takagi–Sugeno–Kang (TSK) fuzzy model [120,121] offers a versatile PLA identification
procedure that allows consideration of multiple interpolation sub models (n > 2). Associated regression
model expresses here by:

v = ΩTSK(u) + ε (29)
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with ΩTSK(u) taking the ORBM form:

ΩTSK(u) =
∑n

1
ϑk(u ) f k(u) (30)

with weights ϑk(u) being continuous functions acquired through fuzzy clustering techniques, and f k(u)
linear sub models having the form set by Equation (26) and to be identified through recursive least
squares techniques. Appendix C explains details on putting forward ΩTSK(u) as given by Equation (30)
This is achieved by adapting Equation (A42) for the present allometric settings. A first step involves
acquiring a fuzzy partition of covariate domain U. This characterizes the set LU specified by Equation
(A29), composing linguistic terms Φ1(u), . . . , Φq(u) that create a fuzzy partition of U. Alongside this,
we need to specify the set µU of membership functions µΦ1(u), . . . , µΦq(u) described by Equation
(A31). A membership function µΦk(u) : U→ [0, 1] assigns the degree of pertinence of a covariate
value u to the fuzzy set associated to the linguistic term Φk(u). For the present analysis, membership
functions are assumed to have a Gaussian form i.e.,

µΦk(u ) = exp

−1
2

(u − θ k
σk

)2
 (31)

being θk and σk for k = 1, 2, . . . , q, parameters to be identified from available data applying subtractive
clustering (SC) techniques [122,123]. Contemplation of SC techniques also establishes the number q
setting the cardinality of LU, as well as, the number of inference rules Ri specified by Equation (A37).
Furthermore, for k = 1, 2, . . . , q, the consequent functions f k(u) specified by Equation (A38) and here
assumed to have a form given by Equation (26) where the parameters αi and lnβi are to be identified
from data pairs (v, u) through a recursive least squares (RLS) routine [124,125].

According to Equations (A39) and (A40), we take:

ϑk(u) =
µΦk(u)∑q
1 µΦk(u)

(32)

It follows that the normalization condition of Equation (21) holds. Corresponding to Equation (29),
we have the mean response function EΩTSK(v|u) = ΩTSK(u). Then, performing a back transformation
v→ y yields the mean response function E ΩTSK(y

∣∣∣x) in arithmetical space, namely:

E ΩTSK(y
∣∣∣x) = eΩTSK(x(u))δ(ε) (33)

2.2.3. MCA Identification in Direct Arithmetical Scales

Alternatively, Equation (A42) can adapt a ΩTSK(x) interpolation device for MCA as given by
Equation (2) in direct arithmetical space. Resulting regression equation becomes:

y = HTSK(x) + ε (34)

where,
HTSK(x) =

∑n

1
ϑk(x ) f k(x) (35)

The kth membership function µΦk(x) is given by the formula

µΦk(x) = exp

−1
2

(x − a k
bk

)2
 (36)
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with ak and bk for k = 1, 2, . . . ., q parameters. Correspondingly, we consider consequents f k(x) to be
the linear functions:

f i(x) = d1i + d2i x (37)

2.3. Derivation of Curvature Index κ(x)

Let’s define functions βκ(x) and ακ(x) and constants a and b such that β(x) and α(x) in Equation (2)
can be written in the form

β(x) = b + βκ(x)

and
α(x) = a + βκ(x)

Then, Equation (2) admits the representation

y = bxaκ(x) (38)

where

κ(x) =
(
1 +

βκ(x)
b

)
xακ(x).

Since logtransforrming both sides of Equation (38) leads to the expression:

v = lnb + au + ln(κ(eu))

then, the closer κ(x) gets to the line y = 1, the more dominant the linear term lnb + au becomes.
Therefore, κ(x) interprets as a measure of the curvature implied by the CMA form in geometrical space.
Moreover, once the function β(x) exp(lnxα(x)) in Equation (2) has been estimated, given candidate
values for the parameters a and b, the curvature factor κ(x) can be estimated from data through
the relationship:

κ(x) =
β(x)xα(x)

bxa (39)

The TSK form fitted in geometrical space allows a direct characterization of the for the parameters
a and b. A back transformation v→ x in Equation (29) and then simplifying establishes,

y = exp (
∑n

1
(ln[(βkxαk) ϑ

k(u(x))]) exp(ε) (40)

and introducing the auxiliary function hk(u(x)) = ϑk(u(x)) − 1, we get the equivalent formulation

E ΩTSK(y
∣∣∣x) = bxaθTSK(x) (41)

where
b =

∏n

1
βkδ(ε)a = α1 + . . .+ αnθTSK(x) =

∏n

1
(βkxαk)hk(u(x))

Then, we may set κ(x) = θTSK(x) being θTSK(x) as estimated by the ratio E ΩTSK(y
∣∣∣x)/bxa

2.4. Simulation Studies

In order to asses performance of the MCA by simulation assays, we first arranged covariate values
xi for i = 1, 2 . . .N and such that xmin ≤ xi ≤ xmax. Then, we acquired characterizations of the scaling
functions β(x) and α(x), so that Equation (2) determined projected reference values yi namely,

yi = β(xi) exp(α(xi)lnxi). (42)
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Next, we use the Matlab function: random(′norm′,µ, σ) in order draw a random numbers εk,
k = 1, 2, . . . , T, from a normal distribution having mean µ and variance σ2 that is εk ∼ N(µ, σ).
This produced a number T, of lognormally distributed replicates yk(i)(ε), associating to each reference
response value yi, that is,

yk(i)(ε) = β(xi) exp(α(xi)lnxi + εk) (43)

In order to consider non-lognormally distributed replicates we considered random numbers ξk so
Equation (43) produced replicates yk(i)(ξ) according to:

yk(i)(ξ) = β(xi) exp(α(xi)lnxi + ξk) (44)

with ξk expressing as a product of exponentially (µ = 0.1) and logistically (µ = 0, σ = 0.1) distributed
random numbers, produced by corresponding Matlab functions that is, ξk = random(′exp′,µ) ∗
random(′logistic′,µ, σ).

2.5. Assessment of Reproducibility Strength

The assessment of the reproducibility strengths of proxies considered here will be primarily
carried out by analyzing values of Lin’s concordance correlation coefficient, symbolized by means of
ρC [111]. Agreement will be defined as poor whenever ρC < 0.90, moderate for 0.90 ≤ ρC < 0.95, good
for 0.95 ≤ ρC < 0.99, or excellent for ρC ≥ 0.99 [126]. Moreover, CCC reproducibility will be estimated
by means of model performance metrics, such as the coefficient of determination (CD), standard error
of estimate (SEE), mean prediction error (MPE) [127–130]. Related formulae for these statistics are
provided by Equations (A43) through (A49) in Appendix D. The Matlab and R codes involved in both
fuzzy inference and convention statistical task are provided in the supplemental files section.

3. Results

In this examination, we considered MCA protocols in the form set by λm(u), given by Equation
(12). We also address MCA-PLA forms ΩBL(u), ΩML(u) and ΩTSK(u) given by Equations (25), (28)
and (30) one to one. For comparison aims, we also acquired the HTSK(x) proxy given by Equation (35)
fitted in direct arithmetical scales. As already pointed out the case λ0(u) identifies a TAMA protocol.
It is worth recalling the notation convention. For MCA surrogates as listed above corresponding
retransformed forms are Eλm(y

∣∣∣x), EΩBL(y
∣∣∣x), EΩML(y

∣∣∣x), EΩTSK(y
∣∣∣x) and EHTSK(y

∣∣∣x) associating to
directly fitted HTSK(x). These symbols will be used through in tables and figures.

3.1. MCA Identified on Simulated Data

For the aim of performing MCA simulation studies, we adapted a response range as determined by
leaf area values in the eelgrass data set reported by Echavarria-Heras et al. [92]. This way, we considered
covariate values xi for i = 1, 2 . . . 500 such that 0 < xi ≤ xmax where xmax = 10, 000. Then, reference
values yi are produced by Equation (42), with β(xi) = exp(Pm(xi)) and α(xi) = Qm(xi) being Pm(xi) and
Qm(xi) as given by Equations (9) and (10) respectively. Results for the case λ0(u) (m = 0) addressing
Huxley’s model yi = exp(p0) exp(q0lnxi) are presented in Appendix E. This assay included the aims
of (1) demonstrating that curvature in geometrical space could not be considered as a consequence
of a logtransformation itself (2) explaining the skills of the ΩTSK(u) and H(x) formulations to adapt
complexity as necessary in interpreting inherent allometric pattern and (3) verifying the dependability
of the curvature index κ(x) criterion of Equation (38). Indeed, as portrayed in Figure A5c,d for this
simulation assay deviations of κ(x) about the line y = 1 are practically vanishing for all values of x.
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In order to explore full MCA, without loss of generality, we circumscribed our study to the case
m = 2 of Equation (12). In particular, we set reference parameter vector PQ.

PQ =



p0

p1

p2

q0

q1

q2


=



−7.247
0.001128

−1.037× 10−6

−0.1189
8.74× 10−5

9.848× 10−8


(45)

Acquired reference data pairs (xi, yi) are provided in the Com2ref.txt supplementary file. We used
µ = 0 and σ = 0.1 in Equation (43) in order to generate normally distributed random numbers εk,
k = 1, 2, . . . ., 5. Then, Equation (43) produced yk(i) replicates for each reference value yi. Resulting
data can be obtained from the supplementary file Com2rep.txt. Moreover, fitting Huxley’s power
function model (Equation (1)) to

(
xi, yk(i)

)
pairs produced estimated parameter values β = 1.113e − 12

and = 2.765 (r2 = 0.9729). Figure 1a presents the distribution of yk(i) values around the reference
curve, and also compared to the fitted Huxley curve. This seems to provide a suitable approximation
to the reference one. Nevertheless, we can be aware of deviations attributed to curvature induced by
the conceived MCA form. Indeed, deviations from the line y = 1 by curvature index κ(x), in Figure 1b
suggest the reliability of Huxley’s model for this data being only putative.
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Figure 1. Huxley’s model of simple allometry fitted on multiple-parameter complex allometry (MCA)
data simulated based on a lognormal distribution Panel (a) displays spread of yk(i)(ε) replicates around
the reference curve y = exp(P2(x)) exp(Q2(x)lnx) compared to the fitted Huxley’s mean response.
Panel (b) shows the plot of curvature index κ(x). We can ascertain that deviations from linearity in
geometrical space can be expected for this data.

Next, we acquired vk(i) values from the log-transformation vk(i) = log
(
yk(i)

)
and ui = log(xi).

According to Equation (11), choosing the case m = 0 in Equation (12) brings about a TAMA protocol.
This produced estimates p0 = −14.92 and q0 = 1.313

(
r2 = 0.829

)
. We then considered the m = 2 case of

the MCA of Equation (12). According to Equation (11), the regression model to be considered becomes:

vk(i) = λ2(ui) + ε (46)

with
λ2(u) = (p0 + p1 exp(u) + p2 exp(2u)) + (q0 + q1 exp(u) + q2 exp(2u))u.
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This for simulated pairs (ui, vk(i)) produced an r2 = 0.9963 fit with resultant estimated
parameter vector

PQ =



p0

p1

p2

q0

q1

q2


=



−7.261
0.0004503,
−1.212× 10−6

−0.1102,
0.0001862

1.149× 10−7


(47)

Figure 2a displays spread of vk(i) replicates about fitted mean response λ2(u) compared with
TAMA’s counterpart λ0(u). We can ascertain remarkable account of curvature by λ2(ui) and noticeable
bias by the TAMA protocol on this data. Figure 2b compares retransformed mean functions Eλ2(y

∣∣∣x)
and corresponding TAMA for one Eλ0(y

∣∣∣x) and we can ascertain biased projections by the latter.
Appl. Sci. 2019, 9, x 12 of 41 

  

Figure 2. Fit of MCA on simulated data (𝑢, 𝑣()(𝜖)) . Regression Equation (46) was fitted to 
simulated (𝒖𝒊 ,𝒗𝒌(𝒊))  data pairs. Panel (a) shows dispersion of 𝒗𝒌(𝒊)  about the mean response 
function 𝜆ଶ(𝑢). This plot also shows the traditional analysis method of allometry’s (TAMA) fitted 
mean response 𝜆(𝑢) . We can ascertain notorious bias by this last approach. Panel (b) shows 
corresponding retransformation results. Compared to significant reproducibility of mean response 𝐸ఒଶ(𝑦|𝑥) TAMA’s counterpart 𝐸ఒ(𝑦|𝑥) entails significant bias. 

Figure 3a displays the spread of 𝑣() replicates about mean response 𝜆ଶ(𝑢) compared with its Ω்ௌ(𝑢) counterpart. We can ascertain a dependable account of curvature by both surrogates Figure 
3b compares retransformed mean functions 𝐸ଶ(𝑦|𝑥)  and 𝐸ஐ்ௌ(𝑦|𝑥).  Figure 3c presents mean 
response acquired by fitting the protocol Η்ௌ(𝑥)  in direct arithmetical scales. Panel (d) is the 
comparison of 𝐸ஐ்ௌ(𝑦|𝑥) to 𝐸ொଶ(𝑦|𝑥), the directly acquired projection function. This is gotten by 
replacing fitted parameter vector 𝑃𝑄  into addressed MCA form in arithmetical space. We can 
ascertain remarkable reproducibility features by the Ωୗ(𝑢), with the approach fitted in geometrical 
scales. Table 1 presents performance metrics for considered proxies. 

Table 1. Performance metrics for addressed proxies fitted on data simulated by the procedure of 
Equation (43) (non–normal errors). 𝐸ఒ(𝑦|𝑥) stands for back transformed TAMA, 𝐸ఒଶ(𝑦|𝑥) is for 
back transformed 𝜆ଶ(𝑢) form. Huxley–DNLR refers to Huxley’s model fitted by direct non-linear 
regression, Η்ௌ(𝑥) stands for the direct scales Takagi–Sugeno–Kang (TSK) fuzzy model regression 
protocol of Equation (34). 𝐸ஐ்ௌ(𝑦|𝑥) denotes bactransformed form of the geometrical space TSK 
form Ωୗ(𝑢). Finally, 𝐸గ(𝑦|𝑥), associates to back transformation of 𝜋(𝑢) a direct polynomial 
representation of MCA in geometrical scales. AIC stands for Akaike’s information criterion, 𝛒 
symbolizes Lin’s concordance correlation coefficient, R2 denotes determination coefficient, SEE 
standard error of estimation and MPE mean prediction error. 

Method AIC 𝛒 R2 SEE MPE 𝐸ఒ(𝑦|𝑥) −13,244.48 0.8236 0.7588 0.0171 1.9240 𝐸ఒଶ(𝑦|𝑥) −19,317.76 0.9892 0.9788 0.0051 0.5706 
Huxley-DNLR −18,704.07 0.9866 0.9728 0.0057 0.6456 Eୌୗ (𝑦|𝑥): (𝑞 = 3) −19,168.14 0.9886 0.9775 0.0052 0.5878 Eஐୗ (𝑦|𝑥): (𝑞 = 5) −19,318.23 0.9893 0.9789 0.0051 0.5703 E୫ (𝑦|𝑥): (𝑚 = 5) −18,749.20 0.9866 0.9734 0.0057 0.6393 

y

Figure 2. Fit of MCA on simulated data
(
ui, vck(i)(ε)

)
. Regression Equation (46) was fitted to simulated(

ui,vk(i)

)
data pairs. Panel (a) shows dispersion of vk(i) about the mean response function λ2(u).

This plot also shows the traditional analysis method of allometry’s (TAMA) fitted mean response λ0(u).
We can ascertain notorious bias by this last approach. Panel (b) shows corresponding retransformation
results. Compared to significant reproducibility of mean response Eλ2(y

∣∣∣x) TAMA’s counterpart
Eλ0(y

∣∣∣x) entails significant bias.

Figure 3a displays the spread of vk(i) replicates about mean response λ2(u) compared with its
ΩTSK(u) counterpart. We can ascertain a dependable account of curvature by both surrogates Figure 3b
compares retransformed mean functions Eλ2(y

∣∣∣x) and EΩTSK(y
∣∣∣x). Figure 3c presents mean response

acquired by fitting the protocol HTSK(x) in direct arithmetical scales. Panel (d) is the comparison of
EΩTSK(y

∣∣∣x) to EPQ2(y
∣∣∣x) , the directly acquired projection function. This is gotten by replacing fitted

parameter vector PQ into addressed MCA form in arithmetical space. We can ascertain remarkable
reproducibility features by the ΩTSK(u), with the approach fitted in geometrical scales. Table 1 presents
performance metrics for considered proxies.

The failure of a TAMA approach to display suitable complexity explains poor performance in all
included fitting statistics. Although, the Huxley by DNLR fit suggest fair reproducibility by ρ and
R2 indices it is outperformed by MCA alternates in the Akaike information criterion (AIC), SEE and
MPE statistics. Moreover, deviations of a κ(x) index from the line y = 1 shown in Figure 1b adds
criterion that sustain selection of the MCA model. This confirms our judgement that consistency of
the Huxley-DNLR approach as suggested by visual inspection of plots is only apparent. This could
explain an assertion that clinging to DNLR could impair detecting inherent complexity. Then, suitable
examination for this data must rely on a MCA paradigm. This example also shows how a TSK slant
could offer reliability on both scales of allometric examination.
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Table 1. Performance metrics for addressed proxies fitted on data simulated by the procedure of Equation
(43) (non–normal errors). Eλ0(y

∣∣∣x) stands for back transformed TAMA, Eλ2(y
∣∣∣x) is for back transformed

λ2(u) form. Huxley–DNLR refers to Huxley’s model fitted by direct non-linear regression, HTSK(x)
stands for the direct scales Takagi–Sugeno–Kang (TSK) fuzzy model regression protocol of Equation
(34). EΩTSK(y

∣∣∣x) denotes bactransformed form of the geometrical space TSK form ΩTSK(u). Finally,
Eπm(y

∣∣∣x), associates to back transformation of πm(u) a direct polynomial representation of MCA in
geometrical scales. AIC stands for Akaike’s information criterion, ρ symbolizes Lin’s concordance
correlation coefficient, R2 denotes determination coefficient, SEE standard error of estimation and MPE
mean prediction error.

Method AIC ρ R2 SEE MPE

Eλ0(y
∣∣∣x) −13,244.48 0.8236 0.7588 0.0171 1.9240

Eλ2(y
∣∣∣x) −19,317.76 0.9892 0.9788 0.0051 0.5706

Huxley-DNLR −18,704.07 0.9866 0.9728 0.0057 0.6456
EHTSK (y

∣∣∣x) : (q = 3) −19,168.14 0.9886 0.9775 0.0052 0.5878
EΩTSK (y

∣∣∣x) : (q = 5) −19,318.23 0.9893 0.9789 0.0051 0.5703
Eπm (y

∣∣∣x) : (m = 5) −18,749.20 0.9866 0.9734 0.0057 0.6393Appl. Sci. 2019, 9, x 13 of 41 
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Figure 3. Comparison of λ2(u) and ΩTSK(u) fits on lognormally distributed data. Panel (a) comparison
of mean response functions fitted by means of a λ2(u) and a ΩTSK(u) proxies. Panel (b) compares
related retransformed forms Eλ2(y

∣∣∣x) and EΩTSK(y
∣∣∣x). Panel (c) compares Eλ2(y

∣∣∣x) to EHTSK(y
∣∣∣x)

fitted by the regression model of Equation (33) in direct arithmetical scales. Panel (d) is a comparison
of EΩTSK(y

∣∣∣x) to EPQ2(y
∣∣∣x) , the directly acquired projection function. This can be obtained by

replacing the fitted parameter vector PQ into addressed MCA form in arithmetical space. We can be
aware of reliable projections even without a CF.By acquiring non lognormally distributed replicates
yk(i)(ξ) = β exp(αlnxi + ξk) according to procedure of Equation (44), we examined error structure
effects on performance of addressed proxies. Figure 4 displays plots corresponding to retransformed
forms. Table 2 presents related model performance statistics. Results reveal that reliability of the MCA
and TSK approaches does not depend in error structure for the present assay.
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Figure 4. Comparison of λ2(u) and ΩTSK(u) MCA fits the simulated non-lognormally distributed data.
Panel (a) comparison of mean response functions Eλ2(u

∣∣∣v) and EΩTSK(u|v). Panel (b) compares related
retransformed forms Eλ2(y

∣∣∣x) and EΩTSK(y
∣∣∣x). Panel (c) compares Eλ2(y

∣∣∣x) to EHTSK(y
∣∣∣x) acquired

from regression model of Equation (34) fitted in direct arithmetical scales. Panel (d) is a comparison of
EΩTSK(y

∣∣∣x) to EPQ2(y
∣∣∣x) , the directly acquired projection function. This is obtained by replacing fitted

parameter vector PQ into addressed MCA form in arithmetical space. We can be aware of dependable
projections even without a correction factor (CF).

Table 2. Performance statistics for addressed proxies fitted on data simulated by the procedure of
Equation (44) (non–normal errors). AIC stands for Akaike’s information criterion, ρ symbolizes
Lin’s concordance correlation coefficient, R2 denotes determination coefficient, SEE standard error of
estimation and MPE mean prediction error.

Method AIC ρ R2 SEE MPE

Eλ0(y
∣∣∣x) −11,994.77 0.7369 0.6496 0.0220 2.4649

Eλ2(y
∣∣∣x) −19,114.93 0.9897 0.9798 0.0053 0.5929

Huxley-DNLR −18,731.51 0.9832 0.9763 0.0057 0.6407
EHTSK (y

∣∣∣x) : (q = 4) −19,089.31 0.9897 0.9796 0.0053 0.5958
EΩTSK (y

∣∣∣x) : (q = 4) −19,096.41 0.9897 0.9796 0.0053 0.5949
Eπm (y

∣∣∣x) : (m = 5) −18,666.28 0.9873 0.9758 0.0058 0.6486

3.2. MCA Identified on Real Data

We now explore the performance of the model of Equation (2) in analyzing real data sets.
We considered MCA protocols set by λm(u) and πm(u) given by Equations (12) and (17) respectively,
and the PLA forms ΩBL(u), ΩML(u) and ΩTSK(u) given by Equations (25), (28) and (30) one to one.
For comparison aims, we also acquired the HTSK(x) proxy fitted in direct arithmetical scales As already
pointed out, the case λ0(u) identifies a TAMA protocol.



Appl. Sci. 2019, 9, 4965 15 of 42

3.2.1. MCA Proxies Identified on the Aboveground Tree Biomass (ABG) and H Data

The Ramirez and Ramirez et al. [6] tree aboveground biomass and height (ABG-H) data set is
available from: Ramiez-Ramirez.txt in the supplementary files section. Figure 5 presents (u, v) =

(log(H), log(ABG)) plots showing dispersion of response v: about mean functions Eλ1(v
∣∣∣u) panel (a)),

about EΩBL(v
∣∣∣u) (panel (b)), Eπ3(v|u) (panel (c)) and about EΩML(v|u) (panel (d)). Vertical segments

in plots signpost identified break points. Break points for MCA approaches λ1(u) and π3(u) where
estimated by the empirical criterion described in Appendix A. Estimations of this threshold trough
present methods seem to correspond with value estimated from Figure 2b in Ramirez-Ramirez et al. [6]
by electronic scanning. The scattering of v values about MCA fitted mean response functions suggests
reliable agreement in all cases.
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Figure 5. MCA proxies fitted in geometrical space for the Ramirez-Ramirez et al. [6] data. Panel (a) 
dispersion of response 𝑣 about mean functions 𝐸ఒଵ(𝑣|𝑢). Panel (b) corresponding spreading about 𝐸ஐ(𝑣|𝑢). Panel (c) shows deviations of 𝑣  values around polynomial mean response 𝐸గଷ(𝑣|𝑢). 
Panel (d) shows scattering about 𝐸ஐெ(𝑣|𝑢). The plots suggest consistency of MCA fits in all cases. 

Figure 6 portrays fitted firing strengths 𝜗ଵ(𝑢)and 𝜗ଶ(𝑢) for fitted biphasic form (𝑞 = 2) of Ωୗ(𝑢), (panel (a)). Panel (b) shows dispersion of log-transformed response values 𝑣 about mean 
response 𝐸ஐ்ௌ(𝑣|𝑢). The vertical segment shown indicates positioning of estimated break point 𝑏ଵ. 
Panel (c) and panel (d) display residual and normal QQ (quantile-quantile) plots one to one. Plot in 
Figure 6a stands visual corroboration of criteria for break point identification derived from 
intersection of firing strength functions characterizing Ωୗ(𝑢). Residual and QQ plots corroborate a 
consistent fit. 
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Figure 5. MCA proxies fitted in geometrical space for the Ramirez-Ramirez et al. [6] data. Panel (a)
dispersion of response v about mean functions Eλ1(v|u). Panel (b) corresponding spreading about
EΩBL(v|u). Panel (c) shows deviations of v values around polynomial mean response Eπ3(v|u). Panel
(d) shows scattering about EΩML(v|u). The plots suggest consistency of MCA fits in all cases.

Figure 6 portrays fitted firing strengths ϑ1(u) and ϑ2(u) for fitted biphasic form (q = 2) of ΩTSK(u),
(panel (a)). Panel (b) shows dispersion of log-transformed response values v about mean response
EΩTSK(v

∣∣∣u) . The vertical segment shown indicates positioning of estimated break point b1. Panel (c)
and panel (d) display residual and normal QQ (quantile-quantile) plots one to one. Plot in Figure 6a
stands visual corroboration of criteria for break point identification derived from intersection of firing
strength functions characterizing ΩTSK(u). Residual and QQ plots corroborate a consistent fit.
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Figure 6. Fit of the Ωୗ(𝑢) proxy fitted for the Ramirez-Ramirez et al. [6] data. Panel (a) shows firing 
strengths 𝜗ଵ(𝑢)  and 𝜗ଶ(𝑢)  for the biphasic characterization (𝑞 = 2)  of Ωୗ(𝑢)  intersecting at 
break point. Panel (b) exhibits dispersion of 𝑣 about fitted TSK mean response, vertical segment 
signposts estimated break point. Panel (c) shows residual dispersion about the zero line. Panel (d) 
displays normal QQ (quantile-quantile) plot. 

Figure 7 displays retransformed conventional MCA models. We provide plots of retransformed 𝜆ଵ(𝑢) (panel (a)), broken line Ω𝐁𝐋(𝑢) (panel (b)), polynomial 𝜋ଷ(𝑢) (panel (c)), and mixture lines Ω(𝑢) (panel (d)). Table 3 presents model comparison metrics for all MCA surrogates fitted in 
geometrical space. We can learn that among considered methods an interpolation mode of the Ωୗ(𝑢) approach brings about better performance. 
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Figure 6. Fit of the ΩTSK(u) proxy fitted for the Ramirez-Ramirez et al. [6] data. Panel (a) shows firing
strengths ϑ1(u) and ϑ2(u) for the biphasic characterization (q = 2) of ΩTSK(u) intersecting at break
point. Panel (b) exhibits dispersion of v about fitted TSK mean response, vertical segment signposts
estimated break point. Panel (c) shows residual dispersion about the zero line. Panel (d) displays
normal QQ (quantile-quantile) plot.

Figure 7 displays retransformed conventional MCA models. We provide plots of retransformed
λ1(u) (panel (a)), broken line ΩBL(u) (panel (b)), polynomial π3(u) (panel (c)), and mixture lines
ΩML(u) (panel (d)). Table 3 presents model comparison metrics for all MCA surrogates fitted in
geometrical space. We can learn that among considered methods an interpolation mode of the ΩTSK(u)
approach brings about better performance.
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Figure 7. Plots of retransformed mean response functions identified for the Ramirez-Ramirez et al. [6] 
data. Panel (a) presents dispersion of observed values response values about mean response 
function 𝐸ఒଵ(𝑦|𝑥). Panel (b) displays corresponding spread about 𝐸ஐ(𝑦|𝑥). Panel (c) shows this 
around 𝐸గଷ(𝑦|𝑥) and panel (d) associates to named scattering about 𝐸ஐெ(𝑦|𝑥) panel (a), broken 
line Ω𝐁𝐋(𝑢) (panel (b)), polynomial 𝜋ଷ(𝑢) (panel (c)) and mixture lines Ω(𝑢) (panel (d)). 
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Figure 7. Plots of retransformed mean response functions identified for the Ramirez-Ramirez et al. [6]
data. Panel (a) presents dispersion of observed values response values about mean response function
Eλ1(y

∣∣∣x) . Panel (b) displays corresponding spread about EΩBL(y
∣∣∣x) . Panel (c) shows this around

Eπ3(y
∣∣∣x) and panel (d) associates to named scattering about EΩML(y

∣∣∣x) panel (a), broken line ΩBL(u)
(panel (b)), polynomial π3(u) (panel (c)) and mixture lines ΩML(u) (panel (d)).

Table 3. Performance metrics for geometrical space models fitted on the Ramirez-Ramirez et al. [6]
ABG-H data set. We include proxies based on λm(u) : (m = 0, 1, 2), ΩBL(u) : (biphasic)) πm(u) :
(m = 3, 5), ΩML(u) (biphasic) and ΩTSK(u) (q = 2, 6) fitted on the Ramirez-Ramirez [6] data. AIC
stands for Akaike’s information criterion, ρ symbolizes Lin’s concordance correlation coefficient, R2

denotes determination coefficient, SEE standard error of estimation and MPE mean prediction error.

Method AIC ρ R2 SEE MPE

Eλ2(v
∣∣∣u) 40.52 0.9154 0.8440 0.3538 7.3563

Eλ1(v
∣∣∣u) 44.34 0.8982 0.8152 0.3759 7.8154

Eλ0(v
∣∣∣u) 48.48 0.8760 0.7793 0.4012 8.3428

EΩBL(v
∣∣∣u)(m = 2) 38.59 0.9086 0.8333 0.3570 7.4226

EΩML(v
∣∣∣u) 39.45 0.9182 0.8476 0.3497 7.2714

EΩTSK(v|u) (q = 2) 50.97 0.9014 0.8206 0.3893 8.0954
EΩTSK(v|u) (q = 6) 36.46 0.9300 0.8691 0.3325 6.9144
Eπm(v|u) (m = 3) 43.92 0.8992 0.8168 0.3742 7.7803
Eπm(v|u) (m = 5) 40.68 0.9151 0.8435 0.3544 7.3688

Figure 8 shows results for retransformed biphasic mean response EΩTSK(y
∣∣∣x) (panel (a)), direct

scales fitted HTSK(x) (panel (b)), Huxley’s model of simple allometry (panel (c)) and curvature index
κ(x) (panel (d)). We can learn of the deviation of index κ(x) from the line y = 1 that explain curvature
detected in geometrical space for this data is inherent to complexity of the allometric relationship
response-covariate in direct scales. Table 4 presents the performance metrics of retransformed
proxies compared to Huxley’s formula of simple allometry and characterizations of directly fitted
HTSK(x) : (q = 2, q = 7). Again, the retransformed ΩTSK(u) and directly fitted HTSK(x) displayed the
highest reproducibility strengths.
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Figure 8. Retransformed biphasic ΩTSK(u) (panel (a)), direct scales fitted biphasic HTSK(x) (panel (b)),
Huxley’s model of simple allometry (panel (c)) and curvature index κ(x) (panel (d)). Deviations of
fitted Huxley’s power function relative to EHTSK(y

∣∣∣x) in panel c) explain deviations of κ(x) from line
y = 1 shown in panel (d).

Table 4. Performance metrics for arithmetical space proxies identified from the Ramirez-Ramirez et al.
[6] ABG-H data set. We include retransformed forms of λm(u) : (m = 0, 1, 2) and ΩBL(u) : (biphasic))
πm(u) : (m = 3, 5), ΩML(u) (biphasic) and ΩTSK(u) (q = 2, 6) and compare to compared to Huxley’s
formula of simple allometry and directly fitted HTSK(x) : (q = 2, q = 7). AIC stands for Akaike’s
information criterion, ρ symbolizes Lin’s concordance correlation coefficient, R2 denotes determination
coefficient, SEE standard error of estimation and MPE mean prediction error.

Method AIC ρ R2 SEE MPE

Eλ2(y
∣∣∣x) 226.66 0.8789 0.7738 2.6757 13.3503

Eλ1(y
∣∣∣x) 243.72 0.8194 0.6425 3.2830 16.3803

Eλ0(y
∣∣∣x) 229.39 0.8103 0.7144 2.8666 14.3030

EΩBL(y
∣∣∣x) : (m = 2) 237.92 0.8415 0.6849 3.0822 15.3784

EΩML(y
∣∣∣x) 230.57 0.8728 0.7538 2.7918 13.9294

EΩTSK (y
∣∣∣x) : (q = 2) 248.45 0.8313 0.6670 3.3309 16.6194

EΩTSK (y
∣∣∣x) : (q = 6) 227.11 0.8914 0.7906 2.6413 13.1788

Eπm (y
∣∣∣x) : (m = 3) 244.46 0.8181 0.6367 3.3093 16.5116

Eπm (y
∣∣∣x) : (m = 5) 225.81 0.8800 0.7780 2.6510 13.2270

EHTSK (y
∣∣∣x) : (q = 2) 230.95 0.8716 0.7724 2.7539 13.7407

EHTSK (y
∣∣∣x) : (q = 7) 188.94 0.9521 0.9087 1.7444 8.7036

Huxley-DNLR 224.49 0.8532 0.7432 2.7181 13.5620
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3.2.2. MCA Proxies Identified on the Zostera Marina Leaf Area-Leaf Biomass Data

Figure 9 shows plots of MCA protocols fitted on the Zostera marina data set. Panel (a) displays
dispersion of response v about mean functions Eλ2(v|u). Shown Eλ2BI(v|u) lines stand for the biphasic
approximation to Eλ2(v|u) acquired by using the criterion in Appendix A. The position of the determined
break point is signposted by a vertical segment. Panel (b) portrays dispersion of v values about
EΩBL(v

∣∣∣u) . Panel (c) portrays v dispersion about the polynomial mean response Eπ5(v|u). Panel (d)
shows corresponding spread about the mixture lines mean response EΩML(v|u). Vertical segments
in plots of panels (b), (c) and (d) associate to identified break points. As explained above, the break
point for π5(u) was also estimated by the empirical interpolation criterion described in Appendix A.
Resulting estimations of this threshold trough are consistent with reported by Echavarria-Heras
et al. [92]. In all cases scattering of v values about MCA fitted mean response functions suggest
steady agreement.
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Figure 9. MCA protocols fitted in geometrical space for the Zostera marina data set. Panel (a) 
dispersion of response 𝑣 about mean functions 𝐸ఒଶ(𝑣|𝑢). The break point signposted by vertical 
segment is determined by the interpolation lines criterion presented in Appendix A. Panel (b) shows 
corresponding spreading about 𝐸ఆ(𝑣|𝑢).  Panel (c) shows deviations of 𝑣  values around 
polynomial mean response 𝐸గହ(𝑣|𝑢) . Panel (d) is for  𝑣  spread about 𝐸ெ(𝑣|𝑢) . Plots suggest 
consistency of MCA fits in all cases. 

Figure 10 presents plots resulting from a 𝛺்ௌ(𝑢) protocol fitted on present eelgrass data. Panel 
(a) shows firing strengths 𝜗ଵ(𝑢)  and 𝜗ଶ(𝑢)  for a biphasic ( 𝑞 = 2 ) characterization. This plot 
displays a breakpoint 𝑏ଵ as determined by intersection of 𝜗ଵ(𝑢)and 𝜗ଶ(𝑢) curves. Panel (b) depicts 
dispersion of log-transformed response 𝑣 about mean response 𝐸ஐ்ௌ(𝑣|𝑢). The vertical segment 
shown indicates placing of estimated break point 𝑏ଵ. Panel (c) and panel (d) display residual and 
normal QQ plots one to one. Residual dispersion about the zero line is fair, and suggests 
heteroscedasticity. The QQ plot shows large plateau where residuals track a normal distribution 
pattern. Figure 10a provides further corroboration of adequacy of firing strength intersection criteria 
for break point detection derived from the 𝛺்ௌ(𝑢)  approach. This estimate of 𝑏ଵ  agrees with 
corresponding estimations by MCA methods described above. 
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Figure 9. MCA protocols fitted in geometrical space for the Zostera marina data set. Panel (a) dispersion of
response v about mean functions Eλ2(v|u). The break point signposted by vertical segment is determined
by the interpolation lines criterion presented in Appendix A. Panel (b) shows corresponding spreading
about EΩBL(v|u). Panel (c) shows deviations of v values around polynomial mean response Eπ5(v|u).
Panel (d) is for v spread about EML(v|u). Plots suggest consistency of MCA fits in all cases.

Figure 10 presents plots resulting from a ΩTSK(u) protocol fitted on present eelgrass data. Panel
(a) shows firing strengths ϑ1(u) and ϑ2(u) for a biphasic (q = 2) characterization. This plot displays a
breakpoint b1 as determined by intersection of ϑ1(u) and ϑ2(u) curves. Panel (b) depicts dispersion of
log-transformed response v about mean response EΩTSK(v

∣∣∣u) . The vertical segment shown indicates
placing of estimated break point b1. Panel (c) and panel (d) display residual and normal QQ plots one
to one. Residual dispersion about the zero line is fair, and suggests heteroscedasticity. The QQ plot
shows large plateau where residuals track a normal distribution pattern. Figure 10a provides further
corroboration of adequacy of firing strength intersection criteria for break point detection derived from
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the ΩTSK(u) approach. This estimate of b1 agrees with corresponding estimations by MCA methods
described above.Appl. Sci. 2019, 9, x 20 of 41 
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Figure 10. Fit of the 𝛺்ௌ(𝑢) proxy on the eelgrass data. Panel (a) shows firing strengths 𝜗ଵ(𝑢)and 𝜗ଶ(𝑢) for the biphasic characterization of 𝛺்ௌ(𝑢). Panel (b) exhibits dispersion of 𝑣 about fitted 
TSK mean response 𝐸ఆ்ௌ(𝑣|𝑢) vertical segment signposts estimated break point. Panel (c) shows 
residual dispersion about the zero line. Panel (d) displays normal QQ plot. 

Figure 11 displays plots of retransformed 𝜆ଶ(𝑢), 𝛺(𝑢), 𝜋ହ(𝑢) and 𝛺ெ(𝑢) protocols. Panel (a) 
shows spread about 𝐸ఒଶூ(𝑦|𝑥)  function obtained by retransformation of interpolation lines 𝐸ఒଶூ(𝑣|𝑢) for 𝜆ଶ(𝑢) shown in Figure 9a. Panel (b) depicts spread about mean function 𝐸ఆ(𝑦|𝑥) 
associated with the broken line method Ω𝐁𝐋(𝑢). Panel (d) presents dispersion about retransformed 
mean function of polynomial model 𝜋ହ(𝑢). Panel (d) portrays dispersion about 𝐸ఆெ(𝑦|𝑥) deriving 
from the mixture lines procedures 𝛺ெ(𝑢). Table 5 presents model comparison metrics for MCA 
surrogates fitted in geometrical space. We can learn that, among considered methods, an 
interpolation mode of the 𝛺்ௌ(𝑢) approach brings about better performance. 

Table 5. Comparison of reproducibility strengths of MCA protocols fitted in geometrical space for the 
Zostera marina data. We include 𝜆(𝑢): ( 𝑚 = 0, 1, 2 ) and, 𝛺(𝑢) ∶ (biphasic)) 𝜋(𝑢): ( 𝑚 = 3, 5 ), 𝛺ெ(𝑢) (biphasic) and 𝛺்ௌ(𝑢) (𝑞 = 2, 5) and 𝜋(𝑢)(𝑚 = 3, 5). AIC stands for Akaike’s information 
criterion, 𝛒 symbolizes Lin’s concordance correlation coefficient, R2 denotes determination coefficient, 
SEE standard error of estimation and MPE mean prediction error. 

Method AIC 𝛒 R2 SEE MPE 𝐸ఒଶ(𝑣|𝑢) 883.75 0.9485 0.9021 0.4433 −0.5635 𝐸ఒଵ(𝑣|𝑢) 937.92 0.9440 0.8939 0.4608 −0.5857 𝐸ఒ(𝑣|𝑢) 1182.97 0.9192 0.8505 0.5465 −0.6945 𝐸ஐ(𝑣|𝑢)(𝑚 = 2) 858.81 0.9501 0.9049 0.4363 −0.5546 𝐸ஐெ(𝑣|𝑢) 852.50 0.9510 0.9062 0.4338 −0.5515 𝐸ஐ்ௌ(𝑣|𝑢) (𝑞 = 2) 863.76 0.9503 0.9053 0.4366 −0.5550 𝐸ஐ்ௌ(𝑣|𝑢) (𝑞 = 5) 848.63 0.9514 0.9073 0.4321 −0.5492 𝐸୫(𝑣|𝑢) (𝑚 = 3) 894.59 0.9474 0.9001 0.4472 −0.5685 

N
or

m
al

iz
ed

 fi
rin

g 
st

re
ng

th

Figure 10. Fit of the ΩTSK(u) proxy on the eelgrass data. Panel (a) shows firing strengths ϑ1(u) and
ϑ2(u) for the biphasic characterization of ΩTSK(u). Panel (b) exhibits dispersion of v about fitted TSK
mean response EΩTSK(v|u) vertical segment signposts estimated break point. Panel (c) shows residual
dispersion about the zero line. Panel (d) displays normal QQ plot.

Figure 11 displays plots of retransformed λ2(u), ΩBL(u),π5(u) and ΩML(u) protocols. Panel (a)
shows spread about Eλ2BI(y

∣∣∣x) function obtained by retransformation of interpolation lines Eλ2BI(v|u)
for λ2(u) shown in Figure 9a. Panel (b) depicts spread about mean function EΩBL(y

∣∣∣x) associated with
the broken line method ΩBL(u). Panel (d) presents dispersion about retransformed mean function of
polynomial model π5(u). Panel (d) portrays dispersion about EΩML(y

∣∣∣x) deriving from the mixture
lines procedures ΩML(u). Table 5 presents model comparison metrics for MCA surrogates fitted
in geometrical space. We can learn that, among considered methods, an interpolation mode of the
ΩTSK(u) approach brings about better performance.

Figure 12 presents plots of spread about retransformed mean response EΩTSK(y
∣∣∣x), associating to

the fitted biphasic ΩTSK(u) (panel (a)). Panel (b) displays spread about curves produced by a biphasic
form of HTSK(x) fitted on direct scales. Panel (c) compares the fitted function HTSK(x) to power function
produced by Huxley’s model of simple allometry. Panel (d) presents the dynamics of curvature index
κ(x). Deviation of this index from the line y = 1 validate curvature detected in geometrical space for
this data. This illustrates that manifestation of curvature is explained by complexity inherent to the
allometric response–covariate association in direct scales. Table 6 presents performance metrics of
retransformed proxies compared to Huxley’s formula of simple allometry and characterizations of
directly fitted HTSK(x) : (q = 2, q = 7). Again the retransformed ΩTSK(u) and directly fitted HTSK(x)
displayed the highest reproducibility strengths.
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Figure 11. Plots of retransformed MCA protocols fitted on logtransformmed eelgrass data. Panel (a) 𝐸ఒଶூ(𝑦|𝑥) function obtained by retransformation of interpolation lines 𝐸ఒଶூ(𝑣|𝑢) (Figure 9a) Panel 
(b) spread about 𝐸ఆ(𝑦|𝑥). Panel (c) presents dispersion around mean function 𝐸గହ(𝑦|𝑥) produced 
by the 𝜋ହ(𝑢) polynomial. Panel (d) displays spread about mean funcion 𝐸ఆெ(𝑦|𝑥) deriving from 
retransformation of the mixture lines proxy 𝛺ெ(𝑢). These plots suggest remarkable consistency of 
the retransformed MCA output. 
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Figure 11. Plots of retransformed MCA protocols fitted on logtransformmed eelgrass data. Panel (a)
Eλ2BI(y

∣∣∣x) function obtained by retransformation of interpolation lines Eλ2BI(v|u) (Figure 9a) Panel
(b) spread about EΩBL(y

∣∣∣x). Panel (c) presents dispersion around mean function Eπ5(y
∣∣∣x) produced

by the π5(u) polynomial. Panel (d) displays spread about mean funcion EΩML(y
∣∣∣x) deriving from

retransformation of the mixture lines proxy ΩML(u). These plots suggest remarkable consistency of the
retransformed MCA output.

Table 5. Comparison of reproducibility strengths of MCA protocols fitted in geometrical space for the
Zostera marina data. We include λm(u) : (m = 0, 1, 2) and, ΩBL(u) : (biphasic)) πm(u) : (m = 3, 5),
ΩML(u) (biphasic) and ΩTSK(u) (q = 2, 5) and πm(u)(m = 3, 5). AIC stands for Akaike’s information
criterion, ρ symbolizes Lin’s concordance correlation coefficient, R2 denotes determination coefficient,
SEE standard error of estimation and MPE mean prediction error.

Method AIC ρ R2 SEE MPE

Eλ2(v
∣∣∣u) 883.75 0.9485 0.9021 0.4433 −0.5635

Eλ1(v
∣∣∣u) 937.92 0.9440 0.8939 0.4608 −0.5857

Eλ0(v
∣∣∣u) 1182.97 0.9192 0.8505 0.5465 −0.6945

EΩBL(v
∣∣∣u)(m = 2) 858.81 0.9501 0.9049 0.4363 −0.5546

EΩML(v
∣∣∣u) 852.50 0.9510 0.9062 0.4338 −0.5515

EΩTSK(v|u) (q = 2) 863.76 0.9503 0.9053 0.4366 −0.5550
EΩTSK(v|u) (q = 5) 848.63 0.9514 0.9073 0.4321 −0.5492
Eπm(v|u) (m = 3) 894.59 0.9474 0.9001 0.4472 −0.5685
Eπm(v|u) (m = 5) 871.19 0.9495 0.9038 0.4394 −0.5586
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Figure 12. Plots of retransformed 𝛺்ௌ(𝑢) and direct 𝛨்ௌ(𝑥) proxies identified on eelgrass data. 
Panel (a) shows spread about 𝐸ఆ்ௌ(𝑦|𝑥). Panel (b) depicts dispersion about fitted biphasic form 𝛨்ௌ(𝑥) , (𝑞 = 2). Panel (c) compares 𝛨்ௌ(𝑥), (𝑞 = 2), to the power function by Huxley’s model of 
simple allometry fitted on direct scales. Panel (d) displays the plot of curvature index 𝜅(𝑥). This plot 
exhibits curvature effects more pronounced for the smaller leaves. 

The present results obtained on real and simulated data suggest adequacy of the MCA scheme 
proposed as an analytical tool for efficient allometric projection of plant biomass units. Consistency 
submitted by plots of dispersion about identified mean response functions in direct scales can in all 
cases be corroborated by performance metrics presented in the tables. The criterion for identifying 
break points based in MCA forms 𝜆(𝑢) and 𝜋(𝑢) fitted in geometrical space provides reliable 
estimations as compared with procedures directly aimed to this endeavor and presently exemplified 
by the 𝛺்ௌ(𝑢), 𝛺(𝑢), and 𝛺ெ(𝑢) approaches. Moreover, as shown by Figure 3d, the suggested 
MCA form also allows CF-free retransformation step that grants reliable reproducibility. 
Performance of the curvature index 𝜅(𝑥) enhances our perception of the present MCA arrangement 
as an effective scheme for allometric examination in the general settings. Besides the aforementioned 
empirical advantages, we expect that addressing MCA could overcome the controversy around using 
DNLR or log-transformation methods in identification tasks. 

4. Discussion 
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Figure 12. Plots of retransformed ΩTSK(u) and direct HTSK(x) proxies identified on eelgrass data.
Panel (a) shows spread about EΩTSK(y

∣∣∣x). Panel (b) depicts dispersion about fitted biphasic form
HTSK(x) , (q = 2). Panel (c) compares HTSK(x), (q = 2), to the power function by Huxley’s model of
simple allometry fitted on direct scales. Panel (d) displays the plot of curvature index κ(x). This plot
exhibits curvature effects more pronounced for the smaller leaves.

Table 6. Performance metrics for MCA proxies for observed eelgrass leaf biomass. We include
retransformed forms of λm(u) : (m = 0, 1, 2) and , ΩBL(u) : (biphasic) πm(u) : (m = 3, 5), ΩML(u)
(biphasic) and ΩTSK(u) (q = 2, 5) compared to Huxley’s formula of simple allometry and directly fitted
HTSK(x) : (q = 2, q = 3). AIC stands for Akaike’s information criterion, ρ symbolizes Lin’s concordance
correlation coefficient, R2 denotes determination coefficient, SEE standard error of estimation and MPE
mean prediction error.

Method AIC ρ R2 SEE MPE

Eλ2(y
∣∣∣x) −7104.84 0.9737 0.9430 0.0018 2.1340

Eλ1(y
∣∣∣x) −6474.24 0.9388 0.8632 0.0028 5.3011

Eλ0(y
∣∣∣x) −6837.92 0.9490 0.9167 0.0022 2.5723

EΩBL(y
∣∣∣x) : (m = 2) −7008.52 0.9712 0.9345 0.0019 2.2837

EΩML(y
∣∣∣x) −7092.99 0.9739 0.9421 0.0018 2.1515

EΩTSK (y
∣∣∣x) : (q = 2) −7116.99 0.9747 0.9443 0.0018 2.1133

EΩTSK (y
∣∣∣x) : (q = 5) −7199.19 0.9770 0.9502 0.0017 1.9968

Eπm (y
∣∣∣x) : (m = 3) −7060.11 0.9729 0.9390 0.0019 2.2039

Eπm (y
∣∣∣x) : (m = 5) −7096.27 0.9738 0.9423 0.0018 2.1466

EHTSK (y
∣∣∣x) : (q = 2) −7405.16 0.9809 0.9625 0.0015 1.7324

EHTSK (y
∣∣∣x) : (q = 3) −7412.54 0.9811 0.9629 0.0014 1.7236

Huxley −7414.89 0.9808 0.9624 0.0015 1.7279

The present results obtained on real and simulated data suggest adequacy of the MCA scheme
proposed as an analytical tool for efficient allometric projection of plant biomass units. Consistency
submitted by plots of dispersion about identified mean response functions in direct scales can in all



Appl. Sci. 2019, 9, 4965 23 of 42

cases be corroborated by performance metrics presented in the tables. The criterion for identifying
break points based in MCA forms λm(u) and πm(u) fitted in geometrical space provides reliable
estimations as compared with procedures directly aimed to this endeavor and presently exemplified
by the ΩTSK(u), ΩBL(u), and ΩML(u) approaches. Moreover, as shown by Figure 3d, the suggested
MCA form also allows CF-free retransformation step that grants reliable reproducibility. Performance
of the curvature index κ(x) enhances our perception of the present MCA arrangement as an effective
scheme for allometric examination in the general settings. Besides the aforementioned empirical
advantages, we expect that addressing MCA could overcome the controversy around using DNLR or
log-transformation methods in identification tasks.

4. Discussion

The flux and storage of carbon in overall plant biomass influences global carbon cycle. Traditional
approaches to quantification of related carbon fluxes and stocks have essentially relied on allometric
methods [1,19,22,100]. Usually, in this approach, directly obtained measurements of a trait x and
the scaling model of Equation (1) allow non-destructive estimation of values of a plant biomass unit
y. However, the acquired projections of the response values are markedly sensitive to numerical
changes in composing parameters α and β. Moreover, local factors can induce a certain extent of
variability on estimates. The influences of analysis method, error structure, sample size, and overall
data quality in the study of biological scaling have been widely acknowledged [25–27,131]. Therefore,
error propagation of estimates and its influence on overall precision pose important queries, on
dependability of allometric surrogates of plant biomass units.

Particularly relevant is the influence of the analysis method. This nourishes a vivid controversy
that divides allometric practice into two schools. Views emphasize traditional identification of
parameters α and β via logtransformation set biased results, thereby recommending direct non-linear
regression analysis. However, defenders of a traditional perspective conceive logtransformation
and allometry as inseparable. We have here embraced a view that controversy can be remedied by
addressing adequate complexity of an inherent allometric relationship on the direct scales. Alongside
this, it becomes necessary choosing a proper form of correction factor for bias of retransformation.
In order to validate the present view, we adopted the MCA model of Equation (2), that assimilates
necessary complexity through scaling parameters expressed as functions α(x) and β(x) depending on
covariate. A particular form of this paradigm was addressed by Bervian et al. [77] and its generalization
into the form offered here was suggested by Echavarria Heras et al. [132]. A formal exploration
established this construct as a source model from which conventional models aimed to address
curvature in geometrical space [88] could be derived. Nevertheless, consideration of MCA there
removed the circumscribed general identification problem. This can be conceived as using regression
protocols and data pairs (x, y) in order to unfold forms of α(x) and β(x) as independent functions
granting highest reproducibility. We aimed here to contribute on the subject. This explains present
advancement of geometrical space identification methods resulting from Weierstrass approximation
theory, essentially epitomized by the λm(u) approach, as well as, ORBM alternates represented here
by ΩTSK(u), ΩBL(u) and ΩML(u). An ORBM approach also nourished adaptation of the HTSK(x)
arrangement aimed to analyse MCA forms in direct scales. The results in Appendix E explain that
a HTSK(x) scheme can automatically adapt complexity as required to identify a pattern conforming
to the formula of simple allometry. The extraordinary approximation capabilities of the TSK fuzzy
model [133,134] endow HTSK(x) interpolation of allometric patterns in direct scales irrespective of
intrinsic complexity. Moreover, the HTSK(x) arrangement makes it possible to detect break points for
transition among allometric phases which is unattainable by MCA-DNLR methods [132].

The results of Appendix E also reveal that a logarithmic transformation itself cannot be blamed
for curvature detected in geometrical space. Simulation assays exhibit that geometrical space methods
provide reliable proxies on condition that CF is chosen in a suitable form. However, the λm(u) scheme
could entail steady CF free retransformation to direct scales (Figures 3d and 4d). This suggests that a
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suitable integration of complexity becomes a key factor in driving dependability of allometric projection
based on protocols fitted on log-scales. Adoption of an ORBM approach also allowed adaptation
of index κ(x) given by Equation (33) that interprets as a measure of curvature in geometrical space
implied by the complexity of inherent allometric pattern in direct scales. Moreover, κ(x) allows
parallel criterion to statistical performance metrics for model selection. Results of simulation runs
reveal that information based on κ(x) can unravel efficiency of DNLR being only putative. Indeed,
visual appraisal of a fit of Huxley’s model of simple allometry to simulated MCA replicates could
suggest consistent reproducibility (Figure 1a). However, a concurrent plot of κ(x) index (Figure 1b)
exhibits noticeable deviations from the line y = 1 for small values of the covariate. Similarly marked
deviations of the κ(x) from the line y = 1 are shown in the biphasic fit to the Ramirez-Ramirez
et al. [6] data (Figure 8d). Comparable effects are displayed for small eelgrass leaves (Figure 12d).
This explains manifestation of curvature that was corroborated by dependability of the biphasic
forms of the ΩTSK(u), ΩBL(u) and ΩML(u) protocols. Therefore, clinging to Huxley’s model, and a
non-linear regression protocol in direct scales can at most offer an apparent empirical convenience
tied to simplicity, but it may leave behind relevant biological information. This concerns the existence
of break points for transition between successive growth phases that are undetected by Huxley’s
model of simple allometry and are well recognized by the PLA paradigm [91,93–95]. Likewise,
identified break point in Zostera marina may perhaps be interpreted as a threshold beyond which the
plant promotes generation of a relatively greater amount of tissue in leaves to enhance resistance
to drag force effects that induce damage and separation from shoots. As a result, allometric scaling
parameters among small and large leaves could be different [30]. Similarly, a break point in the
Ramirez-Ramirez [6] data suggest differential allometric rules depending on tree size. Indeed, resource
allocation to different tree attributes like diameter or height could differ during growth as a response
to changed environmental-biotic conditions, as well as, to variations in resource availability. In this
perception, a risk of suppression by competitors may induce small trees to dispense more resources to
increase height. Then, beyond a threshold height at which suppression risk is at a minimum, resources
may be assigned to horizontal growth parameters like diameter, crown and root cover [6,135]. Thus,
since the aim of allometric examination is comprehending the biological processes that bring about
covariance among traits, analytical methods entailing break point identification must be preferred.
This explains adaptation of the empirical procedure of Appendix A aiming to extending the λm(u)
protocol for break point detection. In particular, the contemplated ΩTSK(u) approach could be a highly
biologically meaningful model of allometry, because it can model the break points while keeping the
meanings of allometric exponents as Huxley’s original formulation. Moreover, as exemplified by
the addressed study cases, the intersection of firing strength factors provides a reliable criterion to
break point identification which could be expected to deliver reliable results in the general settings of
allometric examination.

5. Conclusions

We aimed here to address the general identification problem of the MCA model of Equation (2).
This conceived using regression protocols and data pairs (x, y) in order to unfold α(x) and β(x) as
independent functions granting highest reproducibility. This task was addressed here in two ways.
A first one was through Weierstrass approximation theory that anticipated α(x) and β(x) as determined
by Equation (8) through Equation (10) and that epitomize by the λm(u) form in geometrical space.
A second way to address the general identification problem relied on an ORBM slant. This conceived
α(x) and β(x) in the forms given by Equation (22) and Equation (23) respectively, and that engendered
the ΩBL(u), ΩML(u) and ΩTSK(u) protocols also intended to be fitted in geometrical space. This ORBM
approach is also behind the adaptation of the form HTSK(x) that takes advantage of the oustanding
approximation capabilities of the general output of a first order TSK fuzzy model grants polyphasic
interpolation of inherent MCA pattern in arithmetical scales.
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A consistent fit of the λm(u) arrangement could set up reliable reproducibility by direct
retransformation to arithmetical scales. Moreover, this approach can also entail estimation of break
point inherent to biphasic patterns. Concomitant broken line ΩBL(u) or weighted linear segment
mixture ΩML(u) regression could also offer reasonable MCA identification in many instances of
allometric examination. Nevertheless, it is opportune to emphasize gains derived from adoption of a
ΩTSK(u) approach. This construct bears a flexible computational assembly that allows intuitive and
interactive integration of previous knowledge into the analysis [132]. This gives ΩTSK(u) a relative
advantage over the conventional protocols addressed here. Moreover, analysis of model performance
metrics show that the mean response function EΩTSK

(
y
∣∣∣x) brings about similar reproducibility strength

as its EHTSK(y
∣∣∣x) counterpart. Therefore, ΩTSK(u) could grant efficient identification of allometric

proxies indistinctly of inherent complexity. This device also drives direct and intuitive identification of
multiple break points for transition among successive growth phases comprising a PLA pattern. It is
also worth highlighting that the extraordinary approximation capabilities of a first-order KSK fuzzy
model that engenders ΩTSK(u) grant reliable identification of the scaling functions α(x) and β(x) by
retransforming fitted form of ΩTSK(u) to arithmetical scales. We can then consider that the essential aim
of this contribution was fulfilled. The TSK arrangement also allows efficient implementation of the κ(x)
criterion for curvature assessment. The identification schemes offered can be conveniently implemented
on available data by using the codes provided. In summary, the presented MCA paradigm, along with
identification schemes plus a suitable CF form could grant efficient projection of plant biomass units.
This may well be also extended to the general settings of allometric examination. Nevertheless, we
acknowledge that further substantiation is deemed necessary before proposed MCA could be adopted
as a comprehensive tool for the analysis of allometric data. Meanwhile, present results endorse the
relevance of the excerpt of Kerkhoff and Enquist [81] on the hopelessness of a divergence between
traditional logarithmic transformation and direct non-linear analysis slants in allometry. Surely, the
efficiency of the proposed MCA arrangement can elucidate this glowing controversy.
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Appendix A. Identification of the Model of Complex Allometry by Approximation of β(x) and
α(x) through Polynomial Forms

The proposed MCA formula takes on the form of the generalized power function of Equation (2)
namely:

y = β(x)xα(x)

with x varying in an interval [c, d] ⊂ R, and also assuming that both β(x) and α(x) are continuous
functions on that domain. Additionally, we undertake that β(x) maps [c, d] into R+. Complexity of the
general settings of the model of Equation (2) poses significant difficulties when using direct nonlinear
regression as an identification device. However, we can provide an alternative fitting protocol in
geometrical space that overcomes these technical complications. In order to advance this, we set
β(x) = exp( f (x)) with f (x) continuous in [c, d] so we can express Equation (2) in the equivalent form:

y = e f (x)xα(x) (A1)
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Now, since f (x) is continuous on a real interval, then, the Weierstrass approximation theorem
assures that for any ε > 0, there exists a r th-order polynomial Pr(x) with r depending on ε and set by:

Pr(x) = p0 +
∑r

1
pkxk (A2)

where pi for 0, 1, . . . , r are coefficients, and such that,
∣∣∣Pr(x) − f (x)

∣∣∣ < ε, for all x ε[c, d]. Moreover for
that value of ε we can also choose a s th-order polynomial Qs(x) given by:

Qs(x) = q0 +
∑s

1
qkxk, (A3)

such that we also have,
∣∣∣Qs(x) − α(x)

∣∣∣ < ε.
Let m = max(r, s). Then, if m = r we set qk = 0, for s + 1 ≤ k ≤ m. Conversely, if m = s, we set

pk = 0 for r+ 1 ≤ k ≤ m. This way we can consider an homogeneous degree m for polynomials Pr(x) and
Qs(x) in Equations (A2) and (A3) that will ensure tolerances

∣∣∣Pm(x) − f (x)
∣∣∣ < ε, and

∣∣∣ Qm(x) − α(x)
∣∣∣ < ε.

Therefore, Equation (A1) can be written in the form:

y = ePm(x) aQm( x) eε(x) (A4)

where ε(x) is a remainder that, according to the Weierstrass approximation theorem, can become
negligible by a suitable choosing of m. Assuming that this is satisfied we can take ε(x) as a random
variable ε which allows to consider the regression model:

w = ePm(x) aQm( x) eε (A5)

Then, eε can be interpreted as a multiplicative random error term.
The transformation v = lny and u = lnx carries Equation (A5) into:

v = Pm(eu) + Qm(eu)u + ε (A6)

with ε interpreted as an additive error term. Using Equations (A2) and (A3) to set forms Pm(x) and
Qm( x), Equation (A6) yields,

v =
∑m

0
pkeku +

∑m

0
qkueku + ε (A7)

Therefore, we can express the regression model of Equation (A6) in the form:

v = λm(u) + ε (A8)

with
λm(u) =

∑m

0
(pk + qku)eku

that allows to obtain estimators of the parameters pk and qk defining the Pm(x) and Qm(x) that
approximate β(x) and α(x) in Equation (A5).

Equation (A8) provides a non-linear regression protocol involving u and powers of eu.
A characterization of the log transformed allometric response v as a polynomial of the linked covariate
u corresponds to a complex allometry model with a varying exponent in arithmetical space. Here,
we demonstrate that such a polynomial representation allows an identification of the full complex
allometry described by Equation (2) with β(x) = exp(Pm(x)) and α(x) = Qm(x). In order to resolve
these matters, we first consider a power series expansion of eku, so we can write,

eku =
∑2m

0

(
kn

n!

)
un + Sk

2m(u) (A9)
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where

Sk
2m(u) =

∑
∞

2m+1

(
kn

n!

)
un

This result implies

λm(u) =
∑m

0
(pk + qku)

(∑2m

0

(
kn

n!

)
un

)
+ R m(u) (A10)

where Rm(u) is a remainder. Expanding the sum over the n index then multiplying by (pk + qku) and
collecting similar terms leads to

λm(u) =
∑m

k=0

∑2m

n=0

pkknun

n!
+

∑m

k=0

∑2m

n=0

qkknun+1

n!
+ R m(u) (A11)

But, the following results hold

∑m

k=0

∑2m

n=0

pkknun

n!
=

∑m

k=0
pk +

∑2m

n=1

∑m

k=0

(
pkkn

n!

)
un (A12)

and ∑m

k=0

∑2m

n=0

qkknun+1

n!
=

∑2m

n=1

(∑m

k=0

qkkn−1

(n− 1)!

)
un +

(∑m

k=0

qkk2m

2m!

)
u2m+1 (A13)

Then Equations (A11) through (A13) yield:

λm(u) =
∑m

0
pk +

∑2m

n=1

∑m

k=0

(
pkkn

n!
+

qkkn−1

(n− 1)!

)
un +

(∑m

k=0

qkk2m

2m!

)
u2m+1 + Rm(u)

or equivalently, ∑m

0
(pk + qku)eku = c0 + c1u +

∑2m

n=2
cn un + c2m+1u2m+1 + Rm(u) (A14)

where,

cn =


∑m

k=0 pk n = 0∑m
k=0

(
pkkn

n! +
qkkn−1

(n−1)!

)
n = 1, 2, . . . , 2m∑m

k=0
qkk2m

2m! n = 2m + 1

(A15)

Moreover, by the Weierstrass approximation theorem for m large enough we could expect Rm(u)
becoming negligible so the regression Equation (A8) can be also written in the form,

v = πm(u) + ε, (A16)

where,

πm(u) =
∑2m+1

n=0
cnun

that is, the regression protocol in geometrical space of the complex allometry model expanded
by β(x) = exp(Pm(x)) and α(x) = Qm(x) space admits a representation in terms of a (2m + 1)th
order polynomial πm(u) of the log transformed descriptor u. Whenever Equation (A16) produces a
regular fit to (v, u) data, we obtain reliable estimates for the parameter vector the (c0, c1, . . . , c2m+1)
then Equation (A15) establish a linear system of 2m + 1 equations that allow to obtain the vector
(p0, p1, . . . , pm, q0, q1, . . . , qm) that estimates Pm(x) and Qm(x). We illustrate the procedure for the case
m = 2. We have:

P2(x) = p0 + p1x + p2x2 (A17)
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Q2(x) = q0 + q1x + q2x2 (A18)

Therefore, 2m + 1 = 5 and the regression model of Equation (A16) turns out to be:

v =
∑5

n=0
cnun + ε (A19)

And Equation (A15) establishes the system:

cn =


∑m

k=0 pk n = 0∑m
k=0

(
pkkn

n! +
qkkn−1

(n−1)!

)
n = 1, 2, 3, 4∑m

k=0
qkk2m

2m! n = 5

which yields
c0 = p0 + p1 + p2

c1 = p1 + 2p2 + q0 + q1 + q2

c2 =
p1
2 + 2p2 + q1 + 2 q2

c3 =
p1
6 +

4p2
3 + 2q2

c4 =
p1
24 +

2p2
3 +

q1
6 +

4q2
3

c5 =
q1
24 +

2q2
3

This allows consideration of the linear system in matrix form:

C = A·PQ (A20)

where,

C =



c0

c1

c2

c3

c4

c5


, PQ =



p0

p1

p2

q0

q1

q2


and A =



1 1 1 0 0 0
0 1 2 1 1 1
0 1/2 2 0 1 2
0 1/6 4/3 0 1/2 2
0 1/24 2/3 0 1/6 4/3
0 0 0 0 1/24 2/3


(A21)

Then,

A−1 =



1 0 −79/10 243/10 −132/5 18/5
0 0 8 −24 24 0
0 0 −1/10 −3/10 12/5 −18/5
0 1 −24/5 111/10 −54/5 6/5
0 0 −16/5 72/5 −96/5 24/5
0 0 1/5 −9/10 6/5 6/5


(A22)

Therefore,

p0

p1

p2

q0

q1

q2


=



1 0 −79/10 243/10 −132/5 18/5
0 0 8 −24 24 0
0 0 −1/10 −3/10 12/5 −18/5
0 1 −24/5 111/10 −54/5 6/5
0 0 −16/5 72/5 −96/5 24/5
0 0 1/5 −9/10 6/5 6/5





c0

c1

c2

c3

c4

c5


(A23)
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An empirical procedure for identification of the break point detection in a biphasic allometric
pattern can be implemented once the λm(u) function of Equation (A8) has been identified. The code
fit_BL_mca_m2.m performs related computational tasks. The procedure begins by proposing a break
point candidate and pivoting about it two linear segments aimed at interpolating the whole curve
λm(u). The CCC value between values predicted by the interpolation lines and those projected by
λm(u) curve provides a measure of adequacy of break point estimate. Optimizing CCC value over
different candidate break points set the identification criterion. This procedure can be also implemented
on fitted πm(u) curve.

Appendix B. Identification through an ΩML(u) Scheme

In this appendix we address the maximum likelihood approach for the identification of the
mixture mean function ΩML(u). We exemplify procedures for the biphasic characterization. The linked
regression equation becomes,

v = ΩML(u) + ε (A24)

where,
ΩML(u) = ϑ1(u )[lnβ1 + α1u.] + ϑ2(u )[lnβ2 + α2u ]

where ε conforms to a normal distribution with zero mean and standard deviation σ and the weight
function ϑ1(u) expressed as a normal survival function N

(
µp, σp

)
ϑ1(u ) =

∫
∞

u

1
√

2πσ
exp

−1
2

(
x− µp

σp

)2dx. (A25)

Maximum likelihood estimates of the parameters θ =
(
lnβ1, lnβ2, α1, α2, µp, σp, σ

)
are

produced by maximizing the log likelihood function l(θ), namely,

l(θ) =
∑n

i=1
−

1
2

log(2π) − log(σ) −
1
2

(
vi − µi

σi

)2

(A26)

being µi = µi(ui), the mean function given by,

µi(ui) = ϑ1(u )[α10 + α11ui] +
[
1− ϑ1(u )

]
[α20 + α21ui] (A27)

being p(ui) the weight function given by Equation (A21). Due to the complexity of the log likelihood
function l(θ), we perform its maximization numerically, using the nlminb function of R.

Appendix C. The Takagi–Sugeno–Kang (TSK) Fuzzy Model

Ying [133] demonstrated that the general output of a TSK fuzzy can uniformly approximate
any continuous function to arbitrarily high precision. In the present allometric examination settings,
a TSK a fuzzy model is intended to provide a device for the identification of the mean response
z(u) associating to the regression model of Equation (4) involving the logtransformmed response v
expressed as a nonlinear function of a descriptor u, namely:

v = ln
(
β(eu)xα(e

u)
)

(A28)

where v and u take values on domains V and U one to one.
In order to elaborate on the construction of a TSK fuzzy model, we firstly need to bring up an

abstract structure known as a general fuzzy inference system. For that aim, we introduce a set LU

containing a number q of linguistic terms Φk(u) characterizing the input variable u, formally:

LU =
{
Φk(u)

∣∣∣k = 1, 2, . . . ., q
}

(A29)
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Each linguistic term Φk(u) is associated to a membership function µΦk(u) that setting a mapping
µΦk(u) : U→ [0, 1] characterizes Φk(u) as the fuzzy set:

Φk(u) =
{
µΦk (u1)/u1, µΦk ( u2)/u2, . . . , µΦk (un )/un

}
(A30)

where u1, u2, . . . , un stand for the values that u takes on.
We use the symbol µU to denote the collection of membership functions describing the variable a,

that is,
µU =

{
µΦk(u)

∣∣∣k = 1, 2, . . . ., q
}

(A31)

Likewise, the pair (LU,µU) will stand for what is known as a fuzzy partition of the input domain U.
Respectively, for j = 1, 2, . . . , r we designate linguistic terms Ψ j(v) for the output variable v so we

can consider a set Lv of linguistic terms, i.e.,

LV =
{
Ψ j(v)

∣∣∣ j = 1, 2, . . . , r
}

(A32)

Similarly, for each linguistic term Ψ j(v), we associate a membership function µΨ j(v), such that
the mapping µΨ j(v) : V → [0, 1] establishes the fuzzy set:

Ψ j (v)=
{
µΨ j(v1)/v1,µΨ j(v2)/v2, . . . ,µΨ j(vm)/vm

}
(A33)

where v1, . . . , vm denote the values that v acquires. Concurrently, we have the collection µV of
membership functions tied to V,

µV =
{
µΨ j (v)

∣∣∣ j = 1, 2, . . . ., r
}

(A34)

and concomitantly, we may also say that the pair (LV ,µV) sets a fuzzy partition for the output domain
V. Additionally, for i = 1, 2, . . . , q, in LU and LV we advance a correspondence i→ Φk(i)(u) , and
i→ Ψ j(i)(v) , so we can contemplate antecedent conjunctions of the form,

Pi(u) :
[
u is Φk(i)(u)

]
(A35)

and a consequent
Qi(v) :

[
v is Ψ j(i)(v)

]
(A36)

backing inferential rules Ri :

Ri :
{

i f : Pi(u))
then : Qi(v)

}
(A37)

We may then envisage a general fuzzy inference system F as a construct that includes an application
F: U→ V characterized by the sets of fuzzy partitions (LU,µU) and (LV,µV), a set of inference rules
R = Up

1

{
Ri

}
and a defuzzification operator D that associates to the fuzzy set Qi(v) in Equation (A36) a

crisp value v in V.
In a TSK fuzzy inference system representation, we consider decision rules Ri having an antecedent

Pi(u) of the form given by Equation (A35) but with the consequent Qi(v) in expression (A36) taking
a crisp functional form v = f i(u). That is, in the TSK fuzzy inference system we may envision rules
having the form

Ri :
{

i f : u is Φk(i)(u)
then : v = f i(u)

}
(A38)

for i = 1, 2, . . . , q.
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An important concept tied to a TSK fuzzy model is the firing strength ϕi(a) of the antecedent
Pi(u) of a rule Ri, for i = 1, 2 , . . . , q. For a first order TSK fuzzy model we take:

ϕi(u) = µΦk(i)(u) (A39)

A normalized firing strength ϑi(u) takes a form:

ϑi(u) =
ϕi(u)∑q
1 ϕ

i(u)
(A40)

It follows that, ∑q

1
ϑi(u) = 1 (A41)

The final output y of the TSK inference system is the weighted average of all rule outputs computed
as:

v =
∑q

1
ϑi(u) f i(u) (A42)

and intended to provide a proxy for the MCA response of Equation (A28).
The identification of the structure and the estimation of parameters of the TSK fuzzy model

are interrelated processes [136]. A first stage relies on Subtractive Clustering [122,123]. In order to
determine regions in the input space U with high point densities, initially a point with the highest
number of neighbors is selected as the center for a group. Points in this group placed within a
pre-specified fuzzy radius are removed. Then, the algorithm finds again the point with the largest
number of neighbors and so on until all points in U are examined. This determines the number of
decision rules Ri since each cluster associates to one of them. This stage also produces parameter
estimates for the µΦk(u) membership functions characterizing the fuzzy sets of the antecedents of
the rules. This determines estimated forms of the normalized firing strength factors ϑi(u). A second
stage of the identification task is achieved by placing these weight factors in Equation (A42) in order
to obtain parameter estimates for the consequents of the rules f i(u). This is usually achieved using
recursive least squares techniques [124,125].

Appendix D. Model Performance Metrics

In addition to the AIC and ρ indices, model assessment here is mainly based on the SEE, MPE and
mean percent standard error (MPSE) indices that rely in on statistics of squared and absolute deviations
of observed to predicted values. According to Parresol [137] the use of SEE, MPE and MPSE statistics
as model performance metrics were first recommended by Schlaegel [138] and have subsequently been
used by Zeng [130]. We provide ahead related formulae and explanation.

Akaike information criterion (AIC):

AIC = −2l
(
θ̂
)
+ 2p (A43)

Lin’s concordance correlation coefficient:

ρC =
2ρσYσX

(µX − µY)
2 + σ2

Y + σ2
Y

(A44)

with ρ standing for Pearson’s correlation coefficient. The ρC index estimates through,

ρ̂C =
2SYX(

Y −X
)2
+ S2

Y + S2
X

(A45)



Appl. Sci. 2019, 9, 4965 32 of 42

where,
Y = 1

n
∑

yi, X = 1
n
∑

xi

S2
Y = 1

n
∑
(yi − y)2, S2

X = 1
n
∑
(xi − x)2

SXY = 1
n
∑
(xi − x)(yi − y)

Determination coefficient (R2):

R2 =

∑(
Ŷi −Y

)2

∑(
Yi −Y

)2 (A46)

Standard error of estimation (SEE):

SEE =
√∑

(yi − ŷi)
2/(n− p) (A47)

Mean prediction error (MPE):

MPE = tα(SEE/y)/
√

n× 100 (A48)

Mean percent standard error (MPSE):

MPSE =
1
n

∑∣∣∣(yi − ŷi)/ŷi
∣∣∣× 100 (A49)

The AIC index allows comparing performance of different candidate models that fit a set of
data. The model with the lowest AIC value is considered the best among competitors. The AIC
index establishes a compromise between the goodness of fit of a model and its complexity, which is
expressed through linked log-likelihood and number of parameters as a way to penalize inclusion
of unnecessary ones. As it is based on information entropy, an AIC index is often interpreted, as an
estimate of the information lost when a model is used to represent the process that generates the
data. Lin’s concordance correlation coefficient (ρC) measures how well one variable (Y) reproduces
another (X), that is, it represents a measure of the similarity (or agreement) between the two variables.
This index can be estimated, with sample sizes of at least ten pairs (x, y). The R square index (R2) also
called determination coefficient interprets through the ratio (SS due to regression/Total SS corrected for
the mean) and is mainly intended as a measure of closeness between response values and adjusted
linear regression models. This index also measures the proportion of the total variation of the response,
around the average, explained by the model. The coefficient of determination takes values between
zero and one. When R2 attains its maximum value, one, the response variable is fully explained by
the predictive variables of the fitted linear regression model. According to Parresol [137] using the
coefficient of determination as a fit index aimed to compare performance of biomass models was
first suggested by Schlaegel [138]. Nevertheless, for non-linear models a high R2 value does not
necessarily associates with high reproducibility strength. The standard error of estimation SEE is of
widespread use in statistical texts and also widely reported in statistical software. This index bears a
global assessment of goodness of fit of a model to observed data, as it measures the accuracy of (ŷi)
predictions produced by a fitted regression model. This index takes non-negative values. When SEE
attains its minimum value, of zero, the observed values of the response coincide with the fitted mean
response function, meaning that the model displays exact reproducibility of observed values.

The MPE, which is now used to determine the goodness of fit of a model, is a standardized
version of the coefficient of variation CV = (SEE/y) × 100 expressed as a percentage, as proposed
by Schlaegel [138]. The MPSE bears a measure of the average absolute relative error, expressed as a
percentage. This model assessment index recommended by Schlaegel [138] was previously suggested
by Meyer [139] as a measure of the absolute deviation of the expected and predicted responses, relative
to the size of the prediction (

∣∣∣yi − ŷi
∣∣∣ŷi) expressed as a percentage average.
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Appendix E. Simulation Assay on λ0(u)

In this assay, we considered the case m = 0 of the MCA form λm(u) as represented by Equation (12).
This is associated to constant scaling functions, β(x) = p0 and α(x) = q0. The resulting model is set as
Huxley’s formula of simple allometry given by Equation (1). In order to perform a simulation assay in
this model, we took covariate values xi for i = 1, 2, . . . , N, with N = 500 and such that xmin ≤ xi ≤ xmax,
with xmin = 1 and xmax = 10, 000. Then, we choose reference parameter values p0 = 1.752× 10−12 and
q0 = 2.713 so that Equation (42) determined projected values yi = p0 exp(q0lnxi). So produced data
pairs (xi, yi) are available in the supplementary files Href.txt.

Next, we used the Matlab function random(′norm′,µ, σ) function in order to draw normal random
numbers εk for k = 1, 2, . . . ., T with T = 5. Then, Equation (43) produced replicates yk(i)(ε) =

p0 exp(q0lnxi + εk) for each reference value yi. In this trial, we generated N × T = 2500 replicates.
Resulting data can be found in the supplementary files Hrep.txt. Figure A1a shows the spread of
simulated yk(i)(ε) replicates around the reference curve yi = p0 exp(q0lnxi). A fit of the model y =

β exp(αlnx) by direct non-linear regression to
(
xi, yk(i)(ε)

)
data resulted in estimates of β = 1.231× 10−12

and α = 2.753 (r2 = 0.9802). Figure A1b shows spread of yk(i)(ε) replicates around the fitted curve
(xi, βxi

α).
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Next, we acquired vk(i)(ε) values from the transformation vk(i)(ε) = log
(
yk(i)(ε)

)
and ui = log(xi).

Then regression Equation (4) yields the linear model,

vk(i)(ε) = λ0(ui) + εk (A50)

where
λ0(u) = p0 + q0u

Fitting this model produced estimates p0 = −27.08 and q0 = 2.714,
(
r2 = 0.9985

)
. Figure A2a

displays the spread of vk(i)(ε) replicates about estimated mean response λ0(ui) = p0 + q0 ui.
Then, this was retransformed to arithmetical space to produce the estimated mean function
Eλ0 (y

∣∣∣x) exp(p0 + q0 x(u))δ(ε) (cf. Equation (6)). For this try δ(ε) = exp
(
σ2/2

)
as corresponds

to ε ∼ N(0, σ). This assumption was corroborated by applying an Anderson–Darling test (Function
adtest.m in Matlab). Figure A2b allows comparison of retransformed

(
xi, Eλ0(yi

∣∣∣xi)
)

and directly fitted
(xi, βxαi ) curves. Shown spread suggest reliable agreement between observed values and retransforming
mean response Eλ0(y

∣∣∣x). No biased results can be attributed to using a logtransformation procedure
in this study case. Table A1 presents model performance metrics. We can be aware of remarkable
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agreement of these surrogates. As a result, it can be inferred that the log transformation step in the
TAMA approach dos not induce a curvature deformation in geometrical space.
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Figure A2. Panel (a) displays spread of vk(i)(ε) replicates about the mean response lineλ0(u) = p0 + q0u.
Panel (b) comparison of retransformed mean response Eλ0(y

∣∣∣x) and fitted power function y = βxα

resulting from a DNLR fit on simulated data
(
xi, yk(i)(ε)

)
. Panel (a) reveals no curvature effects induced

by a log transformation. Panel (b) suggest reliable agreement between observed and retransforming
mean response Eλ0(y

∣∣∣x) No biased results can be attributed to using a logtransformation procedure.

In order to assess error structure effects we considered the case of non-lognormally distributed
replicates, and we maintained the reference curve yi = p0 exp(q0nxi) as above, but according to the
procedure around Equation (44) we acquired values ξk = random(′exp′,µ) ∗ random(′logistic′,µ, σ),
that is, ξk expresses as a product of exponentially (µ = 0.1) and logistically (µ = 0, σ = 0.1)
distributed random numbers. Then, we formed replicates yk(i)(ξ) = p0 exp(q0lnxi + ξk). In this
assay, we maintained N × T = 2500 replicates. Supplemental file Hnonrep.txt includes acquired data.
Figure A3a shows the spread of replicates yk(i)(ξ) about the reference curve.

Fitting Huxley’s model to
(
xi, yk(i)(ξ)

)
pairs by DNLR produced β = 1.403 × 10−12 and α =

2.739 (r2 = 0.977). Figure A3b compares reference and fitted curves. Again we can visualize
remarkable agreement.
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Figure A3. Huxley’s model fitted by DNLR on simulated non–normally distributed data. Panel (a)
spread of yk(i)(ξ) values about reference curve yi = p0 exp(q0lnxi) Panel (b) comparison of reference
curve and mean response y = βxα fitted by a DNLR protocol.

Then, the linear model of Equation (A50) was fitted on log-transformed replicates vk(i)(ξ) =

log(yk(i)(ξ)) and covariates ui = log(xi). This resulted on estimates, lnp0 = −27.1 and q0 = 2.716
(r2 = 0.9987). Figure A4a shows spread about the fitted line λ0(u) = p0 + q0u. Retransforming by
Equation (6) produced Eλ0(y

∣∣∣x) = exp(p0 + q0u)δ(ξ), with δ(ξ) produced by the criterion around
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Equation (7) since ξk is not normally distributed. Figure A4b compares Eλ0(y
∣∣∣x) and reference curves.

We can assert that in spite of non-lognormally distributed multiplicative error, a log scales identification
procedure bears reliable results in this case. Table A2 presents model performance metrics. We can
be aware that these statistics corroborates remarkable agreement shown in Figure A4b. We can then
assert that on spite of regression error ξk failing to be normally distributed, the TAMA device produces
a dependable fit. Then, whenever Huxley’s model of simple allometry is consistent in direct scales
assuming linearity in geometrical space, this will entail consistent analysis provided a proper CF form
is chosen. As a result, it can be inferred that regardless of an error structure a log transformation step
in the TAMA approach dos not induce curvature in geometrical space.
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Figure A4. TAMA fit on simulated non-lognormally distributed replicates. Panel (a) displays spread
of vk(i)(ε) replicates about the mean response line λ0(u) = p0 + q0u. Panel (b) comparison of mean
response Eλ0(y

∣∣∣x) and power function yi = β̂xα̂i fitted in direct arithmetical space by means of non-linear

regression to simulated data
(
xi, yk(i)(ξ)

)
. It can be inferred that regardless of an error structure a log

transformation step in the TAMA approach dos not induce curvature in geometrical space.

We analysed performance of a HTSK(y
∣∣∣x) proxy fitted directly in arithmetical space by means of

the dtsk_model_fit.m routine provided in the supplementary files section. For this assay the fuzzy
clustering parameter was set at a value radius = 2. This in both εk and ξk simulations returned an
heterogeneity index of q = 2. Figure A5a,b display resulting. Figure A5c,d display agreeing dynamics
of the κ(x) index. This corroborates that no curvature effects could be expected in geometrical space
for this data. Table A1 presents performance metrics for proxies fitted on data simulated through a
normal error structure. Table A2 pertains to results on data simulated based on a non–normal error
structure. We can learn that HTSK(y

∣∣∣x) seemingly adapts complexity as required by data.

Table A1. Model performance metrics for comparison of proxies by Huxley’s model fitted by direct
non-linear regression (Huxley–DNRL), back transformed TAMA ( Eλ0(y

∣∣∣x) ), direct TSK protocol for
MCA, ( HTSK(y

∣∣∣x) ) identified from data simulated according to normally distributed errors (εk).

Method AIC ρ R2 SEE MPE

Huxley–DNRL −19,102.36 0.9900 0.9802 0.0053 0.6213
Eλ0(y

∣∣∣x) −19,094.22 0.9899 0.9801 0.0053 0.6223
HTSK(y

∣∣∣x) −19,143.73 0.9904 0.9806 0.0053 0.6154
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Table A2. Model performance metrics for comparison of proxies by Huxley’s model fitted by DNLR
(Huxley-DNR back transformed TAMA (B-TAMA), direct TSK protocol for MCA (DTSK-MCA)
identified from data simulated according to non–normally distributed errors (ξk).

Method AIC ρ R2 SEE MPE

Huxley–DNRL −18,599.01 0.9884 0.9770 0.0059 0.6548
Eλ0(y

∣∣∣x) −18,577.52 0.9881 0.9768 0.0059 0.6576
HTSK(y

∣∣∣x) −18,599.14 0.9884 0.9771 0.0059 0.6540
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Figure E5. Direct scales fit of the TSK fuzzy model to simulated data based on Huxley’s formula of 
simple allometry. Panel (a) shows the spread about the Eୌୗ(𝑦|𝑥) mean response fitted on log 
normally distributed replicates. Panel (b) corresponds to the fit performed on non-lognormally 
distributed data. We can be aware of oustanding interpolation capabilities by the TSK approach. Panel 
(c) and (d) present variations of the 𝜅(𝑥) index. No curvature in geometrical space could be expected 
for this data. 
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Figure A5. Direct scales fit of the TSK fuzzy model to simulated data based on Huxley’s formula of
simple allometry. Panel (a) shows the spread about the EHTSK(y

∣∣∣x) mean response fitted on log normally
distributed replicates. Panel (b) corresponds to the fit performed on non-lognormally distributed data.
We can be aware of oustanding interpolation capabilities by the TSK approach. Panel (c) and (d) present
variations of the κ(x) index. No curvature in geometrical space could be expected for this data.
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