Modeling the Effect of Active Modified Atmosphere Packaging on the Microbial Stability and Shelf Life of Gutted Sea Bass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Modified Atmosphere Packaging
2.3. Shelf Life Study
2.4. Data Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Gas Changes
3.2. Microbial Growth during Refrigerated Storage
3.3. Shelf Life Estimation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tsironi, T.; Taoukis, P. Current practice and innovations in fish packaging. J. Aquat. Food Prod. Technol. 2018, 27, 1024–1047. [Google Scholar] [CrossRef]
- Kirtil, E.; Kilercioglu, M.; Oztop, M.H. Modified Atmosphere Packaging of Foods. Ref. Modul. Food Sci. 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Sivertsvik, M.; Jeksrud, W.K.; Rosnes, J.T. A review of modified atmosphere packaging of fish and fishery products-significance of microbial growth, activities and safety. Int. J. Food Sci. Technol. 2002, 37, 107–127. [Google Scholar] [CrossRef]
- Dalgaard, P.; Mejlholm, O.; Christiansesn, T.J.; Huss, H.H. Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products. Lett. Appl. Microbiol. 1997, 24, 373–378. [Google Scholar] [CrossRef]
- Lyhs, U.; Lahtinen, J.; Schelvis-Smit, R. Microbiological quality of maatjes herring in air and under modified atmosphere at 4 and 10 °C. Food Microbiol. 2007, 24, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Özogul, F.; Polat, A.; Özogul, Y. The effects of modified atmosphere packaging and vacuum packaging on chemical, sensory and microbiological changes of sardines (Sardina pilchardus). Food Chem. 2004, 85, 49–57. [Google Scholar] [CrossRef]
- Pantazi, D.; Papavergou, A.; Pournis, N.; Kontominas, M.G.; Savvaidis, I.N. Shelf-life of chilled fresh Mediterranean swordfish (Xiphias gladius) stored under various packaging conditions: Microbiological, biochemical and sensory attributes. Food Microbiol. 2008, 25, 136–143. [Google Scholar] [CrossRef]
- Torrieri, E.; Cavella, S.; Villani, F.; Masi, P. Influence of modified atmosphere packaging on the chilled shelf life of gutted farmed bass (Dicentrarchus labrax). J. Food Eng. 2006, 77, 1078–1086. [Google Scholar] [CrossRef]
- DeWitt, C.A.; Oliveira, A.C. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products. Foods 2016, 5, 48. [Google Scholar] [CrossRef]
- Drosinos, E.H.; Lambropoulou, K.; Mitre, E.; Nychas, G.J.E. Attributes of fresh gilt-head seabream (Sparus aurata) fillets treated with potassium sorbate, sodium gluconate and stored under modified atmosphere at 0 ± 1 °C. J. Appl. Microbiol. 1997, 83, 569–575. [Google Scholar] [CrossRef]
- Stenström, I.J. Microbial flora of cod fillets (Gadus morhua) stored at 2 °C in different mixtures of carbon dioxide and nitrogen/oxygen. J. Food Prot. 1985, 48, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Tsironi, T.; Taoukis, P.S. Modelling microbial spoilage and quality of gilthead seabream fillets: Combined effect of osmotic pretreatment, modified atmosphere packaging and nisin on shelf life. J. Food Sci. 2010, 75, M243–M251. [Google Scholar] [CrossRef] [PubMed]
- Dalgaard, P. Modelling of microbial activity and prediction of shelf life for packed fresh fish. Int. J. Food Microbiol. 1995, 26, 305–317. [Google Scholar] [CrossRef]
- Koutsoumanis, K.P.; Taoukis, P.S.; Drosinos, E.H.; Nychas, G.J.E. Applicability of an Arrhenius model for the combined effect of temperature and CO2 packaging on the spoilage microflora of fish. Appl. Environ. Microbiol. 2000, 66, 3528–3534. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, B.; Hernández, I.; Le Marc, Y.; Pin, C. Modelling the effect of the temperature and carbon dioxide on the growth of spoilage bacteria in packed fish products. Food Control 2013, 29, 429–437. [Google Scholar] [CrossRef]
- Tsironi, T.; Tsevdou, M.; Velliou, E.; Taoukis, P. Modelling the effect of temperature and CO2 on microbial spoilage of chilled gilthead seabream fillets. Acta Hortic. 2008, 802, 345–350. [Google Scholar] [CrossRef]
- Tsironi, T.; Stamatiou, A.; Giannoglou, M.; Velliou, E.; Taoukis, P.S. Predictive modelling and selection of Time Temperature Integrators for monitoring the shelf life of modified atmosphere packed gilthead seabream fillets. Lwt-Food Sci. Technol. 2011, 44, 1156–1163. [Google Scholar] [CrossRef]
- Ashie, I.N.A.; Smith, J.P.; Simpson, B.K. Spoilage and shelf-life extension of fresh fish and shellfish. Crit. Rev. Food Sci. Nutr. 1996, 36, 87–121. [Google Scholar] [CrossRef]
- Hansen, A.A.; Mørkøre, T.; Rudi, K.; Olsen, E.; Eie, T. Quality Changes during Refrigerated Storage of MA-Packaged Prerigor Fillets of Farmed Atlantic Cod (Gadus morhua L.) Using Traditional MAP, CO2 Emitter, and Vacuum. J. Food Sci. 2007, 72, M423–M430. [Google Scholar] [CrossRef]
- Hansen, A.A.; Høy, M.; Pettersen, M.K. Prediction of optimal CO2 emitter capacity developed for modified atmosphere packaging of fresh salmon fillets (Salmo salar L.). Packag. Technol. Sci. 2009, 22, 199–208. [Google Scholar] [CrossRef]
- Hansen, A.A.; Mørkøre, T.; Rudi, K.; Langsrud, Ø.; Eie, T. The combined effect of superchilling and modified atmosphere packaging using CO2 emitter on quality during chilled storage of pre-rigor salmon fillets (Salmo salar). J. Sci. Food Agric. 2009, 89, 1625–1633. [Google Scholar] [CrossRef]
- Hansen, A.A.; Moen, Β.; Rødbotten, Μ.; Berget, Ι.; Pettersen, Μ.Κ. Effect of vacuum or modified atmosphere packaging (MAP) in combination with a CO2 emitter on quality parameters of cod loins (Gadus morhua). Food Packag. Shelf Life 2016, 9, 29–37. [Google Scholar] [CrossRef]
- Yildirim, S.; Rocker, B.; Kvalvag Pettersen, M.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef]
- Smolander, M. Freshness indicators and food packaging. In Smart Packaging Technologies for Fast Moving Consumer Goods; Kerry, J., Butler, P., Eds.; John Wiley and Sons Ltd.: West Sussex, UK, 2008; pp. 111–127. ISBN 978-0-470-02802-5. [Google Scholar]
- Baranyi, J.; Roberts, T.A. Mathematics of predictive food microbiology. Int. J. Food Microbiol. 1995, 26, 199–218. [Google Scholar] [CrossRef]
- Taoukis, P.S.; Labuza, T.P.; Saguy, I.S. Kinetics of food deterioration and shelf-life prediction. In Handbook of Food Engineering Practice; Valentas, K.J., Rotstein, E., Singh, R.P., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 361–403. ISBN 9780849386947. [Google Scholar]
- Papadopoulos, V.; Chouliara, I.; Badeka, A.; Savvaidis, I.N.; Kontominas, M.G. Effect of gutting on microbiological, chemical and sensory properties of aquacultured sea bass (Dicentrarchus labrax) stored in ice. Food Microbiol. 2003, 20, 411–420. [Google Scholar] [CrossRef]
- Banks, H.; Nickelson, R., II; Finne, G. Shelf-life studies on carbon dioxide packaged finfish from the gulf of Mexico. J. Food Sci. 1980, 45, 157–162. [Google Scholar] [CrossRef]
- Turan, H.; Kocatepe, D. Different MAP Conditions to Improve the Shelf Life of Sea Bass. Food Sci. Biotechnol. 2013, 22, 1589–1599. [Google Scholar] [CrossRef]
- Paleologos, E.K.; Savvaidis, I.N.; Kontominas, M.G. Biogenic amines formation and its relation to microbiological and sensory attributes in ice-stored whole, gutted and filleted Mediterranean sea bass (Dicentrarchus labrax). Food Microbiol. 2004, 21, 549–557. [Google Scholar] [CrossRef]
- Erkan, N.; Özden, Ö. Gutted and un-gutted Sea Bass (Dicentrarchus labrax) stored in ice: Influence on fish quality and shelf-life. Int. J. Food Prop. 2006, 9, 331–345. [Google Scholar] [CrossRef]
- Ceylan, Z.; Şengör, G.F.Ü.; Yilmaz, M.T. Nanoencapsulation of liquid smoke/thymol combination in chitosan nonaofibers to delay microbiological spoilage of sea bass (Dicentrarchus labrax) fillets. J. Food Eng. 2018, 229, 43–49. [Google Scholar] [CrossRef]
- Gram, L.; Dalgaard, P. Fish spoilage bacteria—Problems and solutions. Curr. Opin. Biotechnol. 2002, 13, 262–266. [Google Scholar] [CrossRef]
- ICMSF. International commission on microbiological specifications for foods, sampling plans for fish and shellfish. In ICMSF, Microorganisms in Foods, Sampling for Microbiological Analysis: Principles and Scientific Applications, 2nd ed.; University of Toronto Press: Toronto, ON, Canada, 1986; pp. 181–196. [Google Scholar]
- Macé, S.; Cornet, J.; Chevalier, F.; Cardinal, M.; Pilet, M.-F.; Dousset, X.; Joffraud, J.-J. Characterisation of the spoilage microbiota in raw salmon (Salmo salar) steaks stored under vacuum or modified atmosphere packaging combining conventional methods and PCR-TTGE. Food Microbiol. 2012, 30, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjerkeng, B.; Sivertsvik, M.; Rosnes, J.T.; Bergslien, H. Reducing package deformation and increasing filling degree in packages of cod fillets in CO2 enriched atmospheres by adding sodium carbonate and citric acid to an exudate absorber. In Foods and Packaging Materials-Chemical Interactions; Ackermann, P., Jagerstad, M., Ohlsson, T., Eds.; The Royal Society of Chemistry: Cambridge, UK, 1995; pp. 222–227. [Google Scholar]
- EFSA. EFSA CEF panel (EFSA panel on food contact materials, enzymes, flavourings and processing aids), scientific opinion on the safety assessment of the active substances citric acid and sodium hydrogen carbonate for use in active food contact materials. EFSA J. 2016, 14, 4529. [Google Scholar] [CrossRef]
- Ahmed, I.; Lin, H.; Zou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.R.; Lv, L.A. comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Biji, K.B.; Ravishankar, C.N.; Mohan, C.O.; Srinivasa Gopal, T.K. Smart packaging systems for food applications: A review. J. Food Sci. Technol. 2015, 52, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
- Sivertsvik, M. Active packaging in practice: Fish. In Novel Food Packaging Techniques; Ahvenainen, R., Ed.; Novel Food Packaging Techniques; Woodhead Publishing: Cambridge, UK, 2003; pp. 384–400. [Google Scholar]
- Tsironi, T.; Maltezou, I.; Tsevdou, M.; Katsaros, G.; Taoukis, P.S. High pressure cold pasteurization of gilthead seabream fillets: Selection of process conditions and validation of shelf-life extension. Food Bioprocess Technol. 2015, 8, 681–690. [Google Scholar] [CrossRef]
- Tsironi, T.; Anjos, L.; Pinto, P.I.S.; Dimopoulos, G.; Santos, S.; Santa, C.; Manadas, B.; Canario, A.; Taoukis, P.; Power, D. High pressure processing of European sea bass (Dicentrarchus labrax) fillets and tools for flesh quality and shelf life monitoring. J. Food Eng. 2019, 262, 83–91. [Google Scholar] [CrossRef]
- Bondoc, I. The Veterinary Sanitary Control of Fish and Fisheries Products. In Control of Products and Food of Animal Origin (Controlul Produselor și Alimentelor de Origine Animală–Original Title); Ion Ionescu de la Brad Iași Publishing: Iași, Romania, 2014; Volume 1, pp. 264–346. ISBN 978-973-147-139-6. [Google Scholar]
- FDA. Fish and Fishery Products Hazards and Controls Guidance, 4th ed.; Florida Sea Grant: Gainesville, FL, USA, 2019. [Google Scholar]
- Cooksey, K. Modified Atmosphere Packaging of Meat, Poultry and Fish. In Food Science and Technology, Innovations in Food Packaging, 2nd ed.; Han, J.H., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 475–493. [Google Scholar]
- Galstyan, V.; Bhandari, M.P.; Sberveglieri, V.; Sberveglieri, G.; Comini, E. Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
Storage Temperature | 0 °C | 5 °C | 10 °C |
---|---|---|---|
Total viable count | |||
MAP | |||
Growth rate, k (in d−1) | 0.175 ± 0.010 a | 0.337 ± 0.028 a | 0.496 ± 0.027 a |
Lag phase, λ (in d) | 3.14 ± 0.63 | 1.83 ± 0.72 | 0.41 ± 0.27 |
R2 fit | 0.991 | 0.982 | 0.995 |
ACT-MAP | |||
Growth rate, k (in d−1) | 0.138 ± 0.017 b | 0.277 ± 0.016 b | 0.308 ± 0.041 b |
Lag phase, λ (in d) | 10.6 ± 0.58 | 6.73 ± 0.41 | 1.04 ± 1.05 |
R2 fit | 0.996 | 0.999 | 0.949 |
Pseudomonas spp. | |||
MAP | |||
Growth rate, k (in d−1) | 0.165 ± 0.005 a | 0.347 ± 0.029 a | 0.345 ± 0.142 a |
Lag phase, λ (in d) | 1.98 ± 0.56 | - | - |
R2 fit | 0.999 | 0.990 | 0.950 |
ACT-MAP | |||
Growth rate, k (in d−1) | 0.108 ± 0.027 b | 0.129 ± 0.006 b | 0.191 ± 0.012 b |
Lag phase, λ (in d) | 8.05 ± 2.49 | - | - |
R2 fit | 0.949 | 0.994 | 0.987 |
Enterobacteriaceae spp. | |||
MAP | |||
Growth rate, k (in d−1) | 0.245 ± 0.093 a | 0.339 ± 0.103 a | 0.625 ± 0.069 a |
Lag phase, λ (in d) | - | - | - |
R2 fit | 0.952 | 0.922 | 0.963 |
ACT-MAP | |||
Growth rate, k (in d−1) | 0.204 ± 0.017 a | 0.292 ± 0.019 a | 0.378 ± 0.063 b |
Lag phase, λ (in d) | - | - | - |
R2 fit | 0.993 | 0.990 | 0.899 |
Arrhenius Model Parameters for the Microbial Growth Rate | Arrhenius Model Parameters for the Lag Phase | |
---|---|---|
Total viable count | ||
MAP | ||
Ea,k (kJ mol−1) | 67.2 | 213.4 |
kref (d−1) | 0.279 | 1.05 |
R2 | 0.981 | 0.990 |
ACT-MAP | ||
Ea,k (kJ mol−1) | 51.8 | 148.9 |
kref (d−1) | 0.211 | 1.66 |
R2 | 0.855 | 0.885 |
Pseudomonas spp. | ||
MAP | - | |
Ea,k (kJ mol−1) | 47.8 | |
kref (d−1) | 0.252 | |
R2 | 0.754 | |
ACT-MAP | - | |
Ea,k (kJ mol−1) | 36.7 | |
kref (d−1) | 0.131 | |
R2 | 0.951 | |
Enterobacteriaceae spp. | ||
MAP | - | |
Ea,k (kJ mol−1) | 60.0 | |
kref (d−1) | 0.342 | |
R2 | 0.966 | |
ACT-MAP | - | |
Ea,k (kJ mol−1) | 39.7 | |
kref (d−1) | 0.266 | |
R2 | 0.993 |
Shelf Life (d) | |||
---|---|---|---|
Storage temperature | 0 °C | 5 °C | 10 °C |
MAP | 18 | 10 | 6 |
ACT-MAP | 22 | 17 | 10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsironi, T.; Ntzimani, A.; Gogou, E.; Tsevdou, M.; Semenoglou, I.; Dermesonlouoglou, E.; Taoukis, P. Modeling the Effect of Active Modified Atmosphere Packaging on the Microbial Stability and Shelf Life of Gutted Sea Bass. Appl. Sci. 2019, 9, 5019. https://doi.org/10.3390/app9235019
Tsironi T, Ntzimani A, Gogou E, Tsevdou M, Semenoglou I, Dermesonlouoglou E, Taoukis P. Modeling the Effect of Active Modified Atmosphere Packaging on the Microbial Stability and Shelf Life of Gutted Sea Bass. Applied Sciences. 2019; 9(23):5019. https://doi.org/10.3390/app9235019
Chicago/Turabian StyleTsironi, Theofania, Athina Ntzimani, Eleni Gogou, Maria Tsevdou, Ioanna Semenoglou, Efimia Dermesonlouoglou, and Petros Taoukis. 2019. "Modeling the Effect of Active Modified Atmosphere Packaging on the Microbial Stability and Shelf Life of Gutted Sea Bass" Applied Sciences 9, no. 23: 5019. https://doi.org/10.3390/app9235019
APA StyleTsironi, T., Ntzimani, A., Gogou, E., Tsevdou, M., Semenoglou, I., Dermesonlouoglou, E., & Taoukis, P. (2019). Modeling the Effect of Active Modified Atmosphere Packaging on the Microbial Stability and Shelf Life of Gutted Sea Bass. Applied Sciences, 9(23), 5019. https://doi.org/10.3390/app9235019