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Abstract: In this work, we aim to re-rank the n-best hypotheses of an automatic speech recognition
system by punishing the sentences which have words that are semantically different from the context
and rewarding the sentences where all words are in semantical harmony. To achieve this, we proposed
a topic similarity score that measures the difference between topic distribution of words and the
corresponding sentence. We also proposed another word-discourse score that quantifies the likeliness
for a word to appear in the sentence by the inner production of word vector and discourse vector.
Besides, we used the latent semantic marginal and a variation of log bi-linear model to get the sentence
coordination score. In addition we introduce a fallibility weight, which assists the computation of the
sentence semantically coordination score by instructing the model to pay more attention to the words
that appear less in the hypotheses list and we show how to use the scores and the fallibility weight in
hypotheses rescoring. None of the rescoring methods need extra parameters other than the semantic
models. Experiments conducted on the Wall Street Journal corpus show that, by using the proposed
word-discourse score on 50-dimension word embedding, we can achieve 0.29% and 0.51% absolute
word error rate (WER) reductions on the two testsets.

Keywords: automatic speech recognition (ASR); semantic model; topic model; continuous word
representation

1. Introduction

Language modeling, which learns the probability distribution of a given word and captures the
extent to which a sequence of words can be considered well formed, is an important part of automatic
speech recognition (ASR) tasks. It provides a context to distinguish between words and phrases
that are pronounced in a similar way. This is because n-gram language models use the assumption
that the probability of the i-th word wi given the context history of the preceding i− 1 words can be
approximated by the probability of observing it in the context history of the preceding n− 1 words.
Generally, n-gram language models are used in the first-pass decoding process in ASR tasks as only a
small number of historical words are needed. Along with the 1-best hypotheses, which could be the
final outputs of the system, lattices and n-bests hypotheses can be generated by the first pass decoding
process. Other language models like neural network language models are usually used to rescore
lattices or n-best hypotheses [1,2].

Here is an example of some of the hypotheses of the utterance named “446c040q” of a Wall Street
Journal (WSJ) dataset:
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• 446c040q-1 THERE ARE INDICATIONS THAT SALES ARE SLOWING DOWN BUT CONSUMER
CREDIT SEARCH UPWARD IN DECEMBER

• 446c040q-2 THERE ARE INDICATIONS THAT SALES ARE SLOWING DOWN BUT CONSUMER
CREDIT SURGED UPWARD IN DECEMBER

• 446c040q-3 THERE ARE INDICATIONS THAT SALES ARE SLOWING DOWN BUT CONSUMER
CREDIT SIR <UNK> UPWARD IN DECEMBER

Even without listening to the original speech, people who can speak English and have common
knowledge can easily point out that the second hypothesis is the most possible one as the word “surge”
fits the topic of the sentence more and only with “surge” does the sentence make sense.

Inspired by this, we propose to use a score to measure whether a word is abrupt in the context
according to semantic information, and use the score to rescore the hypotheses to promote the
performance of ASR systems.

Most of the work of using semantic features is based on neural network language models.
Neural network language models can often offer excellent results, but they have a severe requirement
of machine and time for training, especially when the training set or vocabulary set is very large.
In addition, neural language models lack flexibility. A small modification on the vocabulary list could
lead to retraining the whole network. Thus, in this work, we offer a different option by using the
semantic features without neural networks.

Our task has some similarity with ASR error detection. ASR error detection focuses on distinguishing
whether the words in ASR results are wrong by using both decoder based and non-decoder based
features. The methods are usually tested on the classification error rate of classifying words to
right and wrong classes. Generally speaking, the 1-best hypothesis (hypothesis with the highest
score of the corresponding utterance) is not always the hypothesis which leads to the lowest WERs.
Therefore, an effective hypotheses selection can be of great help. Thus, in this work we do not focus
on differentiating whether a certain word is right or wrong, but propose a score to evaluate on what
degree the word is appropriate in the hypothesis sentence by semantic features. In this work, we use
the latent semantic marginal (LSM) [3] and a variation of log bi-linear language model [4] to form a
sentence coordination score. In addition to that, we propose a word-sentence topic similarity score
and a word-discourse probability score based on the theory of Arora’s text generation hypotheses [5].
All the four scores are designed to be light-weight, i.e., they do not need parameters other than topic
models or word embedding models. We use the four scores in the n-best rescoring process and show
the effectiveness of each score on improving ASR systems.

As shown by the previous example, there are many common words in hypotheses lists.
Moreover, it is obvious that if a word appears at similar positions in all the hypotheses, whether
this word is the correct word does not change the result of the rescoring process. We should focus
more on the words that have more candidates. Thus, we first align the hypotheses to group the words
in different hypotheses which are the recognized results for the same time period. Then we introduce
a fallibility weight, which assists the computation of the sentence’s semantic coordination scores by
instructing the model to pay more attention to the words that may have more possible choice.

The structure of this paper is as follows: In Section 2, we introduce some related works.
In Section 3, we introduce the topic model and word embeddings which are the semantic features
we use in this research. In Section 4, we present our rescoring method. We first introduce the four
sentence scores. Then we describe the fallibility weight of words. Finally we introduce how we use the
sentence scores in the ASR systems. We present experiments in Section 5 to validate our method and
discuss some of the parameters in the method. Section 6 presents the conclusion.

2. Related Works

Topic information as a kind of semantic information has been used in language models in many
works. Chu and Mangu performed a hard partitioning of the data according to the topics and built a set
of disjoint models to depict data of different topics respectively [6]. Jin et al. [7] mapped each paragraph
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into a unique vector in continuous space and performed unsupervised clustering to construct topic
clusters and then built several topic-specific language models like [6]. Lau et al. [8] proposed a neural
language model that incorporates document context in the form of a topic model-like architecture to
provide a succinct representation of the broader document context outside of the current sentence.
Latent Dirichlet allocation (LDA) [9] is the most popular topic modelling algorithm because it is less
prone to overfitting and it can be used to compute the probability of an unobserved document [3].
Mikolov et al. proposed using topic information from LDA as an external feature in recurrent neural
network language models [10]. LDA has been used in language model adaption in [3,11–13]. It has
also been used to divide a training set into clusters by the topic distribution in [14,15].

There is an hypotheses generator to forecast air traffic control voice commands taking into account
context knowledge [16]. However, this concentrates more on a semantic error rate than on a word error
rate. The hypotheses generation for air traffic control can also be improved by machine learning [17].

Word embedding [18–20] projects each word to a vector in a continuous vector space, by making
words with similar context closer in the space. Many works have analyzed the result or the word
vectors by experiments on polysemy or studies on the similarity of nearby words or sentences [5,21,22].
Most works using word embedding in rescoring n-best also build on the work of neural network
language models. Audhkhasi et al. [23] used word embedding as inputs in his proposed feedforward
neural network language models’ architecture. Besides adding word embedding to the hidden layer,
character embeddings are additionally added to the hidden layer and output later in a Chinese speech
recognition task in by He and Xiang et al. [24].

3. Topic Model and Word Embeddings

In this section, we introduce the topic model and word semantic vector model that are used in the
method we propose.

3.1. Latent Dirichlet Allocation for Topic Modelling

Latent Dirichlet Allocation (LDA) [9] is a text generation model which has a hierarchy structure
of document, topic and word. For a document, the generation process can be described as follows:

• Sample the length N of the document from Poisson distribution: N ∼ Poission(ξ).
• Sample a multinomial distribution over topics for document i from a Dirichlet distribution

parameterized by α: Θi ∼ Dir(α).
• For the j-th word in the document, sample the topic of this word, zi,j, from Θi, zi,j ∼

Multinomial(Θi) and then sample the word wi,j from the unigram distribution given the topic:
wi,j ∼ p(wi,j|zi,j, β).

The key parameter α controls the sharpness of probability distribution over topics when choosing
topics for a document. When α = 1, the topic is uniformly picked. When α > 1, the probabilities
of more uniformed ones are given with larger probabilities. When α is < 1, the probability tends
to peaked distributions over the topic. Our experiment uses the LDA implementation by Blei et al.
(https://github.com/blei-lab/lda-c).

When given the training data, topic number and the initial α, the algorithm learns the best value
of α, the word generation probability of topic β and the topic distribution γ for the training documents
by iteration. There is also an inference program in the LDA tool kit to tell the topic distribution γ for
the given document from the model learned by the training procedure.

3.2. Word Embedding

Word embeddings are distributed representations of words in a vector space, which help learning
algorithms to achieve better performance in natural language processing tasks by grouping similar
words. Many different approaches have been investigated to generate the word embeddings of word
given some training text. In this paper, we use the widely used GloVe algorithm [20] to generate word

https://github.com/blei-lab/lda-c
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embeddings. GloVe is based on the co-occurrences of words in a window. Let X be the word-word
co-occurrence matrix, of which entry xi,j denote the count of i-th and j-th word co-occurrence in a
window. Let xi = ∑j xi,j denote the number of times any word appears in the context of the i-th word.

The GloVe can be regarded as a weighted least square regression with the cost function as follows:

J =
V

∑
i,j=1

f (Xi,j)(wT
i w̃j + bi + b̃j − logXi,j)

2, (1)

where V is the size of vocabulary, w ∈ Rd and w̃ ∈ Rd are word vectors, b and b̃ are biases. As X is
symmetric, W and W̃ are equivalent and differ only as a result of their random initializations. The sum
W + W̃ is the final output of the algorithm.

The weighted function should have the following properties:

1. f (0) = 0. If f is viewed as a continuous function, it should obey that limx→0 f (x)log2x is finite.
2. f (x) should be non-decreasing in case that rare co-occurrences are overweighted.
3. f (x) should be relatively small for large value of x, in case that frequent co-occurrences

are overweighted.

In practice, f (x) are usually chosen as follows:

f (x) =

{
(x/xmax)α, x > xmax

1, otherwise
(2)

Figure 1 shows the model architecture of GloVe. The input is a one-hot representation of a word.
The word embedding matrices serve as weight matrices in the model and thus the output of the model
is a vector of inner products of word vectors. The embedding matrices are updated by the gradient of
the loss function introduced before in this section.

Figure 1. The model architecture of GloVe. The input is a one-hot representation of a word. The word
embedding matrices serve as weight matrices in the model and thus the output of the model is a vector
of inner products of word vectors.

The text generation process is modelled as a random walk in the word vector space by
Hashimoto et al. [22]. Given that the last word produced was w, the probability that the next word is
w′ is assumed to be given by h(|vw − vw′ |2) for a suitable h. Arora et al. [5,21] further proposed a latent
discourse vector in the random walk model, which has a clear semantic interpretation and has been
proven useful in subsequent work, e.g., in their work of understanding structure of word embeddings
for polysemous words.
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In their model, the text generation process is driven by the discourse vector ct ∈ Rd, which is a
vector to express what is being talked about. Each word has a continuous representation wt ∈ Rd and
the probability of a word is emitted at time t given the discourse vector is modelled with a log-linear
word production model by Arora [21]

P[w emitted at time t|ct] ∝ exp(cT
t wt). (3)

The discourse vector ct does a slow random walk, and ct+1 can be obtained by adding a small
random vector from ct. Therefore, nearby words are generated under similar discourse.

With the assumption that the discourse vector ct does not change much when modelling the word
emitting procedure, it can be simplified to replace all the ct’s in the sentence s with a sentence discourse
cs. It was shown in the paper of Arora et al. [5,21] that the maximum a posteriori estimation of cs is the
average of word embeddings for all the words in the sentence. So, the word emitting probability can
be writen as follows:

P[w emitted at time t|cs] ∝ exp(cT
s wt), (4)

cs =
1
|S|

|S|

∑
i=1

wsi . (5)

4. N-Best Rescoring with Coordination Scores

In this section, we first introduce the scores, which are used for evaluating how much is the
sentence coordinate in topic or semantic. And then we introduce how we use the coordination scores
to rerank the n-best hypothesis.

4.1. Sentence Coordination Scores

4.1.1. Sentence Probability Score Using LDA

To discriminate whether a word is suitable in a document, we could use the probability of a word
given the topic estimation of the document. The probability can be computed by a weighted average
of the probability of this word given each topic, for which the weight is the topic distribution of the
document, i.e.,

P(wi|s) =
|T|

∑
j=1

P(wi|zj)P(zj|s), (6)

where |T| is the hyper-parameter of topic numbers in the LDA model training progress, and zj represent
the j-th topic. We use the item in Row i Column j of the β matrix for P(wi|zj) calculated by the LDA tool
kit mentioned in the previous section and the corresponding row in γ for the hypothesis sentence s by
the infer procedure in the tool kit for P(zj|s). In re-ranking tasks, we regard the hypothesis sentences
as the given document.

This probability is regarded as LSM [3] and it is used to measure the coordination of a sentence
for the first time here.

The probability of a word sequence, which is regarded as a bag-of-word (BOW) in this word,
given the sentence topic distribution of a sentence is the product of the probabilities for each words in
the sentence given the sentence topic distribution when simplified that the words are independent.
It can be written as:

P(w1, . . . , w|L||s) =
L

∏
i=1

P(wi|s) =
L

∏
i=1

[
|T|

∑
j=1

P(wi|zj)P(zj|s)]. (7)
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where L is the length of the document, namely the hypothesis sentence. We use the logarithm of the
word sequence probability as the sentence coordination score:

Scores = logP(w1, . . . , w|S||s). (8)

4.1.2. Topic Similarity Score Using LDA

To discriminate the mistakenly recognized word that differs in the topic with the sentence s,
we use the cosine similarity to measure word-sentence topic bias:

cwi =
< P(z|wi), P(z|s) >
|P(z|wi)||P(z|s)|

=
∑
|T|
k=1 P(zk|wi)P(zk|s)√

∑
|T|
k=1 P(zk|wi)2

√
∑
|T|
k=1 P(zk|s)2

(9)

where P(z|wi) and P(z|s) are both |T|-dimensional vectors, which are the topic distributions of wi
and sentence s respectively. Provided that in LDA algorithm, all the topics are equally modelled in
the training process (P(zj) = 1/|T|, for all j), the probability of topic distribution given word can be
normalized by the word probability distribution of each topic:

P(zj|wi) =
P(wi|zj)P(zj)

∑
|T|
k=1 P(wi|zk)P(zk)

(10)

=
P(wi|zj)

∑
|T|
k=1 P(wi|zk)

, (11)

Thus the topic probability given word can be calculated by column normalization of the β matrix
from the LDA pre-training model.

The range of cosine similarity is [−1, 1], where the value close to 1 means that the topic of the
word is very similar to the sentence, and in contrast the value near −1 means that the topic of the word
is nearly the opposite to the sentence.

We calculate the sentence topic similarity score by simply adding the word similarities:

Scores =
|S|

∑
i=1

cwi (12)

4.1.3. Word-Pair Probability Score Using Word Embedding

Let pi,j be the probability that word j appear in the context of word i. It is apparent that pi,j =

xi,j/xi. And according to the last section, the logarithm of xi,j can be approximate to wT
i wj. Thus, pi,j

can be calculated as follows:

pi,j =
xi,j

xi
=

exp(wT
i wj)

∑V
k=1 exp(wT

i wk)
= so f tmax(WTwi)j, (13)

where W = [w1, w2, . . . , wV ] and (•)j refer to the j-th element of (•). The calculation can be further
modified by γ to control the shape of the probability distribution as follows:

pi,j =
xi,j

xi
=

exp(γwT
i wj)

∑V
k=1 exp(γwT

i wk)
= so f tmax(γWTwi)j, (14)

γ is the smoothing factor, which can be regarded as a stretch of all word vectors. γ controls the
shape of the probability distribution. When γ > 1, the probability distribution will be sharpen and
when γ < 1, the distribution will be flatten.
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The word pair probability is similar to the log bi-linear (LBL) language model [4]. It can be
regarded as a bi-gram language model which is smoothed by the inner product of the continuous
expression for the rare word-pairs. To avoid repetitive computation and accelerate the calculation,
we can pre-compute and store all xi. By pre-computing, the probability of a word pair can be calculated
in O(d) time. d is the length of word vector.

Usually, the context of a word is defined by the previous two words and the preceding two words
of the current word. We use this setting for both word embedding training and word-pair probability
prediction. We use the average of conditional probabilities of the current word given words in the
context of the current word. The probability can be expressed as follows:

pi =
pi−2,i + pi−1,i + pi+1,i + pi+2,i

k
(15)

when i− 2 or i− 1 is less than 0, or i + 1, i + 2 is larger than the length of the sentence, we use zero
as the word-pair probability. And k is the number of non-zero probabilities of the 4 items. The word
probability score for the i-th word is the logarithm of pi.

We used a window with exponential weights to emphasize the words near the current word and
weaken the effect of words further to the current word. But the result is at a similar level to that of the
noncentral rectangular window.

4.1.4. Word-Discourse Probability Score Using Word Embedding

As explained in the second section, the probability of a word given a sentence is proportional to
the exponent of the inner product of the word embedding of the word and the discourse vector, which
can be simplified as the average of word embeddings of all the words in the sentence. The probability
of the t-th word in sentence s is calculated as follows:

p(wt|s) =
exp(vT

t cs)

∑V
k=1 exp(wT

k cs)
= so f tmax(WTcs)wt , (16)

where wt is the word embedding of the t-th word in sentence s, V is the size of vocabulary. cs is
the discourse vector introduced in the previous section. As all words in the same sentence share
the same discourse vector, we firstly compute cs when we begin to process the sentence. Therefore,
the computation of word-discourse probability score is more time-consuming than the word-pair
probability score. Similar to the topic similarity score using LDA, the sentence word-discourse probability
score is the sum of the logarithms of word-discourse probabilities for all the words in the sentence.

4.2. Fallibility of Word for ASR Hypothesis

The n-best hypothesis of ASR result has a trait that given any two hypothesis for the same
utterance, the mass of the hypothesis pairs have only a few words that are different, which can be
instantiated by the example in the introduction.

To rerank the hypothesis of the ASR result, we tend to focus on the different words in the
hypotheses and ignore the words that exists in every hypothesis. Motivated by this, we introduce the
notion of fallibility of word to the rescoring progress to magnify the influence of the words that exists
less in similar places in the hypothesis list.

We first align all the hypothesis pairs for each utterance. For each word in a hypothesis, we collect
all the words that correspond to the required word in the aligning results in a set. (Each time the
required word aligned with blank, we regard blank as a unique word.) The fallibility of a word in a
hypothesis is defined by the number of unique words (namely number of types) for the words that are
different from the required word in the set. For example, the fallibility weight for the word “surged” in
hypothesis 446c040q-2 (presented in the introduction) is 2 as word “search” and “sir” both correspond
to and different from “surged”. Figure 2 is an example to show how to compute the fallibility.
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Figure 2. An example of the fallibility.

The aligning operation can be implemented by the minimum edit distance algorithm [25]. We use
F(m, n) to denote the minimum edit distance for the first m words and first n words for the two
sentences, S1 and S2. F(m, n) is computed by F(m− 1, n), F(m, n− 1) or F(m− 1, n− 1), each of which
represent a way of tagging the present word S1(m) and word S2(n):

F(m, n) = min


F(m− 1, n) + 1

F(m, n− 1) + 1

F(m− 1, n− 1) +

{
0, i f S1(m) = S2(n)

1, i f S1(m) 6= S2(n)

, F(0, n) = n, F(m, 0) = m. (17)

F(|S1|, |S2|) is the final minimum edit distance of the two sentences. We can keep the path by
which F item F(m, n) is computed and tag each word to distinguish the word to be correct or error.

Figure 3 is an example of the minimum edit distance algorithm. In this example we align the
word “monkey” and the word “money” by character. The left table is the F matrix and the bottom
right element is the final edit distance for the two words. The right matrix stores the path. For the
(i, j)-th element, “0”, “1” and “2” mean that F(i, j) is assigned by F(m− 1, n) + 1, F(m, n− 1) + 1 and
F(m − 1, n − 1) + 0/1 respectively. From the path matrix, we can label words in hypotheses with
“correct”, “substitute” and “insert” tags. For example, if the vertical words refer to the reference and
the horizontal words refer to hypothesis, “1” means that the corresponding word in hypothesis is of
“insert” tag, and “2” means that the word is of “correct” tag or “substitute” tag, which depends on
whether the corresponding words are different. We could not give a word “delete” tag in hypothesis,
because the “deleted” word is not in the hypothesis.

To emphasize the fallible words, we multiply the word score with the word fallibility score when
computing the sentence score.

Figure 3. An example of the minimum edit distance algorithm. The left sub-figure show the F matrix,
which is the minimum edit distance for the sub-sentences. The right sub-figure shows the path matrix,
from which we can get the alignment.
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4.3. n-Best Rescoring for ASR

Hypotheses of ASR are ranked by the sum of acoustic model score (ScoreAM) and language model
score (ScoreLM), which are the logarithms of the state probability and word sequence probability
respectively:

Score(s) = ScoreAM(s) + λScoreLM(s) (18)

We interpolate the score of the base language model and the similarity or probability score
proposed in last subsection by α to get the new language model score:

Score(s) = ScoreAM(s) + λ[αScoreLM(s) + (1− α) · k · Scoreproposed(s)] (19)

where k is a normalizer as the scale of Scoreproposed might differ greatly with that of ScoreLM especially
for the scores with fallibility weights. We use the proportion between the median of Scoreproposed and
ScoreLM for k at first and change the value of it to get the best result.

5. Experiments

5.1. Experimental Setup

In this study the proposed rescoring method is carried out on the WSJ speech recognition task
(https://catalog.ldc.upenn.edu/docs/LDC94S13A/wsj1.txt). The dataset contains an 80-hour training
set and a text corpus which has 37M tokens, and 162K words for language modeling. We use Kaldi [26]
for acoustic model training and decoding. The acoustic model is a time-delay neural network (TDNN)
with 6 layers, each layer with 250 hidden units. The acoustic model trained by the cross-entropy
(CE) loss. The first-pass decode uses a 3-gram language model with Kneser-Ney (K-N) smoothing
by srilm [27]. The large text corpus is used for n-gram and the small RNN language models and the
training of the semantic models for LDA and GloVe. In this study, dev93 and eval92 are used equally
to evaluate the proposed methods.

The number of hypotheses used for re-ranking is 100 for both eval92 and dev93. We follow the
kaldi’s recipe to enumerate from 9 to 20 to find the best λ in Equation (19). The best choice for eval92
is 13. Both 12 and 13 yield the best results for dev93. We use 13 for both testsets in rescoring.

5.2. LDA-Based Rescoring

In this section, we use LDA-based scores to re-rank hypotheses.
The average scores of hypotheses at different ranks are in Figure 4. The upper sub-figures show

the average logarithms of sentence probability and the ones at the bottom are the averages of topic
similarity. “LDAprob” refer to the LDA sentence probability score, and “LDAtopsim” refer to the
topic similarity score in this table. The tendency of the curves shows that the hypotheses ranked at the
front are of higher scores than those ranked at the back for all sub-figures. Given the assumption that
generally hypotheses ranked in front are of better quality, the curves could reflect this to some extent.
The average scores with fallibility are in the right two sub-figures.

We aligned all the hypotheses in both testsets with references and tag words in hypotheses with
‘correct’, ‘substitute’ and ‘insert’ by the aligning algorithm described in Section 3.2. Deletion error
cannot be reported in hypotheses, so we do not have a ‘delete’ tag. Figure 5 shows the distribution of
the two word scores for words with ‘correct’, ‘substitute’ and ‘insert’ tags respectively. The sub-figures
on the top are those of word probability score, and the bottom ones are of topic similarity score.
The statistic of the averaged score for words with ‘correct’ ‘substitute’ and ‘insert’ tags is listed in
Table 1. As shown in the table, for both score-types, the average score of the ‘correct’ tags are the
highest and the average of ‘insert’ words are much lower than ‘correct’ and ‘substitute’. This shows
that the two scores can discriminate the wrong words in the hypotheses to a certain extent.

https://catalog.ldc.upenn.edu/docs/LDC94S13A/wsj1.txt
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Figure 4. The average score of Latent Dirichlet allocation (LDA)-based methods for hypotheses.
The horizontal axis, ranging from 1 to 100, represents the rank of hypotheses by the 1-pass decoding
process. The vertical axis represents the average score of the hypotheses at the corresponding rank.

Figure 5. Distribution function of LDA based scores for words with “c”, “s” and “i” tags.
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Table 1. The average scores for words with “c”, “s” and “i” tags for Dev93 and Eval92 testsets.

Score-Type Dev93-c Dev93-s Dev93-i Eval92-c Eval92-s Eval92-i

word probability −15.16 −15.20 −16.08 −14.68 −14.68 −15.68
topic similarity −0.35 −0.40 −0.36 −0.34 −0.40 −0.36

The word error rate (WER) of the new best hypothesis sentences rescored by LDA-based scores
are listed in Table 2. “Baseline” here means the WER of the original recognition system, where
corresponds to Equation (18). As mentioned before, the word-pair probability score can be regarded as
the smoothed 2-gram language model. So we list the result of the 2-gram language model, which is
trained by SriLM on the large text corpus. “smallRNN” here refer to a 2-layer RNN with 100 hidden
units each layer. In this experiment, α described in Equation (19) is around 0.95 and k is 1 for LDAprob
without fallibility weight and 0.03 with fallibility. And α is 25 and 1.5 for LDAtopsim without fallibility
and with fallibility respectively. The best result of LDAprob without fallibility weight for Dev93 and
Eval92 testset are 9.38% and 6.59% respectively, and are comparable to a small scale RNN. The best
result of LDAtopsim for Dev93 and Eval92 testset without fallibility are 9.45% and 6.70% respectively,
both of which are higher than the LDAprob score. From the table, we notice that the number of
topics, which is a hyperparameter in the topic model, has a strong effect on WER. For LDAprob
score, 20 and 30 is a better choice for Dev93, while a topic model with only 10 topics leads to the best
result for Eval92. With respect to LDAtopsim, the best choices for the both testsets are 10. We have
conducted experiments on topic models of larger number of topics, and find that when n is more than
30, the result is worse as n increases. That is probably because that when n is large, the difference
between topics is small. Moreover, for actual speech, if topics are similar, it is easy to transfer between
topics. Thus, the larger topic model may reduce the score of correct words together with the incorrect
words, and decrease the difference between correct and incorrect words. The fallibility weight reduces
WER for all the features. For a topic similarity score with 40-dimension LDA, the fallibility weight
reduces WER at 0.16% and 0.21% absolutely for the two testsets respectively from the same feature
without fallibility weight. In addition, with fallibility, the rescoring results are less sensitive to the
hyperparameter of a number of topics.

Table 2. Word error rate (WER) results of rescoring by LDA sentence probability score.

Score-Type #Topics Fallibility Dev93 WER Eval92 WER

baseline - - 9.58 6.98
2gram - - 9.57 6.88

smallRNN - - 9.44 6.57
LDAprob 10 no 9.44 6.59
LDAprob 10 yes 9.35 6.52
LDAprob 20 no 9.38 6.65
LDAprob 20 yes 9.35 6.52
LDAprob 30 no 9.39 6.66
LDAprob 30 yes 9.38 6.52
LDAprob 40 no 9.44 6.66
LDAprob 40 yes 9.36 6.54

LDAtopsim 10 no 9.53 6.70
LDAtopsim 10 yes 9.40 6.54
LDAtopsim 20 no 9.45 6.73
LDAtopsim 20 yes 9.38 6.61
LDAtopsim 30 no 9.47 6.75
LDAtopsim 30 yes 9.38 6.57
LDAtopsim 40 no 9.50 6.75
LDAtopsim 40 yes 9.34 6.54
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5.3. Word Embedding Based Rescoring

We use word embeddings to re-rank the hypotheses list in this section. Figure 6 is similar to
Figure 4. In this figure, we show the average sentence word-pair score and word-discourse score at
different ranks. Apparently, the sentences ranked at the front score higher than the sentences ranked
behind, especially for the sentences ranked at the first 10 places. This shows that the word-pair score
and word-discourse score reflect the basic trends of the sentence.

Figure 6. The average score of word embedding based methods for hypotheses. The horizontal axis,
raning from 1 to 100, represents the rank of hypotheses. The vertical axis represents the average score
of hypotheses at the corresponding rank.

Figure 7 shows the probability distribution of ‘correct’ tags, ‘substitute’ tags and ‘insert’ tags
respectively like Figure 5. For both scores and both testsets, words with ‘correct’ tags tends to score
higher. The average scores of words with the three tags are listed in Table 3.

The results of the word embedding based word-pair probability score and word-discourse
probability score are listed in Table 4. In this experiment, α is around 0.95, which is the same as
LDA based scores. k is around 1 for word-pair and word-discourse scores without the fallibility score
and it is about 0.05 and 0.01 for a word-pair and word-discourse score with fallibility score respectively.
Firstly, we can see from the table that features with all dimensions tested in the experiment reduce
WER. As for the LDA based features, features with larger dimension do not result in more significant
WER reductions. The best results for Dev93 and Eval92 testsets without fallibility weight are both
from the 50-dimension GloVe feature, which are 0.20% and 0.44% absolute WER reduction respectively
for word-pair score. For the word-discourse score, the 300-dimension GloVe performs well on the
whole of the two testsets, which leads to 0.24% and 0.56% absolute WER reductions on Dev93 and
Eval92 testsets respectively compared with the 1-best hypotheses. The fallibility weight reduces WER
for most features. Similar to the effect on LDA-based scores, fallibility decreases the performance gap
among features dimensions for both word-embedding based scores.
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Figure 7. Distribution function of word embedding based scores for words with “c”, “s” and “i” tags.

Table 3. The average scores for words with “c”, “s” and “i” tags for Dev93 and Eval92 testsets.

Score-Type Dev93-c Dev93-s Dev93-i Eval92-c Eval92-s Eval92-i

word-pair −9.64 −10.87 −11.98 −9.61 −11.02 −12.15
word-discourse −7.45 −7.94 −9.39 −7.49 −8.02 −9.47

Table 4. WER results of rescoring by word embedding word-pair probability score.

Score-Type Feature Dimension Fallibility Dev93 WER Eval92 WER

baseline - - 9.58 6.98
2gram - - 9.57 6.88

smallRNN - - 9.44 6.57
word-pair 30 no 9.44 6.57
word-pair 30 yes 9.33 6.45
word-pair 50 no 9.38 6.54
word-pair 50 yes 9.30 6.50
word-pair 80 no 9.40 6.57
word-pair 80 yes 9.33 6.52
word-pair 100 no 9.44 6.63
word-pair 100 yes 9.34 6.54
word-pair 300 no 9.53 6.91
word-pair 300 yes 9.39 6.68

word-discourse 30 no 9.46 6.61
word-discourse 30 yes 9.30 6.47
word-discourse 50 no 9.34 6.66
word-discourse 50 yes 9.29 6.47
word-discourse 80 no 9.39 6.56
word-discourse 80 yes 9.30 6.52
word-discourse 100 no 9.34 6.70
word-discourse 100 yes 9.32 6.54
word-discourse 300 no 9.34 6.42
word-discourse 300 yes 9.33 6.52
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In addition, we combine the LDA-based scores and word embedding based scores to discuss
whether the scores can complement each other. We use the following equation to substitute Equation (19)
to use the combination of the two kinds of scores:

Score(s) = ScoreAM(s) + λ{αScoreLM(s) + (1− α)[
1
2
· k1 · ScoreLDA(s) +

1
2
· k2 · Scoreembedding(s))]}, (20)

where k1 and k2 are the parameters selected in last experiments for each scores respectively. Related
WER results are listed in Table 5.

Table 5. WER results of the combination of LDA-based scores and word embedding based scores.

LDA Scoretype Word Embedding Score Type Fallibility Dev93 WER Eval92 WER

baseline - - 9.58 6.98
LDAprob10 word-pair30 yes 9.32 6.56
LDAprob10 word-discourse50 yes 9.30 6.54

LDAtopsim40 word-pair30 yes 9.32 6.52
LDAtopsim40 word-discourse50 yes 9.32 6.42

The feature dimensions used here are chosen by consideration of both testsets. HOwever,
combining the LDAtopsim score and word-discourse score can reduce the WER of Eval92, compared
with using only the 40-topic LDAtopsim score or 50-dimension word-discourse score. On the whole,
combining the two kinds of score does not obviously further improve the model, which shows that the
proposed LDA-based scores and word embedding based scores contain similar information.

6. Conclusions

In this paper we have presented a new way to use semantic information to rescore the n-best
hypotheses without neural network language models. Two kind of semantic features, namely LDA
topic features and GloVe continuous word representations, are used and tested in this work. We have
designed four sentence coordination scores from the two semantic features. Among the four scores, two
are inspired by the LSM and LBL language model respectively, and the other two are first proposed in
this paper. In addition, we have designed a fallibility weight to assist the computation of the sentence
semantically coordination score by instructing the model to pay more attention to the words that may
have more possible choice.

Experiments show that a 10- or 20-dimension LDA based word probability score with fallibility
weight reduces WER of Dev93 and Eval92 testsets by absolute values of 0.23% and 0.46% respectively.
For word embedding features, the 50-dimension word-discourse probability score with fallibility and
300-dimension word-discourse probability score without fallibility make the most WER reductions
for Dev93 and Eval92 testset respectively at 0.29% and 0.51%. Fallibility weight works well on most
features for both LDA and word embedding based scores. Although it only reduced WER by a small
scale, it strongly decreased the performance gap among features dimensions for both word-embedding
and LDA based scores.

As future work, we plan to explore higher-order embeddings which can represent more words
rather than only one. On the other hand, the effect of the smoothing parameter γ will be explored in
the future work. In addition, the fallibility weight can be used in other rescoring experiments.
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