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Abstract: Head control is important for snake robots to work in an unknown environment. However,
the existing methods of head control have certain application limitations for snake robots with
different configurations. Thus, a strategy for head control based on segmented kinematics is proposed.
Compared with the existing head control strategies, our strategy can adapt to different structures of
snake robots, whether wheeled or non-wheeled. In addition, our strategy can realize the accurate
manipulation of the snake robot head. The robot body is divided into the base part, neck part and
head part. First, parameters of backbone curve are optimized for enlarging the area of the support
polygon. Then the desired pose for the head link and the dexterous workspace of the head part can
in turn derive the desired position and direction of the end frame for the neck part. An optimization
algorithm is proposed to help the end frame of the neck part approach a desired one and obtains the
joint angles of the neck part. When the actual frames of the neck part are determined, the dexterous
workspace of the head part will cover the desired pose of the head link. Then the TRAC-IK inverse
kinematics algorithm is adopted to solve the joint angles of the head part. To avoid the collision
between the body and the ground, a trajectory planning method of the overall body in Cartesian
space is proposed. Finally, simulations validate the effectiveness of the control strategy.
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1. Introduction

Snake robots can adapt to complex environments and move flexibly because of their
hyper-redundancy degrees of freedom (DOFs) [1-4]. However, it needs to obtain information
about the surrounding environment if a snake robot wants to work well in a complex environment.
Several researchers equip the head of the snake robot with a small camera [5,6]. The desired image
information is needed to obtain from the head camera. Moreover, we need to move the head of the
snake robot to a specific position and make it as a manipulator in some scenes. Then the head control
strategy of the snake robot is required.

Tanaka et al. proposed the algorithm of head control for the planar snake robot [7] and realized
the control of the movement direction of the snake robot head on a plane. Then they further proposed a
new head control algorithm in a three-dimensional space by using kinematic redundancy [8]. However,
these algorithms are based on the assumption of the velocity constraint, and the assumption is only
suitable for the snake robot with wheels. However, snake robots without wheels are also widely
studied, and they are more flexible and more adaptable to complex environments than ones with
wheels. Ye et al. proposed a head control method of the snake robot based on the serpenoid curve [9],
and then they used the zero-moment point (ZMP) method to analyze the stability of the motion of
the snake robot. Zhang et al. proposed a predefined spiral curve method to control the head of the
snake robot [10]. The method is implemented on the snake robot with 3 degrees of freedom joints.
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However, the predefined spiral curve method limits the range of motion of the head to a certain extent.
Moreover, it is not adapted well to these snake robots with single DOF or two DOFs joints. In addition,
the method based on serpenoid curve and the predefined spiral curve method cannot achieve control
of the arrival of the head of the snake robot to a specific position and posture.

To solve these problems, a strategy of the head control of the snake robot based on segmented
kinematics is proposed, and it uses the optimization algorithm to enhance the stability of its motion.
Moreover, it can give the solution of the joint angles for the specific pose of the head of the robot.
In addition, it also solves the problem of the trajectory planning of the overall body for the snake robot.

To realize the control strategy, the base part is controlled by the method of discretizing the
backbone curve. The specific structure of the snake robot used in this paper is shown in Figure 1.
The backbone curve theory is proposed by Chirikjian et al. [11]. In addition, then the backbone curve
discretization method is adopted widely [12,13]. For enhancing the motion stability of the overall body,
the backbone curve is designed as a plane arc and the parameters of the arc are also optimized. For the
neck part of the robot, we need to determine the desired position and direction of the end link of the
neck part by the dexterous workspace of the head part and the desired pose of the head. The method
of calculating the dexterous workspace is introduced in the literature [14]. Once the desired position
and direction of the end link of the neck part are determined, the optimization algorithm can calculate
the joint angles of the neck part. Then the end frame (the frame of the end link) of the neck part is
treated as the base frame of the head part, and an inverse kinematics algorithm is selected to solve
the joint angles of the head part. Now there are several inverse kinematics algorithms, such as the
KDL algorithm [15,16], the inverse kinematics algorithm based on the optimization [17] and TRAC-IK
algorithm [18]. The TRAC-IK algorithm is adopted for its better efficiency and high solution rate.
Then all the joint angles of the snake robot are obtained. However, the snake robot will hit the ground
if only the trajectory planning in joint space is considered. Thus, a trajectory planning method of the
overall body in Cartesian space is proposed. The stability of the motion is analyzed by the support
polygon method and the zero-moment point method.

Compared with the existing head control strategies, our proposed strategy has some advantages.
Tanaka et al. proposed the head control strategies of the wheeled snake robot on a plane or in a
three-dimensional space [7]. However, these strategies are both based on the non-side slip constraint,
and they are hard to be applied to the non-wheeled snake robot. Our proposed strategy can be applied
to snake robots and non-wheeled snake robots. Moreover, the strategies proposed by Zhang and Ye
are hard to realize the accurate manipulation of the snake robot head since they are both based on the
gait or the pure backbone curve of snake robots [9,10]. However, our proposed strategy can realize the
accurate manipulation of the head since it adopts segmented kinematics. In addition, the trajectory
planning of the overall body in Cartesian space is proposed to avoid the collision with the ground.

The article is organized as follows. The strategy of head control is introduced in the Section 2.
The strategy includes the calculation of joint angles for the base part, the calculation of the dexterous
workspace of the head part, choosing the dexterous workspace center and the calculation of joint
angles for the neck part. The description of the process of head control is in Section 3. The stability
analysis methods of the motion are given, and the trajectory planning method of the overall body is
proposed in this section. In Section 4, the simulations of catching the spheres and getting through a
hole on the wall are shown. In the Section 5, the discussions and conclusions are given.

2. The Strategy of the Head Control

The strategy of the head control is segmented, and it is divided into the calculations of the joint
angles for the base part, the neck part and head part. The joint angles of the base part are obtained
by discretizing the backbone curve of the base part. For the neck part, the desired pose for the head
link and the dexterous workspace of the head part can in turn derive a desired position and direction
of the end frame of the neck part. The joint angles are determined by making the end frame of the
neck part approach the desired one. Thus, the dexterous workspace and the center of the dexterous
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workspace of the head part are needed. Once the neck part is determined, the end frame of the neck
part is used for the base frame of the head part. The joint angles of the head part can be solved by the
inverse kinematics algorithm.

2.1. The Calculation of Joint Angles for the Base Part

In this paper, the axis of the snake robot is orthogonal to each other and the joint has only one
degree of freedom. This structure is widely adopted by the researcher in the snake robot field [5,19,20].
The illustration of the snake robot configuration can be seen in Figure 1a. The robot has two types of
joints, the yaw joint and the pitch joint. This configuration can help the snake robot to achieve motion
in three-dimensional space. The base part of the robot is the part contacting with the ground, which is
shown in Figure 1b.
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Figure 1. (a) The axis of each joint is rotated 90 degree relative to the previous joint axis; yaw joint
generates rotation out of the plane, while pitch joint generates rotation in the plane in this illustration.
(b) The overview of the snake robot.

In the process of the head control for the snake robot, the base part is used to ensure the body
of the snake robot keeps stable. The support polygon method and zero-moment point method are
usually used to judge whether the body is stable [21]. When the support polygon has a larger area,
the body will have a greater possibility of stable standing. As we know, for a given perimeter of the
polygon, the circle has the largest coverage area among all the plane polygons. Thus, we design the
backbone of the base part as a plane circle. Then we use the backbone curve theory to discretize the
backbone curve to generate the joint angles of the base part. The support polygon and the backbone
curve are shown in Figure 2.
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Figure 2. The support polygon constructed by the base part of the snake robot and the plane arc
backbone curve. The symbol 'bc” means backbone curve and symbol ‘sp” means support polygon.
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We assume that the backbone curve of the base part has a length /, and the joint angles of the base
part are generated by the discretizing a plane arc with a radius r. Thus, we have the following equations,

r=— 1

S= %ﬂ(e —sin(6)) )

where 0 is the central angle of the plane arc, and S is the area enclosed by the backbone curve, shown
in Figure 2. When 6 equals 71, S have the maximum value 1/27tr2. More details about the support
polygon and zero-moment point will be introduced in Section 3.

After the backbone curve of the base part is determined, we need to discretize the backbone curve
to obtain joint angles. We adopt the discretization method based on the curvature and torsion of the
backbone curve [22]. The corresponding formulas are given as:

¢ = /O‘S T(s)ds &)

{Ky<5) = x(s) cos(¢) (4)
Kp(s) = x(s) sin(¢)

0, = /:2 ky(s)ds ©)

bp = /:2 Kp(s)ds ©

where x(s) and 7(s) are the curvature and the torsion of the backbone curve at the arc length s. ¢ is the
phase angle of the discretization. In addition, it is obtained by the integral of the torsion on the arc
length s. In addition, it describes the twist of the Frenet-Serret frame along the backbone curve [23].
ky and «, are the curvature projection on the yaw direction and the pitch direction, which are used
to describe the bending along the yaw and pitch direction. Furthermore, 6, and 6, are the yaw joint
angles and the pitch joint angles of the base part shown in the Figure 1a. s; and s; in Equations (5)
and (6) are the start arc length and end arc length of the discretization respectively. For a spatial curve
r(t), its curvature x and torsion 7 can be calculation as [23]:

¥ x|

13
. (r’><r”)-r”’ (7)
T= \r/><r”|2

where 7/, "' and #""

are the first, second and third order derivatives of r to the general parameter
t, respectively.

For the plane arc, it has the curvature x = % and torsion T = 0. In addition, Equations (4)-(6) can

be simplified to
Ky = x(s) ®)
kp =0
0, = K, A
Y KyRs (9)
0, =0
where As = s, — s1. In addition, substitute x = % into Equation (9), the result that 6, = % is obtained.

The discretization result of the plane arc is shown in Figure 3.
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Figure 3. The discretization result of the plane arc backbone curve. The symbol 'bc” means
backbone curve.

2.2. The Workspace of Head Part

To simplify the control of the snake robot and ensure the head of the snake robot can achieve
the desired position and posture, we consider the head part has six or seven DOFs. Furthermore, the
head of the snake robot can approach it if the workspace of the head part can cover the desired pose.
Then the joint angles of the head part can be determined. To get the workspace of the head part of the
snake robot, we need a reliable inverse kinematics algorithm. Aim to get the ability of motion in the
3-dimension space and imitate the biological snake, the snake robot has the configuration that the joint
axes are orthogonal to each other. However, the inverse kinematics of the head part with six or seven
DOFs has no analytical solution for this configuration.

Then some numerical algorithms such as the KDL algorithm [15,16], the inverse kinematics
algorithm based on optimization [17] and TRAC-IK algorithm [18], are chosen.

For the KDL algorithm, it is a feedback and iteration process. (1) Forward Kinematics is used to
compute the current pose of the end effector in the Cartesian space through the current joint angles
gy, (2) the linear interpolation method and the spherical linear interpolation method are used for the
interpolation of the Cartesian position and the orientation represented by the unit quaternion and
the desired linear velocity v; and angular velocity w, can be obtained, (3) the error E;, between the
desired pose and the current pose of the end effector is calculated, E, = [ep, e,] , where ep and e,
represent the position and orientation error of the end effector, (4) the inverse of the Jacobian, J -1
convert the velocity of the end effector to the joint angular velocity. The equations used in the KDL
iteration algorithm is given [16],

. 1 vy + Kpep
Gu1=T (1) <wd + Kyeo (10)
9 = 9m—1 + qm—lAt (11)
ep =Pq— Pe(dy) (12)
€ = ’76(‘7m)€d - ﬂdee(qm) — €4 X ee(qm) (13)

where p; and p,(q,,) are the desired position and the calculated position of the end effector, respectively.
{n4,€4} and {1, €.} are the desired orientation and computed orientation of the end effector
represented by the unit quaternion, respectively. K, and K, are gain matrices, which are n x n
diagonal matrices. They should be selected properly to avoid the divergence of the iteration process. m
represents the times of the iteration. When E;, ~ 0, the iteration of the algorithm stops, and the result is
output. However, result of the joint angle is usually beyond the joint limit though the classical avoiding
joint limit method, the gradient projection method is adopted [24]. Moreover, the KDL method is also
easily stuck in the local minima. For the configuration of the head part with 6 DOFs, KDL algorithm
has 62.9% solve rate. For the configuration of the head part with 7 DOFs, KDL algorithm has 73.5%
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solve rate. The desired pose sample size and current pose sample size are both 1000 samples generated
by the random joint angles within the joint limit.

For the inverse kinematics algorithm based on the optimization, it can guarantee that the joint
angles are within the joint limit. At first, we need to consider an objective function [17],

qeR”

-1
arg minsumsqr( [lzd lid] f(gq) —kI) (14)

s.t. qigqfim, i=1,2,3, ...,n

flq) =°T'T,---""'T, (15)

where R is the 3 x 3 rotation matrix, which represents the desired orientation. In addition, p, is the
desired position vector. f(q) is a function of the forward kinematics with joint angle vector g, which is
used to obtain the transformation matrix of the end effector of the robot described in the world frame.
The symbol "~!T,, indicates the transformation matrix of the n-th link relative to the (n — 1)-th link.
In addition, the frame 0 represent the world frame in Equation (15). I, k and q{im are an identity matrix,
a gain coefficient and the joint limit of the i-th joint, respectively. Function sumsqr calculates sum of
squared elements of the input matrix. For the nonlinear optimization problem, the active-set algorithm,
SQP algorithm and interior-point algorithm can be selected [25]. For the configuration of the head
part with 6 DOFs, the active-set algorithm, the interior-point algorithm and the SQP algorithm have
57.7%, 67.5% and 61.1% solve rate, respectively. For the configuration of the head part with 7 DOFs,
the active-set algorithm, the interior-point algorithm and the SQP algorithm have 59.8%, 77.1% and
65.8% solve rate, respectively. The desired pose sample size and current pose sample size are both
1000 samples generated by the random joint angles within the joint limit, respectively. However, the
optimization algorithm is difficult to guarantee that it always has global convergence.

For the TRAC-IK inverse kinematics algorithm [18], the random restart of KDL called KDL-RR
is used to solve the problem that it is stuck in local minima. TRAC-IK spawns the KDL-RR and
SQP optimization inverse kinematics solver at the same time and run them for solving the inverse
kinematics. The TRAC-IK solver will stop when either of the two solvers finishes with a solution or
both exceed the set run time. The TRAC-IK enlarges the solution rate and shortens the solution time.
For the configuration of the head part with 6 DOFs, TRAC-IK algorithm has 99.8% solve rate. For the
configuration of the head part with 7 DOFs, TRAC-IK algorithm has 99.3% solve rate. The desired
pose sample size and current pose sample size are also both 1000 samples generated by the random
joint angles within the joint limit.

By comparing the above results, we chose the TRAC-IK algorithm to calculate the workspace for
the head part. The specific calculation method of the workspace is introduced in the literature [14].
However, for the heart part, as we know, it needs to have at least six DOFs to reach a specific pose.
For simplifying the control of the head, we decide that the head part has six or seven DOFs. Then we
calculate the workspace of the head part with a reachability measure. The algorithm is shown in
Algorithm 1, and the symbols in Algorithm 1 are shown in Table 1.

Through Algorithm 1, we calculate the reachability of the workspace of the head part with
7 DOFs and 6 DOFs, respectively. The workspace is calculated in the base frame of the head
part. The reachability of the workspace with 6 DOFs is shown in Figure 4. The reachability of
the workspace with 7 DOFs is shown in Figure 5. The gradient color from red to blue indicates that the
reachability increases.

The distributions of the reachability of the head part with 7 DOFs and 6 DOFs are shown in Table 2.
The head part with 6 DOFs has the largest reachability index 76, then one with 7 DOFs has largest
reachability index of 100 and 14.79% of the workspace has a reachability index above 90. Moreover,
3.69% of the workspace has a reachability index of 100. Compared to these results, the head part with
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7 DOFs has a significant reachability advantage over the one with 6 DOFs. Thus, the head part with
7 DOFs is chosen.

Algorithm 1 The algorithm for calculating and drawing the reachability of the workspace of the head
part.

1:

®

Generate 19 random samples, each of which includes 1, joint angles. In addition, form the group

Q. Denote the number of links of the head part as n;,.
foreachi € [1,n9] do
P; = fkine(Q(i))[0,0,0,1]T
P=PUP;
end for
B, = boundary(P)
Construct a box, side length L = 2 Z?h L; and its origin Opyy = Op,se. Divide equally the box into a

small box group B
Bs = convex(B,) N B;

9: for all b such that b € B; do

10: sol =0
11: Sp = innerSphere(b)
12: P, = distribute(S;)
13: for all p such that p € Ps do
14: f, = frame(p)
15: F, = addPosition(rotFrame(f,), p)
16: if TRAC —IK(Fp) > 0 then
17: sol = sol +1
18: end if
19: end for;
20: Sol = Sol U sol
21: end for;
22: Define the size of P; as Ns and reachability index D
23: for all sol such that sol € Sol do
24 D= ! *100%
25: Draw the sphere corresponding sol with a color in the gradient color bar according to index D
26: end for;
Table 1. The symbols of Algorithm 1.
Symbol Description
fkine(x) calculate the forward kinematics using joint angles x.
boundary(x) extracts the space boundary face of point group x.
convex(x) build a polyhedron based on the boundary x.
innerSphere(x) build an inscribed sphere of the box x.
distribute(x) distribute a certain number of points evenly on the sphere x.
frame(p) build a frame with an origin p, and z-axis is unit vector from the center of the sphere to
p. X-axis and y-axis build a plane tangent to the sphere and obey right-hand law.
rotFrame(f,) rotate frame f, along its Z-axis to generate several frames evenly in a range of
360 degree.
addPosition(rotF,p) add a position vector p to a rotation matrix rotF and build a transformation matrix T .
TRAC — IK(T) use TRAC-IK algorithm to solve the transformation matrix T.
L; the link length of the i-th link for the head part.

Opase the origin of the base frame for the head part.
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Table 2. Reachability index of the head part.

Reachability Index
[0,20) [20,40) [40,60) [60,80) [80,100]

6 29.82% 31.28% 28.14%  10.76% 0%
7 822% 1587% 16.96% 25.80%  33.15%

DOF

0
53
10.5

15.8

21.05
2632
3158

an
4737 3
5263

5789

63.16

68.42

7368

.95

84.21
47
94.74
100

Figure 4. (a) the workspace of the head part of the snake robot with 6 DOFs (b) the sectional view of
the workspace. The color bar uses 20 kinds of gradient color to indicate the reachability measure.

(@) (b)

Figure 5. (a) the workspace of the head part of the snake robot with 7 DOFs (b) the sectional view of
the workspace. The color bar uses 20 kinds of gradient color to indicate the reachability measure.

2.3. Choosing the Dexterous Workspace Center

In the following subsection, the center of the dexterous workspace for the head part is needed
to estimate the end frame of the neck part. According to the structure of the snake robot in our lab,
the link lengths from the first link to the sixth link for the head part are all 0.0865 m, and the length
of the seventh link is 0.046 m. The workspace whose reachability index equals 100 called dexterous
workspace, shown in Figure 6. We can find that it is not reasonable if we treat the centroids of the
dexterous workspace as the center of the dexterous workspace. By looking at Figure 6, the dexterous
workspace can be divided into three parts based on its distribution. To find a reasonable center point
in the dexterous workspace, the k-means++ method is adopted [26,27]. The k-means algorithm uses a
heuristic iteration process to divide the sample set into several clusters and make sure that the error
sum between every sample and centroids in the same cluster has minima. Assuming that the sample
set has k clusters C1,Cy, Cs, ..., Cy, then error sum E can be calculated [26,27],
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k
E = Z d(xl- - Ci) (16)
i=1x;€C;
1
Ci — m XieZCl xl' (17)

where c; is the centroids of the cluster C; and function d denotes the distance between two sample
based on squared Euclidean distance. The size function returns the number of the samples in the
cluster. k-means++ algorithm optimizes the selection of the original centroids of the clusters based on
the k-means algorithm before the iteration. We choose the k-means++ algorithm to find the center of
the dexterous workspace.

The k-means++ method divides the workspace into 3 clusters, and every cluster has a centroid.
The results are shown in Figure 7. The centroids of the cluster 3 is chosen as the center of the
dexterous workspace.

Figure 6. The workspace whose reachability index equals 100.

O cluster1

o0 Q o cluster2

% Q)SOO cluster3
O X centroids1
@ /\ centroids2
OO 3 centroids3

Figure 7. The dexterous workspace can be divided 3 clusters using k-means++ method and the
centroids of each cluster can be calculated.

2.4. The Calculation of Joint Angles for the Neck Part

The neck part connects the base part and the head part, so the joint angles of the neck part
are determined by the base part and the head part. To ensure that the head link of the head part
achieves the desired pose, we need to make sure that the dexterous workspace covers the desired pose.
The position of the workspace varies with the base frame of the head part in the world frame. Thus,
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the determination of the base frame of the head part is essential. Meanwhile, the end frame of the neck
part is the base frame of the head part.

To calculate the end frame of the neck part, we denote the center of the dexterous point, the base
of the head part and the end point of the base part as Gg, By and P, shown in Figure 8, then

Lc = ||Bo — Go| (18)
Gy — Py

rg = ———— 19

=Gy~ Py (49

Pd = GO - Lcrd (20)

where Pj; and r; are the desired position and desired direction of the end of the neck part, respectively.
Once the end frame of the neck part achieves the desired position and direction, the dexterous
workspace will cover the desired pose of the head part. So next the sum Ej, of the error E, between the
origin of the end frame of the neck part and the desired position and the error E; between the end link
direction and the desire direction needs to be minimized. Suppose that the joint angles of the neck part
are O, 01, ..., Ogipn,—1, then

To = OTi(06) Th1 (Oks1) - " 2 Thy 1 (O —1) (21)

arg min E, = [Py — Pd”% + h|jrg x "HH%
g;€R" 4 (22)
st qi<=q, i=kk+1,... k+n.—1

where T, is the transformation matrix of the frame for the end link of the neck part relative to the
world frame, and Ty, is the transformation matrix of k-th link relative to the world frame. The neck
part has n. links. k=1T is the transformation matrix of k-th link relative to (k — 1)-th link for the neck
part. Then P, and r, are the position and the x-axis vector of T, in the world frame. In addition, & is a
coefficient. i can be set 0.01.

dexterous workspace
® head part
neck part
® base part
O desired position
desired pose

Figure 8. The origin and x-axis of the end frame of the neck part approaches the desire position P; and
the desired direction r;.

The illustration of the strategy is shown in Figure 8. (1) Determine the endpoint of the base part,
Py. Py is determined by the discretization of the backbone curve of the base part and it is used as the
base point of the neck part. (2) Calculate the desired direction for the x component of the end frame of
the neck part. The direction from Py to G is used as the desired direction, which is the desired x-axis
direction of the end frame for the neck part. (3) Use the center of the dexterous workspace to estimate
the desired position of the origin of the end frame for the neck part. The calculation of the desired
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position refers to Equation (20). (4) Minimize the error E, to determine the joint angles of the neck
part. The objective function and the limitation conditions of the optimization refer to Equation (22).
(5) Use the TRAC-IK algorithm to solve the joint angles of the head part considering the end frame of
the neck part as the base frame of the head part.

3. The Control Process of the Head

Many snake robot modules are now equipped with an inertia measure unit (IMU) for their
modules [5,28,29]. An IMU usually consists of a 3-axis accelerometer and a 3-axis gyro. It is cheap
and convenient to be used to estimate the posture of its carrier [30,31]. In practical applications, the
purposes of the head control are often to obtain image information of the scene in front of the head
camera and reach a specific position in a specific direction. Once the posture of the head of the snake
robot can be estimated by the sensor information of IMU, then the restriction of the posture of the head
can be reduced to the restriction of the direction of the head, which is the direction of the x-axis of the
end frame for the head part. This simplification is to ensure the reliability of the strategy in the case of
meeting the practical application requirements of the snake robot head control.

After the restriction is reduced, we can generate many posture frames with the same x-axis
direction by rotating the one frame evenly, which are shown in Figure 9. The closest frame to the
desired frame is chosen and the sensor information of the IMU is taken into account, the image
corresponding frame can be modified correctly by rotating the image. The following simulations are
based on this assumption.

e
Figure 9. Several desired poses are generated by rotating a frame along the desired direction X; evenly.

Each of the solutions of these desired poses guarantees that the x-axis and origin O of the frame {X, Y, Z}
are equal to the origin O, and X; axis of these desired poses.

3.1. The Stability of the Motion

After the joint angles of the snake robot are obtained, the stability of the motion should be
considered. In Section 2.1, the support polygon and zero-moment point are introduced. They are
widely applied in the humanoid robot [32]. Moreover, Ye et al. introduced the ZMP method to the
head raising of the snake robot [9] for the first time. In this section, we combine the support polygon
method and the zeros-moment point method for stability analysis. Before the head of the snake robot
is lifted, we need to calculate the final configuration of the snake robot body and determine whether
the mass center of the body inside the support polygon. Once the center of mass is inside the support
polygon, the zero-moment point method needs to be used to judge the dynamic stability of the snake
robot in the movement process. For the support polygon, the equations are as follows [32],

N
Y miP;

S il 23
Y m; (23)

C = polygon(pg, p1, -+, Pr_1) (24)
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where m; indicates the mass of the i-th link of the snake robot and P; represents the center of mass of
i-th link. N denotes the number of links of the robot. ¢ is the center of the mass of the snake robot. p; is
the endpoint of the link for the base part. The function polygon outputs a polygon constructed by the
input points. The robot is statically stable if ¢ € C.

For the process of the motion for the robot, the ZMP method is used for dynamically stability for
the snake robot. Since the ZMP method is based on the torque equilibrium, the linear velocity and the
angular velocity of the link should be calculated first. Assuming that the linear velocity and angular
velocity of the i-th link are known [32], then

Ov]- =9%%; + %w; x 0Riibj (25)

Ow]' = Owi + OR,’ X ZZ]E]] (26)

where Ov]- and ‘w j are the linear velocity and angular velocity of the j-th link represented in the world
frame, frame 0. The iz]- is the z-axis of frame j represented in frame i. °R; is the rotation matrix of the
frame i relative to the frame 0. 'b; is the joint position vector for j-th link represented in the i-th frame.
4; is the derivative of j-th joint angle relative to time.

Next the velocities of the links are used to calculate the linear momentum and angular momentum
of the robot [32],

Oéj = OU]' + Ow]' X (OR]'E]‘) (27)
Py =mje (28)
N
P =Y P (29)
j=1
OAC] = OC]* X OP] + OR]'T]'OR}FO(U]' (30)
N
0=y "¢ (31)
=1

where ¢; indicates the coordinate of the center of mass for the j-th link represented in frame j.
In addition, Oéj denotes the derivative of the center of mass of the j-th respect to time represented in
the world frame. OPj and P represent the linear momentum for i-th link and the robot respectively.
oz j and 0L represent the angular momentum for i-th link and the robot respectively. Tj is the inertia
tensor matrix of the j-th link relative to the local frame.

Then the ZMP can be solved based on the dynamics algorithm [32],

T=pXf+1)p (32)
0P =Mg+f (33)
0L =cxMg+T (34)

substitute (33) and (34) into (32), we have
=L —cxMg+("P-Mg)xp (35)

where f is the reaction force of the ground to the link. In addition, p denotes the zero-moment point,
M= Z]'I\i 1m;j. g is the gravity acceleration vector. Thus, we can obtain [32],

Tpx = Lx + Mgy + Pypz — (P: + Mg)py (36)
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where

c=[x y 2T (38)
g=0 0 —gf
p=1[px py pa]"

Let the x component 7, and y component T, of the moment 7, be 0. The py and py, of the ZMP
can be solved [32]. . _
. ng + szx — L:y

: 39
* Mg + Pz ( )
_ Mgy + szy + Ex (40)

v Mg+ P,

Then we have p, = 0 considering that the snake robot locomotes on the ground. If the projection
of the ZMP on the ground, (px, py) lies inside the support polygon, the snake robot is dynamically
stable. The illustration is shown in Figure 10.

@— link

.62'
c

support polygon

ground

Figure 10. The illustration of the ZMP and the torque for the stability analysis.

3.2. The Trajectory Planning of the Overall Body in Cartesian Space

After the joint positions of the robot are solved, A multi-segment trajectories interpolation
method [17] for joint angles of the robot is adopted. However, the head of the snake robot sometimes
will hit the ground and lose the balance of the body. The specific situation is shown in Figure 11.
The initial state of the snake robot is like State 1, and then the body of the snake robot moves to State 2.
The head of the robot will hit the ground since only the interpolations of the joint angles are considered.

Figure 11. The initial state of the snake robot is like State 1 and the head of the robot hits the ground in
State 2.

To solve the above problem, an interpolation method of the overall body of the snake robot
based on the Cartesian space is proposed. The joint positions of the neck part and head part in the
Cartesian space for the initial configuration are assumed p,, p,;, - .., Ps,_1, and ones for the final
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configuration are assumed p s Pf1s -+ Ppn—y- First, pg; and py; is linear interpolated. However,

the other interpolation methods, such as quadratic interpolation and cubic interpolation, can also be

adopted. For simplifying the calculation, the linear interpolation is adopted. Then we have
Pij:Pfi+(1_tj)Psif i=012...,n-1 j=01, (1)

.1,
2,..m 0<tg<hH <. <t<.. . <t,<1

where p;; represents the interpolation position of i-th joint corresponding parameter ¢;. In addition,
every t; can be used to interpolate a configuration of the snake robot.

Assuming the transformation matrix of the starting frame of the neck part is Ty and the D-H
frames {x;, y;, z;} are constructed as shown in Figure 12, the links of the neck part and head part
approach the line segments generated by the linear interpolation. Then we have

i

lproj .
0; = /2 — arccos(T - - ) i=0,1,2, ..., n—-1 (42)
||lproj||
Loj=1li— (i T:)T, i=0,1,2, ..., n—1 (43)
PR R R S S (44)
Hpi+1j - Pij||

where 0; denotes the i-th joint angles from the neck part, and T; indicates the transformation matrix
of the i-th joint frame relative to the world frame. T, and T are the y-axis vector and z-axis vector
of the local frame of T; for i-th joint. ”+” is the dot product operator. arccos is represents the inverse
trigonometric function of cosine. The interpolation result of the proposed method is shown in Figure 13.

@®— linear interpolation

(3>— link

Y2 Z4 Yo

Figure 12. The D-H convention of the neck part and head part for the snake robot, and the illustration
of the line segments generated by the linear interpolation and the links.

o—proposed interpolation
e—linear interpolation
o—final configuration
e—initial configuration

Figure 13. The illustration of the proposed interpolation method of the overall body of the snake robot
in Cartesian space. The direction of the movement is shown as the dotted line.



Appl. Sci. 2019, 9, 5104 15 of 23

3.3. The Process of the Control

When the joint angles of snake robot can be determined, we conclude the control process

as follows.

M

@)
®)

4)

©)

(6)

Discretize the backbone curve of the snake robot to obtain the initial configuration of the snake
robot, and the backbone curve and the links are shown in Figure 14. The backbone curve of the
base part is a plane arc and the backbone curve of the neck part and head part is a plane cubic
Bezier curve with four control point. The two backbone curves are connected smoothly.

Plan the current configuration to the initial configuration for the snake robot.

Determine the desired position and direction for the end link of the neck part using the desired
pose of the head link and the dexterous workspace of the head part, and judge whether the
desired position is in an accepted range, which satisfies Zi.{i;fl L;i — ||Ppg — Pol|| — Lc < Lp and
Zif;rk”fl L; > ||Ppg — Py|| — Lc. Py, indicates the desired position of the head link of the head
part. If the conditions are not satisfied, use the rolling gait or turn in place [33] to adjust the
location and orientation of the overall body in the world frame.

By rotating a frame evenly, many desired pose frames with the same x-axis direction as the
desired direction are created. In addition, the solution we need is selected among solutions of
these pose frames.

Plan the trajectory of the snake robot to the final configuration, then use the support polygon
method and the ZMP method to assert the static stability and dynamical stability of the motion.
Select a stable trajectory.

Use the proposed trajectory planning method of the overall body in Cartesian space to avoid
collision of the snake robot with the ground.

These six steps can ensure the head of the snake robot achieve the desired position and

desired direction.

bc of base part
—bc of up part
—elink
—econtrol polygon

X

Figure 14. The initial state of the snake robot before head is lifted. “bc of base part” represents the
backbone curve of the base part, and “bc of up part” indicates the backbone curve of the neck and
head part.

4. Simulations of the Head Control

To verify the effectiveness of the head control strategy, the simulations that the head of the

snake robot catches the desired virtual spheres and gets through a hole on a wall are conducted.
These simulations are completed by the joint work of MATLAB and dynamics software. The trajectory
planning in the joint space is completed in the Simulink of the MATLAB and the Simulink is taken
as a central controller. In addition, a PD with a gravity compensation controller is adopted to ensure
the precision of the trajectory tracking. The snake robot consists of 16 modules. In addition, there are

8 links, 2 links and 7 links for the base part, neck part and head part, respectively. The architecture of
the snake robot is shown in Figure 15. The base part, neck part and head part are shown in Figure 1b.
The specific parameters of the snake robot are shown in Table 3. The working computer for the
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simulation has 2.50 GHz Intel Core i7 CPU and 8 GB RAM. For our snake robot with 17 links, the
solving time consists of the calculating time of the TRAC-IK solver and the computation time of the
optimization algorithm. The instantaneous ZMP is calculated with the snake robot moving. The total
solving process can be completed in 100 ms while we need to calculate 10 times for a specific direction
of the snake robot head in simulations. Thus, it can meet the requirement of the real-time of robot
control since the joint controller can also interpolate the joint angles with a shorter control period to
control the motion of joints. The control period of the joint controller is 2 ms. Moreover, the positions of
the spheres and hole are known in advance and the pose of the base frame of the neck part is obtained
in time in the simulation process.

TSI TN ST IR AW NI ST 6T Tw 4o

Figure 15. The snake robot with 16 modules and the local magnification of a single module.

Table 3. The overview of the snake robot.

dimensions module: 4.3 cm x4.3 cm x8.65 cm
length (full 16 module robot): 138.4 cm
length (start link): 4.05 cm
length (head link): 4.6 cm

mass module: 0.2 kg
full 16 module robot: 3.2 kg
joint limit +90 degree

4.1. The Simulation of Catching the Virtual Spheres

The platform of simulation is shown in Figure 16. The diameters of the two spheres are both 4 cm.
The coordinate of the center of the mass for the sphere 1 is (—4.05 x 1072, 0.5443, 0.3) m, and that of
sphere 2 is (0.1505, 0.5076, 0.3954) m. The simulation of the snake robot needs to complete the task that
the head of the robot moves to catch the sphere 1 from the current state and then transforms to catch
the sphere 2. The process of the simulation is shown in Figure 17. The total time of the simulation is
36 s. The current state of the snake robot is shown in Figure 17a. To ensure the stability of the motion,
the snake robot transforms to the initial state from the current state as in Figure 17b. To get the reliable
solution of the inverse kinematics, two spheres must be in the accepted range using the item (3) in
Section 3.3, otherwise the location of the snake robot needs to be adjusted. The controller can obtain
the information of the pose of the base frame for the neck part in the process. Then the joint angles of
the neck part and head part for achieving the sphere 1 are solved using the proposed strategy. Then,
the proposed trajectory planning method of the overall body in Cartesian space is used to plan the
initial state to the state of catching sphere 1. The stability of the motion is determined by the support
polygon and ZMP methods. The process for catching sphere 1 is illustrated in Figure 17c—g. After that,
the joint angles of the neck part and head part for catching the sphere 2 are solved using the proposed
strategy. Then the trajectories of the joints from the state catching sphere 1 to state catching sphere 2 are
planned by the proposed method. The process is shown in Figure 17h-1. The position error between
the head link frame and the sphere is 1.8mm and the direction error between the x-axis of the head
link frame and the desired direction is 0.76 degrees. The angular and linear momentum of the snake
robot for the planned trajectory and the actual dynamics simulation in the world frame are shown
in Figures 18 and 19. The maximum errors of the angular and linear momentum magnitudes of the
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planned trajectory and the simulation are 0.0383 kg-m? /s and 0.216 kg-m/s. The projections of ZMPs
of the snake robot for the planned trajectory and the actual dynamics simulation on the ground are
shown in Figure 20. Since they are both inside the support polygon, the motion is stable.

P e aly
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Figure 16. The simulation platform of the snake robot catching the spheres.

(a) (b) (c) (@

() ) (k) 0

Figure 17. The process of the snake robot head catching the sphere 1 and sphere 2. (a): the initial
state; (b): the bending state; (c): lifting the head; (d): moving up; (e): moving to the sphere 1; (f):
approaching the sphere 1; (g): catching the sphere 1; (h): releasing the sphere 1; (i): switching to the
sphere 2; (j): moving to the sphere 2; (k): approaching the sphere 2 ; (1): catching the sphere 2.
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Figure 18. The angular momentum of the snake robot for the planned trajectory and the actual dynamics
simulation throughout catching the spheres. (a) the components on X-axis (b) the components on Y-axis

(c) the components on Z-axis.
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Figure 19. The linear momentum of the snake robot for the planned trajectory and the actual dynamics
simulation throughout catching the spheres. (a) the components on X-axis (b) the components on Y-axis
(c) the components on Z-axis.
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Figure 20. The projections of the ZMPs of the planned trajectory and the ZMP of the actual simulation
on the ground are both inside the support polygon throughout catching the spheres.

4.2. The Simulation of Getting through a Hole

The simulation scenario for getting through a hole is shown in Figure 21. The diameter of the
hole is 7 cm. The dimension of the wall is 0.7 m x 0.58 m x 0.01 m. The coordinate of the hole is (0.2,
0.5, 0.4) m. The process of the snake robot getting through a hole on the wall is shown in Figure 22.
The total time of the process is 23 s. To ensure that the center of the mass of the snake robot is inside
the support polygon of the base part before the head raising, the snake robot is transformed to the
initial state shown in Figure 22a. First, the hole is guaranteed in the accepted range using the item (3)
in Section 3.3. Then the joint angles for the pose with a desired direction paralleling to the axis of the
cylinder hole and position close to the hole shown in Figure 22f is solved. The proposed trajectory
planning method in Cartesian space is used to plan the state shown in Figure 22a to the state shown
in Figure 22f. The planning generates the intermediate states as in Figure 22b—e. A multi-segment
trajectories interpolation method is adopted to interpolate the joint angles among these states. Then the
ZMP method is used to determine whether the motion of the robot is stable, and the parameter of the
multi-segment trajectories interpolation method is tuned if not. Then two poses with a desired direction
paralleling to the axis of the cylinder hole and a position closer to the hole shown in Figure 22g,h are
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solved. The joint angles with the smallest change compared to the joint angle solution of the previous
state will be preserved. Then finally, the head link of the snake robot got through the hole on the wall
in Figure 22i. The position error between the head link frame and the hole is 1.39 mm and the direction
error between the x-axis of the head link frame and the desired direction is 0.95 degree. The angular
and linear momentum of the snake robot for the planned trajectory and the actual dynamics simulation
are shown in Figures 23 and 24. The maximum errors of the angular and linear momentum magnitudes
of the planned trajectory and the simulation are 0.0416 kg-m?/s and 0.195 kg-m/s. The projections of
ZMPs of the snake robot for the planned trajectory and the actual dynamics simulation on the ground
are shown in Figure 25. Since they are both inside the support polygon, the motion is stable.
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Figure 21. The illustration of the simulation platform for getting through a hole on the wall.

(e) ® (9 (h)

Figure 22. The process of the snake robot head getting through a hole on the wall. (a): the bending
state; (b): lifting the head; (c): moving up; (d): switching to the hole; (e): approaching to the hole;
(f): moving parallel to the hole; (g): entering the hole; (h): getting through the hole.
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Figure 23. The angular momentum of the snake robot for the planned trajectory and the actual
dynamics simulation throughout getting through the hole. (a) the components on x-axis (b) the
components on y-axis (c) the components on z-axis
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Figure 24. The linear momentum of the snake robot for the planned trajectory and the actual dynamics
simulation throughout getting through the hole. (a) the components on x-axis (b) the components on

y-axis (c) the components on z-axis.
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Figure 25. The projections of the ZMPs of the planned trajectory and the ZMP of the actual simulation
on the ground are both inside the support polygon throughout getting through the hole.

5. Discussion and Conclusions

The

part

A head control strategy for the snake robot based on segmented kinematics is proposed in this
article. Through segmented control of the base part, the neck part and the head part of the snake robot,
the accurate control of the head of the snake robot is achieved. To enhance the stability of the snake
robot when the head is lifted, the parameters of the backbone curve of the base part are optimized.
existing inverse kinematics algorithms are used in the snake robot and the solve rate of these
algorithms are compared. Then TRAC-IK algorithm is selected. In addition, the dexterous workspaces
of the 6 DOFs and 7 DOFs solved by the TRAC-IK algorithm are compared to determine the number
of the links for the head part. The neck part is determined by the dexterous workspace of the head
and the desired pose of the head link. After the base part and the neck part is solved, the end link
of the neck part is treated as the base of the head part. Then joint angles of the head part are solved
using the TRAC-IK algorithm. The trajectory planning method of the overall body in Cartesian space
is proposed to avoid the collision between the body and the ground. To ensure the motion stability
of the head, the support polygon method and ZMP method are adopted. Eventually, the dynamic
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simulations of the head of the snake robot catching spheres and getting through the hole on the wall
validate the effectiveness of the control strategy.

However, some problems are needed to solve in the future. First, we will spend time studying
how to add some visual sensors on the snake robot head and then apply the strategy to the actual
acquisition and processing of the snake robot camera image. Moreover, the experimental validation
will be conducted in the next stage of the research. After that, some parameters of the simulation
model need to be improved to adapt to the real snake robot body, especially the dynamical parameters.
To get the accurate dynamic parameters of the snake robot is hard work, but it is very important for the
calculation of ZMP according to Section 3.1. Moreover, some optimal trajectories for the head control
need to be selected for the snake robot since the motors of the snake robot usually only output relatively
small torque. For energy-saving and good mobility, the module of the snake robot is designed to be
smaller, which limits the output torque of the motor. Thus, we will conduct the work of selecting the
trajectory with the affordable torque requirements for our snake robot in the future.
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