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Abstract: Various surface-wave exploration methods have become increasingly important tools in
investigating the properties of subsurface structures. Inversion of the experimental dispersion curves
is generally an indispensable component of these methods. Accurate and reliable calculation of
partial derivatives of surface-wave dispersion curves with respect to parameters of subsurface layers
is critical to the success of these approaches if the linearized inversion strategies are adopted. Here
we present an open-source MATLAB package, named SWPD (Surface Wave Partial Derivative),
for modeling surface-wave (both Rayleigh- and Love-wave) dispersion curves (both phase and group
velocity) and particularly for computing their partial derivatives with high precision. The package is
able to compute partial derivatives of phase velocity and of Love-wave group velocity analytically
based on the combined use of the reduced delta matrix theory and the implicit function theorem.
For partial derivatives of Rayleigh-wave group velocity, a hemi-analytical method is presented,
which analytically calculates all the first-order partial differentiations and approximates the mixed
second-order partial differentiation term with a central difference scheme. We provide examples
to demonstrate the effectiveness of this package, and demo scripts are also provided for users to
reproduce all results of this paper and thus to become familiar with the package as quickly as possible.

Keywords: phase velocity; group velocity; surface waves; love waves; rayleigh waves; partial
derivatives; dispersion curves; open-source code; MATLAB package

1. Introduction

Over the past three decades, a variety of surface-wave exploration methods has become an
increasingly important means for inferring the properties of subsurface structures, especially in the
near-surface region [1,2]. Compared with the commonly employed seismic body waves, the seismic
surface waves (SWs), which primarily include Rayleigh and Love waves in land acquisition, usually
propagate in the vicinity of the free surface and exhibit conspicuous dispersion characteristics in
seismic records. This dispersion characteristic of SWs is generally delineated by the so-called phase-
and/or group-velocity dispersion curves (DCs). The near-surface shear-wave velocities (Vs) can be
obtained by inverting these DCs. The inverse problem of DCs, inherently nonlinear, can be solved by
using global optimization methods, for instance, genetic algorithm [3], simulated annealing [4], particle
swarm optimization [5], etc., or by using various linearized inversion strategies [1,6,7]. The success
of either DCs inversion strategy is based on the accurate and efficient computation of surface-wave
DCs. In addition, if the latter strategies are chosen, reliable calculations of partial derivatives (PDs) of
DCs with respect to the parameters of subsurface strata are indispensable to create the Jacobian matrix
(or the sensitivity matrix) in this class of strategies, especially due to the demand of their repeated
calculations during the entire inversion process.
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The efficient computation of surface-wave DCs benefits not only from the pioneering groundwork
of Thomson and Haskell [8,9], but also from the rapid development of computer techniques after the
1960s. Inspired by Thomson and Haskell, numerous approaches have been proposed since then [10–23],
particularly to remedy the issue of loss of numerical precision at high frequencies, which is an inherent
shortcoming of Haskell’s theory (see reference [23] for more details). Among all these approaches,
the one put forward by Dunkin [13] and its improved variants [14,23] are frequently utilized as the
foundation of various surface-wave DCs inversion strategies due to their simplicity, efficiency, and
effectiveness. Dunkin’s approach is based on the so-called delta matrix theory [13], with which the
shortcoming of Haskell’s theory are thoroughly overcome.

Press et al. [10] developed the first computer program for computation of Rayleigh- and Love-wave
DCs. In spite of the high efficiency in computing phase-velocity DCs, they applied the numerical
differentiation of phase velocity to acquire the group velocity, which is a brute-force, low-precision,
and unreliable method. The first category of analytical approaches for calculating the surface-wave
group-velocity DCs and their PDs is based on the variational theory [24–29]. By virtue of Rayleigh’s
principle, Jeffreys [24] first derived expressions for computing the group velocities of surface waves
analytically; nonetheless, the PDs of DCs were approximated to the first order accuracy with numerical
differentiation. Thereafter, the same idea was adapted to tackle more sophisticated cases, such as
Takeuchi et al. [25,26], Anderson [27], Harkrider [28], and Aki et al. [29], just to name a few. On the
other hand, to bypass the theoretical complexity of these approaches, Novotný introduced the
implicit function method, another analytical approach, first for Love waves [30,31] and then for
Rayleigh waves in the case of a layer overlying a half-space [32]. Then Urban et al. [33] succeeded in
generalizing this approach to the case of multiple layers for Rayleigh waves. With the help of Knopoff’s
algorithm [11,15,16], in combination with the implicit function method, they successfully acquired
the analytical expressions for computing the PDs of Rayleigh-wave phase velocities, and the group
velocities are also acquired by further using Rodi’s method [34].

To date, the most credit on this subject is given to researchers who focused on the scale of
crustal seismology and who were mainly active before the 1990s. However, with the flourishment
of the surface-wave methods for near surface characterization [1–7], this subject has regained new
interest in recent years. For example, Cercato recently applied the reduced delta matrix method along
with the implicit function theory to achieve the analytical computation of PDs of Rayleigh-wave
ellipticity [35] as well as the necessary phase velocity [36]. In order to increase the computational
efficiency, he formulated the PDs of Rayleigh-wave phase velocity in a vector-transferring manner
instead of the matrix multiplication. Nevertheless, this computational manner makes it intractable
to further calculate the PDs of group velocity analytically since more complex second-order partial
differentiations must be dealt with. In addition, he only considered the Rayleigh waves in the
study. Due to the complexity of this analytical method, it is not widely used in current surface-wave
linearized inversion strategies and many researchers have resorted to the global optimization methods
as previously mentioned, bypassing the calculation of PDs. However, these methods require a large
amount of calculation, particularly when thousands of DCs need to be inverted, as in the context of oil
seismic exploration.

Based on the above-mentioned reasons, here we rederive a set of new analytical expressions
in the manner of matrix multiplication and present the relevant algorithms to compute the PDs of
surface-wave DCs. This work can be taken as another option or a complement to the previous studies.
We derive the relevant formulas and algorithms in such another way that is more convenient and more
straightforward for considering all of the cases (Love and Rayleigh waves; phase and group velocity).
Furthermore, we develop an open-source MATLAB package called SWPD (Surface Waves Partial
Derivatives) accompanying this paper, and it has the following merits: (i) it is able to deal with both
Rayleigh and Love waves; (ii) it can calculate the PDs of surface-wave phase-velocity DCs analytically
or accomplish the calculations for Rayleigh-wave group-velocity DCs by a hemi-analytical method
with high precision; (iii) all the relevant expressions and algorithms are derived from a widely accepted
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frame (i.e., the reduced delta matrix method), which makes the package easy to use and to be extended.
It is worth mentioning that the hemi-analytical method is a compromise: it calculates all the relevant
first-order PDs analytically and approximates the only second-order mixed PD term with a central
finite-difference scheme. By doing so, we still can obtain satisfying results comparable to the analytical
approach [32], meanwhile avoiding the intricate analytical derivations for the second-order term.

We first outline the reduced delta matrix theory and its application in modeling the surface-wave
phase-velocity DCs. We then present the algorithms and related formulas to calculate analytically the
PDs of the phase velocity (Section 3). Next, both the fully analytical and the hemi-analytical approaches
for calculating the PDs of the surface-wave group velocity are elaborated (Section 4). After that, we also
describe the accompanying MATLAB code with focus on some key scripts or functions (Section 5).
Last, four models are utilized for verification of our method and of the package (Section 6).

2. Computations of Surface-Wave Phase-Velocity DCs Based on the Reduced Delta Matrix Method

We first give a brief overview of the reduced delta matrix method [14,23,35] since it constitutes
the foundation of the following sections. We strictly follow the formulism of Buchen et al. [23] due to
his modern mathematical representations compared with other earlier studies.

This research involved a multilayered earth model (Figure 1), which consists of many homogeneous,
isotropic, and elastic layers that overlie a half-space and lie beneath a free surface. Each layer is denoted
by the P-wave velocity αm, the S-wave velocity βm, the density ρm and the thickness hm. According to
the reduced delta matrix method, the surface-wave secular (or dispersion) equation F can be described
as an implicit function by the delta matrix recursion:

X
∗

m+1 = X
∗

mT
∗

m, m = 1, 2, · · · , n
F(ω, c) = X

∗

n+1V
∗

n+1 = 0
(1)

where ω is the angular frequency, c is the phase velocity, m is the sequence number for layers, and
n + 1 indicates the half-space. X

∗

m is a row vector with different lengths depending on which wave
(Love or Rayleigh wave) is concerned. T

∗

m and V
∗

n+1 can be regarded as the reduced delta matrices
corresponding to the layer m and the half-space, respectively. The elements of these three matrices are
listed in Appendix A. In order to obtain the phase-velocity DCs, the frequencies or periods of interest
are substituted into (1), followed by a root-finding procedure consisting of the integrated use of the
bisection method and the Brent method in this paper. Generally, there are multiple solutions or roots at
a certain frequency or period, and the root corresponding to the lowest c is the fundamental mode
while other roots are the higher modes.
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3. Computation of PDs of Surface-Wave Phase Velocities

In this section, we derive the algorithms, based on matrix multiplication, for computation of PDs
of surface-wave phase velocities. In fact, the surface-wave dispersion equation F also depends on
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the physical parameters of the subsurface. To facilitate the description, let a vector Q indicate these
parameters [35]. In other words,

QR = (α1, · · · ,αn+1, β1, · · · , βn+1,ρ1, · · · ,ρn+1, h1, · · · , hn) (2a)

for the case of Rayleigh waves, or

QL = (β1, · · · , βn+1,ρ1, · · · ,ρn+1, h1, · · · , hn) (2b)

for the case of Love waves. Hence, the completed form of F is

F(ω, c, QR) = 0 or F(ω, c, QL) = 0. (3)

Suppose we want to compute ∂c/∂pt, where p represents a generic physical parameter such as α,
β, ρ, or h of the objective layer t. Making use of the implicit function theory, ∂c/∂pt can be written as:

∂c/∂pt = −
∂F/∂pt

∂F/∂c
. (4)

In the following, let us first consider ∂F/∂c. On the basis of recursion (1) and the derivative rules,
the expression for ∂F/∂c can be derived as follows:

∂F/∂c =
∂X
∗

n+1

∂c
V
∗

n+1 + X
∗

n+1
∂V
∗

n+1

∂c
. (5)

Obviously, the calculation of ∂V
∗

n+1/∂c is straightforward, whereas ∂X
∗

n+1/∂c has to be calculated
recursively starting from the first layer via formula (1):

∂X
∗

m+1/∂c =
∂X
∗

m
∂c

T
∗

m + X
∗

m
∂T
∗

m
∂c

, m = 1, 2, · · · , n. (6)

For a clearer description of the algorithm (Table 1), let us introduce a new vector, i.e., Y
∗

m = ∂X
∗

m/∂c,
thus (6) can be reformulated as follows:

Y
∗

m+1 = Y
∗

mT
∗

m + X
∗

m
∂T
∗

m
∂c

, m = 1, 2, · · · , n. (7)

Table 1. Pseudo-code for computation of ∂F/∂c.

Pseudo-code 1 The computation of ∂F/∂c

Input: angular frequencyω, phase velocity c, earth model QR or QL

1: Initialize four vectors: xold = X
∗

1, yold = Y
∗

1, xnew = 0, and ynew = 0
2: for m = 1–n do
3: calculate T

∗

m and ∂T
∗

m/∂c
4: update xnew: xnew = xold ×T

∗

m
5: update ynew: ynew = yold ×T

∗

m + xold ×∂T
∗

m/∂c
6: update xold: xold = xnew
7: update yold: yold = ynew
8: end for
9: compute V

∗

n+1 and ∂V
∗

n+1/∂c
Output: ∂F/∂c = ynew ×V

∗

n+1 + xnew ×∂V
∗

n+1/∂c

This is obviously a zero vector as X
∗

1 is a constant vector. A similar algorithm can be derived for
∂F/∂pt (Table 2), except that there are two cases that need to be taken into account according to the
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sequence number t (whether it equals to n + 1). Therefore, by using these two algorithms and (4) in
conjunction, the PDs can be computed analytically. We only show the elements of ∂V

∗

n+1/∂c, ∂T
∗

m/∂c,
∂V
∗

n+1/∂pn+1, and ∂T
∗

t/∂pt for Love waves in Appendix B. As for Rayleigh waves, due to the lengthy
formulas and the limited space, we suggest readers go directly to the source code according to the
description in Section 5.

Table 2. Pseudo-code for computation of ∂F/∂pt.

Pseudo-code 2 The computation of ∂F/∂pt

Input: angular frequencyω, phase velocity c, earth model QR or QL, and the sequence number t of the
objective layer

1: Initialize one vector and one matrix: x = X
∗

1, T = 0
2: if t equals to n + 1 then
3: for m = 1–n do
4: calculate T

∗

m: T = T
∗

m
5: update x: x = x × T
6: end for
7: Calculate ∂V

∗

n+1/∂pn+1

Output: ∂F/∂pn+1 = x ×∂V
∗

n+1/∂pn+1
8: else
9: for m = 1–n do
10: if m equals to t then
11: Calculate ∂T

∗

t /∂pt: T = ∂T
∗

t /∂pt
12: else
13: Calculate T

∗

m: T = T
∗

m
14: end if
15: update x: x = x × T
16: end for
17: compute V

∗

n+1
Output: ∂F/∂pt = x ×V

∗

n+1
18: end if

4. Computation of PDs of Surface-Wave Group Velocities

The group velocity is the propagation velocity of the energy of a wave packet and is related to the
phase velocity by the following expression [31]:

U = ∂ω/∂k = c/[1− (ω/c)∂c/∂ω] (8)

where k is the angular wavenumber. Therefore, if certain modes of phase-velocity DCs have been
acquired, then the corresponding group-velocity DCs can be calculated by (8).

Two different approaches are implemented in the package: (i) a fully analytical method via implicit
function theory (for Love waves); (ii) a hemi-analytical method (for Rayleigh waves). In the following,
we will explain both approaches, respectively.

4.1. Fully Analytical Method

The first order derivative ∂c/∂ω in (8) also can be calculated by using the implicit function theory:

∂c/∂ω = −
∂F/∂ω
∂F/∂c

. (9)

Although the pseudo-code in Table 1 is for ∂F/∂c, it is apparently applicable to ∂F/∂ω, provided
that c is replaced by ω. Similarly, the PDs of group velocity with respect to certain generic physical
parameter p of the objective layer t can be derived from (8) [30–33,36]:
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∂U
∂pt

=
U
c

(
2−

U
c

)
∂c
∂pt

+ω
U2

c2
∂2c
∂ω∂pt

. (10)

The second-order mixed partial derivative in (10) can be derived by further differentiating (4)
with respect toω [31]:

∂2c
∂ω∂pt

= −

[
∂2F
∂ω∂pt

+
∂2F
∂ω∂c

∂c
∂pt

+

(
∂2F
∂c∂pt

+
∂2F
∂c2

∂c
∂pt

)
∂c
∂ω

]
/
∂F
∂c

. (11)

In the following, we take ∂2F
∂c2 as an example to illustrate how to calculate the second-order partial

derivatives analytically. As for ∂2F
∂c∂pt

, ∂2F
∂ω∂pt

, and ∂2F
∂ω∂c , they can be calculated in the same way.

The computational procedure for ∂F/∂c (Table 1) can be performed in a recursive manner:

X
∗

m+1 = X
∗

mT
∗

m, m = 1, 2, · · · , n;

Y
∗

m+1 = Y
∗

mT
∗

m + X
∗

m
∂T
∗

m
∂c , m = 1, 2, · · · , n;

∂F/∂c = Y
∗

n+1V
∗

n+1 + X
∗

n+1
∂V
∗

n+1
∂c .

(12)

Therefore, we differentiate the last expression above with respect to c and thus obtain

∂2F/∂c2 =
∂Y
∗

n+1

∂c
V
∗

n+1 + 2Y
∗

n+1
∂V
∗

n+1

∂c
+ X

∗

n+1
∂2V

∗

n+1

∂c2 . (13)

Then, in order to obtain ∂Y
∗

n+1/∂c, we shall resort to the second expression in (12):

∂Y
∗

m+1/∂c =
∂Y
∗

m
∂c

T
∗

m + 2Y
∗

m
∂T
∗

m
∂c

+ X
∗

m
∂2T

∗

m

∂c2 , m = 1, 2, · · · , n. (14)

Similarly, if we introduce a new vector Z
∗

m = ∂Y
∗

m/∂c, then (14) can be reformulated as follows:

Z
∗

m+1 = Z
∗

mT
∗

m + 2Y
∗

m
∂T
∗

m
∂c

+ X
∗

m
∂2T

∗

m

∂c2 , m = 1, 2, · · · , n. (15)

Obviously, Z
∗

1 is a zero vector as well. Thus, by taking advantage of (12), (15), and (13), we can
finally implement the analytical computation of ∂2F/∂c2 (Table 3). See Appendix C for the elements of
∂2T

∗

m/∂c2 and of ∂2V
∗

n+1/∂c2 for Love waves.

Table 3. Pseudo-code for computation of ∂2F/∂c2.

Pseudo-code 3 The computation of ∂2F/∂c2

Input: angular frequencyω, phase velocity c, earth model QR or QL

1: Initialize six vectors: xold = X
∗

1, yold = Y
∗

1, zold = Z
∗

m, xnew = 0, ynew = 0, and znew = 0
2: for m = 1–n do
3: calculate T

∗

m, ∂T
∗

m/∂c and ∂2T
∗

m/∂c2

4: update xnew: xnew = xold ×T
∗

m
5: update ynew: ynew = yold ×T

∗

m + xold ×∂T
∗

m/∂c
6: update znew: znew = zold ×T

∗

m + 2× yold× ∂T
∗

m/∂c + xold× ∂2T
∗

m/∂c2

7: update xold: xold = xnew
8: update yold: yold = ynew
9: update zold: zold = znew
10: end for
11: compute V

∗

n+1, ∂V
∗

n+1/∂c and ∂2V
∗

n+1/∂c2

Output: ∂2F/∂c2 = znew ×V
∗

n+1 + 2× ynew× ∂V
∗

n+1/∂c + xnew× ∂2V
∗

n+1/∂c2
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4.2. Hemi-Analytical Method

In the fully analytical method, the crucial second-order partial derivative term ∂2c
∂ω∂pt

in (10) is
substituted by (11) and then solved via some recursive procedures. In contrast, the hemi-analytical
method approximates this term with a central finite-difference scheme [36], a procedure which will be
briefly reviewed in the following.

Suppose that the partial derivative ∂U/∂pt is desired at the angular frequency ω0 and that the
phase velocity c0 and group velocity U0 are computed at ω0. Define two other frequencies around ω0:
ω+1 = ω0e+δ and ω−1 = ω0e−δ. δ is a small quantity, denoting a perturbation of log ω; see [36] for a
more detailed explanation. And suppose the quantities c+1, U+1, and ∂c+1/∂pt are corresponding to
ω+1 and have been obtained. The same hypothesis is applied to the quantities c−1, U−1, and ∂c−1/∂pt

at ω−1. Then the PD of the group velocity at ω0 can be computed via

∂U0/∂pt =
U0

c0

(
2−

U0

c0

)
∂c0

∂pt
+

U2
0

c2
0

(
∂c+1/∂pt − ∂c−1/∂pt

2δ

)
(16)

We call (16) ‘hemi-analytical’ due to the fact that all the first-order partial derivatives and U0

in (16) are computed by the analytical approach discussed previously, leaving only ∂2c
∂ω∂pt

approximated
by the central finite-difference.

5. Package Description

SWPD, written in MATLAB, consists of two independent parts for dealing with Rayleigh and
Love wave respectively. Most source files of the package are written for implementing the partial
differentiations of matrix T

∗

m and of dispersion function F. To make it clearer, we list these files in
Tables A1 and A2, respectively. As shown in these two Tables, for example, reduced_delta_love.m and
reduced_delta.m implement the delta matrix recursion (1) for Love and Rayleigh waves, respectively.
Files reduced_delta_love_dfdc.m and reduced_delta_dfdc.m perform the pseudo-code in Table 1 to
yield the PDs of the dispersion function F with respect to c. When ∂F/∂β is desired (as the pseudo-code
shown in Table 2), one can go to files reduced_delta_love_dfdb.m and reduced_delta_dfdb.m. Similarly,
reduced_delta_love_dfdcc.m has implemented the algorithm in Table 3. In summary, all the main
*.m files that perform partial differentiations are summarized in Table A2 and they need to call the
sub-function files in Table A1 to accomplish the relevant computations.

Besides those scripts described above, there are a few other *.m files deserving to be
mentioned. rayleighphase.m and lovephase.m are used to model the multimodal phase-velocity DCs.
The hemi-analytical method has been implemented in four *.m files whose filenames contain the string
‘rodi’. In fact, we have included five demo scripts, whose filenames begin with the string ‘demo’.
Hence, one can replicate all figures of this paper by running the demo scripts directly and so to become
familiar with SWPD as quickly as possible.

6. Examples

6.1. Love-Wave Case

First, a two-layer model (Model Nov71 in Table 4) is chosen to demonstrate the validity of the
proposed algorithms and of the developed code for the case of Love waves. Figure 2 shows the
computational results for Model Nov71. Although the package is capable of modeling multiple modes,
we only show the results of the fundamental mode for comparison with the published studies [30,31].
It is noteworthy that, in Figure 2 we plot curves of 10× ∂c/∂h and 10× ∂U/∂h instead of their original
values due to their large differences in quantitative values compared to the other derivatives, so to make
the changes of these two curves recognizable. In addition, in the work of Novotný [31], to facilitate
the derivation of the analytical formulism specifically for the case of two layers, he introduced a
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dimensionless quantity ρ = ρ2/ρ1 and plotted the curves of ∂c/∂ρ and ∂U/∂ρ. Therefore, to obtain
the same curves, we have made use of the chain rule:

∂c/∂ρ =
∂c
∂ρ2

∂ρ2

∂ρ
= ρ1

∂c
∂ρ2

and ∂U/∂ρ =
∂U
∂ρ2

∂ρ2

∂ρ
= ρ1

∂U
∂ρ2

. (17)

Table 4. Two models chosen for validation of the package.

Layer S-Wave Velocity (m·s−1) Density (kg·m−3) Thickness (m)

Model Nov71
Two layered model in Novotný (1971) [31]

1 3500 2700 35,000
2 4500 3300 ∞

Model Nov70
The model of the Canadian shield CANSD in Novotný (1970) [30]
1 3470 2700 6000
2 3640 2800 10,500
3 3850 2850 18,700
4 4720 3300 80,000
5 4540 3440 100,000
6 4510 3530 100,000
7 4760 3600 80,000
8 5120 3760 ∞
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mode; (b) Partial derivatives (PDs) of the phase velocity; (c) PDs of the group velocity.

Obviously, the computational results in Figure 2 are rather consistent with the work of Novotný [31]
(see Figures 1–3 of his paper). To verify the correctness of these results more clearly, the relevant
quantities calculated at 20, 30, and 40 s are shown in Table 5 (related to phase velocity) and in Table 6
(related to group velocity), respectively. As shown in the Tables, they are in good agreement with the
outcomes from Novotný [31] (see Tables 1 and 2 of his paper).

Table 5. Computational results relevant to phase velocities for Model Nov71.

T (s) c (m·s−1) ∂c/∂β1 ∂c/∂β2

Novotný This paper Novotný This paper Novotný This paper

20 3790.45 3790.4529 1.05344 1.0534372 0.12405 0.1240473
30 4010.57 4010.5735 0.88083 0.8808288 0.33920 0.3392031
40 4176.65 4176.6474 0.62679 0.6267904 0.55832 0.5583233

∂c/∂h ∂c/∂ρ

Novotný This paper Novotný This paper

20 −0.01299 −0.0129940 0.10281 0.1028084
30 −0.01711 −0.0171069 0.21306 0.2130622
40 −0.01513 −0.0151307 0.25015 0.2501495

Table 6. Computational results relevant to group velocities for Model Nov71.

T (s) U (m·s−1) ∂U/∂β1 ∂U/∂β2

Novotný This paper Novotný This paper Novotný This paper

20 3384.38 3384.3839 1.16642 1.1664245 −0.14784 −0.1478377
30 3489.61 3489.6075 1.42265 1.4226530 −0.20843 −0.2084253
40 3706.66 3706.6645 1.36767 1.3676722 −0.03879 −0.0387899

∂U/∂h ∂U/∂ρ

Novotný This paper Novotný This paper

20 −0.00094 −0.0009381 −0.08530 −0.0853015
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Next, an eight-layer model (Model Nov70 in Table 4) is used for a further verification. The PDs of
the fundamental-mode phase and group velocity are presented in Figure 3. Also, the results calculated
at 20 and 40 s for individual layer are listed in Tables 7 and 8 for detailed comparisons. It should be
pointed out that Novotný [30] (Figures 1–5 in that paper) did not plot some partial derivatives because
of their too small absolute values, whereas we plot all partial derivatives, regardless of their magnitude.
After comparison, we can conclude that the results for the case of multiple layers are also satisfactory.
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Table 7. Computational results relevant to phase velocities for Model Nov70.

T (s) ∂c/∂βm ∂c/∂ρm ∂c/∂hm

Novotný This Paper Novotný This Paper Novotný This Paper

20 0.25048 0.2504840 −0.05192 −0.0519198 −0.02455 −0.0245543
0.40458 0.4045771 −0.03721 −0.0372102 −0.01807 −0.0180673
0.40666 0.4066578 0.03642 0.0364167 −0.01113 −0.0111329
0.13636 0.1363630 0.04255 0.0425454 0.00000 0.0000024
0.00022 0.0002246 0.00005 0.0000537 0.00000 0.0000000
0.00000 0.0000001 0.00000 0.0000000 0.00000 0.0000000
0.00000 0.0000000 0.00000 0.0000000 0.00000 0.0000000
0.00000 0.0000000 0.00000 0.0000000

40 0.09234 0.0923393 −0.03562 −0.0356177 −0.01633 −0.0163304
0.16802 0.1680152 −0.04359 −0.0435873 −0.01415 −0.0141500
0.26171 0.2617060 −0.02070 −0.0206981 −0.01100 −0.0109961
0.48998 0.4899821 0.07374 0.0737381 0.00037 0.0003742
0.10746 0.1074640 0.00813 0.0081273 0.00000 −0.0000047
0.01742 0.0174226 0.00136 0.0013618 −0.00001 −0.0000138
0.00147 0.0014714 0.00027 0.0002728 0.00000 −0.0000016
0.00011 0.0001118 0.00003 0.0000315

Table 8. Computational results relevant to group velocities for Model Nov70.

T (s) ∂U/∂βm ∂U/∂ρm ∂U/∂hm

Novotný This Paper Novotný This Paper Novotný This Paper

20 0.39610 0.3960951 −0.03708 −0.0370822 −0.01867 −0.0186684
0.56217 0.5621708 0.01013 0.0101325 −0.00798 −0.0079819
0.29970 0.2996970 0.06946 0.0694558 0.00043 0.0004303
−0.17980 −0.1797986 −0.03776 −0.0377645 −0.00002 −0.0000189
−0.00205 −0.0020513 −0.00046 −0.0004573 0.00000 0.0000000
0.00000 −0.0000027 0.00000 −0.0000006 0.00000 0.0000000
0.00000 0.0000000 0.00000 0.0000000 0.00000 0.0000000
0.00000 0.0000000 0.00000 0.0000000

40 0.26627 0.2662661 −0.08695 −0.0869520 −0.04030 −0.0402958
0.47105 0.4710498 −0.09121 −0.0912147 −0.03377 −0.0337734
0.64765 0.6476541 0.01359 0.0135921 −0.02506 −0.0250638
0.37427 0.3742730 0.14947 0.1494679 −0.00050 −0.0004986
−0.28059 −0.2805924 −0.00354 −0.0035408 0.00006 0.0000633
−0.10107 −0.1010694 −0.00573 −0.0057344 0.00011 0.0001124
−0.01280 −0.0128006 −0.00223 −0.0022296 0.00002 0.0000172
−0.00132 −0.0013249 −0.00036 −0.0003618

6.2. Rayleigh-Wave Case

6.2.1. A Two-Layer Model

Let us further consider Rayleigh waves. In the first example, we adopt a two-layer model that
is almost the same with Model Nov71, except that the P-wave velocities of the layers are also taken
into account (α1 = 6000 m·s−1 and α2 = 8000 m·s−1) [32]. Figure 4 displays the related computational
outcomes of fundamental-mode phase and group velocity. They show apparently good agreements
with [32] (Figures 1–3 in that paper). Table 9 also shows the relevant results of phase velocity at three
different periods for a detailed comparison. It is worth to point out that although we have used
difference approximation while coping with the PDs of group velocity, the quantities acquired by the
hemi-analytical approach still can be accurate to five decimal places as compared to the fully analytical
approach [32] (see Figure 4c and Table 10). Hence, the hemi-analytical approach is a rather effective
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and accurate scheme that can be used to construct the Jacobian matrix while the linearized inversion of
Rayleigh-wave group-velocity DCs is to be conducted.Appl. Sci. 2019, 9, 5214 12 of 21 
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Table 9. Computational results relevant to phase velocities for a two-layer model.

T (s) c (m·s−1) ∂c/∂β1 ∂c/∂β2

Novotný This paper Novotný This paper Novotný This paper

20 3441.81 3441.8133 0.74250 0.7425026 0.15013 0.1501333
30 3755.73 3755.7307 0.33374 0.3337405 0.47141 0.4714082
40 3896.68 3896.6754 0.14381 0.1438077 0.59832 0.5983238

∂c/∂α1 ∂c/∂α2

Novotný This paper Novotný This paper

20 0.14041 0.1404094 0.00231 0.0023095
30 0.16901 0.1690098 0.01454 0.0145360
40 0.13987 0.1398705 0.02492 0.0249162

∂c/∂h ∂c/∂ρ

Novotný This paper Novotný This paper

20 −0.01981 −0.0198137 0.18560 0.1856024
30 −0.01897 −0.0189727 0.39702 0.3970193
40 −0.00965 −0.0096475 0.34035 0.3403527

Table 10. Computational results relevant to group velocities for a two-layer model.

T (s) U (m·s−1) ∂U/∂β1 ∂U/∂β2

Novotný This paper Novotný This paper Novotný This paper

20 2864.63 2864.6298 1.09993 1.0999266 −0.28108 −0.2810790
30 3191.45 3191.4546 1.05173 1.0517331 −0.01968 −0.0196826
40 3585.94 3585.9400 0.45706 0.4570642 0.36729 0.3672883

∂U/∂α1 ∂U/∂α2

Novotný This paper Novotný This paper

20 0.02799 0.0279941 −0.00754 −0.0075417
30 0.21034 0.2103442 −0.01419 −0.0141852
40 0.23521 0.2352072 −0.00267 −0.0026709

∂U/∂h ∂U/∂ρ

Novotný This paper Novotný This paper

20 0.00492 0.0049175 −0.27858 −0.2785814
30 −0.04428 −0.0442750 0.35718 0.3571744
40 −0.03018 −0.0301845 0.60146 0.6014577

6.2.2. A Six-Layer Model

All of the above-mentioned models are aimed at the scale of crustal seismology. In this example,
we chose a near-surface six-layer model (Table 11) to demonstrate the applicability and effectiveness of
our code at the scale of near-surface geophysics. This model was also chosen because some researchers
have reported their results [1,35].

As shown in Figure 5, the analytical PDs of the fundamental-mode Rayleigh-wave phase velocity
of the six-layer model are quite consistent with [35] (Figures 3–5 of his paper). In order to show more
details, as an example, the PDs with respect to the S-wave velocities at five different frequencies, along
with the outcomes from other researchers, are presented in Table 12 (modified from [35]). Individual
column of these matrices corresponds to a layer, whereas individual row corresponds to a frequency.
Obviously, only the numerical results from Lai and Rix [6] show a certain lack of accuracy due to
the adopted numerical integration in their code [35], whereas other results (including our result) are
quite similar.
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Table 11. A six-layer model from Xia [1].

Layer P-Wave Velocity (m·s−1) S-Wave Velocity (m·s−1) Density (kg·m−3) Thickness (m)

1 650 194 1820 2.0
2 750 270 1860 2.3
3 1400 367 1910 2.5
4 1800 485 1960 2.8
5 2150 603 2020 3.2
6 2800 740 2090 ∞

Table 12. PDs of the fundamental-mode phase velocity with respect to β.

Frequency (Hz): [5, 10, 15, 20, 25, 30]
(Xia et al. 1999) [1]

0.018 0.018 0.022 0.021 0.017 0.872
0.130 0.106 0.062 0.025 0.022 0.766
1.067 0.925 0.313 0.034 0.017 0.262
0.155 1.037 0.967 0.457 0.145 0.040
0.293 1.072 0.517 0.102 0.012 0.001
0.520 0.923 0.202 0.016 0.000 0.000


(Lai & Rix 1998) [6]

0.01443 0.01300 0.01383 0.01193 0.01382 0.86939
0.12161 0.08636 0.04675 0.02314 0.01812 0.76576
0.95916 0.84527 0.28894 0.02847 0.01531 0.25958
0.14780 0.96370 0.92731 0.45258 0.13932 0.03864
0.28708 1.04603 0.49245 0.10321 0.01138 0.00070
0.51321 0.89495 0.20270 0.01552 0.00060 0.00001


(Cercato 2007) [35]

0.01809 0.01834 0.02219 0.02036 0.01750 0.87242
0.13002 0.10646 0.06174 0.02467 0.02225 0.76580
1.06766 0.92490 0.31304 0.03359 0.01665 0.26204
0.15460 1.03665 0.96729 0.45739 0.14507 0.04024
0.29284 1.07203 0.51690 0.10261 0.01137 0.00074
0.52024 0.92354 0.20196 0.01592 0.00060 0.00001


(Wu et al. this paper)

0.0180908 0.0183407 0.0221925 0.0203622 0.0174990 0.8724199
0.1300197 0.1064578 0.0617429 0.0246696 0.0222537 0.7658011
1.0676629 0.9249004 0.3130410 0.0335878 0.0166527 0.2620402
0.1546003 1.0366473 0.9672942 0.4573936 0.1450729 0.0402373
0.2928380 1.0720290 0.5168966 0.1026072 0.0113722 0.0007421
0.5202410 0.9235443 0.2019644 0.0159170 0.0005995 0.0000107
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Figure 5. Analytical PDs of the fundamental-mode phase velocity with respect to β (a), α (b), ρ (c), and
h (d) for the six-layer model in Table 10.

7. Discussion and Conclusions

The accurate and reliable calculation of PDs of surface-wave DCs is an essential component of
any linearized inversion strategy based on surface-wave DCs. In this paper, we have rederived a
series of algorithms and the related expressions based on the reduced delta matrix theory to compute
analytically the PDs of surface-wave (both Love and Rayleigh waves) phase-velocity DCs. Moreover,
we have also applied this analytical method to compute the PDs of Love-wave group velocity. Although
Equations (9)–(15) constitute an abstract framework applicable to both waves, the derivation of all the
second-order mixed PDs for Rayleigh waves could be rather difficult. Therefore, we have implemented
a high-precision hemi-analytical method, which computes all the first-order partial differentiation
analytically (Section 3) and approximates the only mixed second-order partial differentiation term with
a central finite-difference scheme. For the fully analytical computation of Rayleigh-wave group-velocity
PDs, Novotný et al. [32] is the only work we could find, despite the fact that only the case of two-layer
model was studied due to the complexity of this problem. The comparison (Section 6.2.1) demonstrates
that this mixed computational strategy is satisfying, with a comparable accuracy to five decimal places,
as shown in Table 10.

An open-source MATLAB package named SWPD has been developed accompanying this paper.
All examples in this paper have been validated by comparing with the results of previous studies,
and all the results computed by our package are satisfactory with rather high precision. Therefore, it
has been demonstrated that the analytical expressions and the algorithms derived in this paper are
effective. Also, these examples can be reproduced by other users with the help of four demo scripts in
the package. Upon becoming familiar with this package, people could modify and extend it without
any difficulty, including any further development of the surface-wave linearized inversion strategy.
We think this package could be a useful tool for people who are engaged in the field of near-surface
geophysics, especially for those who are interested in surface-wave exploration methods.
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Appendix A

The expressions presented below are adapted from Buchen & Ben-Hador [23] just for convenience
of reference.

Basic physical quantities employed:

ω = angular frequency
c = phase velocity
k = ω/c = angular wavenumber

i =
√
−1 = imaginary unit

Basic derived quantities employed for the m-th layer (subscript m is omitted for simplicity):

r =


√

1− c2/α2, c < α
i
√

c2/α2 − 1, c > α
(A1)

r =


√

1− c2/α2, c < α
i
√

c2/α2 − 1, c > α
(A2)

Cα =

{
cosh(krh), c < α
cos(ikrh), c > α

(A3)

Cβ =
{

cosh(ksh), c < β
cos(iksh), c > β

(A4)

Sα =

{
sinh(krh), c < α
−i sin(ikrh), c > α

(A5)

Sβ =
{

sinh(ksh), c < β
−i sin(iksh), c > β

(A6)

γ = β2/c2, t = 2− 1/γ, µ = ρβ2 (A7)

For Love waves : For Rayleigh waves :
X
∗

1 =
[

0 1
]

X
∗

1 =
[

0 0 0 0 1
]

T
∗

m =

 Cβ
Sβ
µs

µsSβ Cβ


m

T
∗

m =



T11 T12 T13 T14 T16

2T21 2T22 − 1 2T23 2T24 2T26

T31 T32 T33 T34 T36

T41 T42 T43 T44 T46

T61 T62 T63 T64 T66


m

V
∗

n+1 =
[

1 µs
]T

n+1
V
∗

n+1 =
[

1− rs 2µ(t− 2rs) µs(2− t) −µr(2− t) µ2
(
4rs− t2

) ]T

n+1

(A8)

where the superscript T means the matrix transpose.
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The elements of matrix T
∗

m for Rayleigh wave:

Q j =

(
t j

rs
+ 2 jrs

)
SαSβ, 0 ≤ j ≤ 4 (A9)

T11 = γ2
[
−4t +

(
t2 + 4

)
CαCβ −Q2

]
(A10)

T12 =
γ2

µ

[
(2 + t)

(
1−CαCβ

)
+ Q1

]
(A11)

T13 =
γ

µ

(
CαSβ/s− rSαCβ

)
(A12)

T14 =
γ

µ

(
sCαSβ − SαCβ/r

)
(A13)

T16 =
γ2

µ2

[
2
(
1−CαCβ

)
+ Q0

]
(A14)

T21 = µγ2
[
−2t(t + 2)

(
1−CαCβ

)
−Q3

]
(A15)

T22 = 1 + CαCβ − T11 (A16)

T23 = γ
(
tCαSβ/s− 2rSαCβ

)
(A17)

T24 = γ
(
2sCαSβ − tSαCβ/r

)
(A18)

T26 = T12 (A19)

T31 = µγ
(
4sCαSβ − t2SαCβ/r

)
(A20)

T32 = −T24 (A21)

T33 = CαCβ (A22)

T34 = −sSαSβ/r (A23)

T36 = −T14 (A24)

T41 = µγ
(
t2CαSβ/s− 4rSαCβ

)
(A25)

T42 = −T23 (A26)

T43 = −rSαSβ/s (A27)

T44 = T33 (A28)

T46 = −T13 (A29)

T61 = µ2γ2
[
8t2

(
1−CαCβ

)
+ Q4

]
(A30)

T62 = T21 (A31)

T63 = −T41 (A32)

T64 = −T31 (A33)

T66 = T11 (A34)
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Appendix B

The expressions listed below are used for the construction of the first-order PDs of matrices T
∗

m
and V

∗

n+1 for Love waves. For clarity, we use the same notation as Cercato [35], i.e., the prime mark
(e.g., s′ ) is used exclusively to indicate PD with respect to phase velocity c, whereas any subscript
indicates PD with respect to that parameter (e.g., sβ = ∂s/∂β and

(
Cβ

)
β
= ∂Cβ/∂β).

Define an intermediate variable
s0 = 1− c2/β2 (A35)

For ∂T
∗

m/∂c:
s′0 = −2c/β2 (A36)

s′ = 0.5s′0/s (A37)

C′β = Sβkh(s′ − s/c) (A38)

S′β = Cβkh(s′ − s/c) (A39)

∂T
∗

m/∂c =

 C′β
S′βs−Sβs′

µs2

µ
(
s′Sβ + sS′β

)
C′β

 (A40)

For ∂V
∗

n+1/∂c:

∂V
∗

n+1/∂c =
[

0 ´sµ
]T

(A41)

For ∂T
∗

m/∂β:
(s0)β = 2c2/β3 (A42)

µβ = 2ρβ (A43)

sβ = 0.5(s0)β/s (A44)(
Cβ

)
β
= khSβsβ,

(
Sβ

)
β
= khCβsβ (A45)

∂T
∗

m/∂β =


(
Cβ

)
β

−
µβSβ
µ2s +

(Sβ)βs−Sβsβ
µs2

µβsSβ + µ
(
Sβsβ + s

(
Sβ

)
β

) (
Cβ

)
β

 (A46)

For ∂V
∗

n+1/∂β:

∂V
∗

n+1/∂β =
[

0 µβs + µsβ
]T

(A48)

For ∂T
∗

m/∂ρ:
µρ = β2 (A49)

∂T
∗

m/∂ρ =

 0 −
µρSβ
µ2s

µρsSβ 0

 (A50)

For ∂V
∗

n+1/∂ρ:

∂V
∗

n+1/∂ρ =
[

0 µρs
]T

(A51)

For ∂T
∗

m/∂h: (
Cβ

)
h
= Sβks,

(
Sβ

)
h
= Cβks (A52)

∂T
∗

m/∂h =


(
Cβ

)
h

(Sβ)h
µs

µs
(
Sβ

)
h

(
Cβ

)
h

 (A53)
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Appendix C

The double-prime mark is used for indicating the second-order PDs with respect to c for
Love waves.

s′′0 = −2/β2 (A54)

s′′ =
(
0.5s′′0 − (s

′)2
)
/s (A55)

C′′ β = kh
{(

S′β −
Sβ
c

)(
s′ −

s
c

)
+ Sβ

[
s′′ −

(
s′ −

s
c

)1
c

]}
(A56)

S′′ β = kh
{(

C′β −
Cβ
c

)(
s′ −

s
c

)
+ Cβ

[
s′′ −

(
s′ −

s
c

)1
c

]}
(A57)

For ∂2T
∗

m/∂c2:
y = S′βs− Sβs′ (A58)

y′ = S′′ βs− Sβs′′ (A59)

∂2T
∗

m/∂c2 =

 C′′ β
y′s2
−2yss′

µs4

µ
(
s′′Sβ + 2s′S′β + sS′′ β

)
C′′ β

 (A60)

For ∂2V
∗

n+1/∂c2:

∂2V
∗

n+1/∂c2 =
[

0 s′′µ
]T

(A61)

Appendix D

Table A1. MATLAB *.m files that compute matrix T
∗

m and its partial derivatives (PDs).

Role Love waves Rayleigh waves

T
∗

m get_T_love.m get_T.m
∂T
∗

m/∂α get_dTda.m
∂T
∗

m/∂β get_dTdb_love.m get_dTdb.m
∂2T

∗

m
∂β∂c

get_dTdbc_love.m
∂2T

∗

m
∂β∂ω

get_dTdbw_love.m

∂T
∗

m/∂c get_dTdc_love.m get_dTdc.m
∂2T

∗

m/∂c2 get_dTdcc_love.m
∂T
∗

m/∂ω get_dTdw_love.m get_dTdw.m
∂2T

∗

m
∂ω∂c

get_dTdwc_love.m

∂T
∗

m/∂h get_dTdh_love.m get_dTdh.m
∂2T

∗

m
∂h∂c

get_dTdhc_love.m
∂2T

∗

m
∂h∂ω

get_dTdhw_love.m

∂T
∗

m/∂ρ get_dTdrho_love.m get_dTdrho.m
∂2T

∗

m
∂ρ∂c

get_dTdrhoc_love.m
∂2T

∗

m
∂ρ∂ω

get_dTdrhow_love.m
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Table A2. MATLAB *.m files that compute dispersion function F and its PDs.

Role Love waves Rayleigh waves

F reduced_delta_love.m reduced_delta.m
∂F/∂α reduced_delta_dfda.m
∂F/∂β reduced_delta_love_dfdb.m reduced_delta_dfdb.m
∂2F
∂β∂c reduced_delta_love_dfdbc.m
∂2F
∂β∂ω reduced_delta_love_dfdbw.m
∂F/∂c reduced_delta_love_dfdc.m reduced_delta _dfdc.m
∂2F/∂c2 reduced_delta_love_dfdcc.m
∂F/∂h reduced_delta_love_dfdh.m reduced_delta _dfdh.m
∂2F
∂h∂c reduced_delta_love_dfdhc.m
∂2F
∂h∂ω reduced_delta_love_dfdhw.m
∂F/∂ρ reduced_delta_love_dfdrho.m reduced_delta _dfdrho.m
∂2F
∂ρ∂c reduced_delta_love_dfdrhoc.m
∂2F
∂ρ∂ω reduced_delta_love_dfdrhow.m
∂F/∂ω reduced_delta_love_dfdw.m reduced_delta _dfdw.m
∂2F
∂ω∂c reduced_delta_love_dfdwc.m

References

1. Xia, J.; Miller, R.D.; Park, C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves.
Geophysics 1999, 64, 691–700. [CrossRef]

2. Socco, L.V.; Foti, S.; Boiero, D. Surface-wave analysis for building near surface velocity models—Established
approaches and new perspectives. Geophysics 2010, 75, A83–A102. [CrossRef]

3. Yamanaka, H.; Ishida, H. Application of genetic algorithms to an inversion of surface wave dispersion data.
Bull. Seismol. Soc. Am. 1996, 86, 436–444.

4. Beaty, K.S.; Schmitt, D.R.; Sacchi, M. Simulated annealing inversion of multimode Rayleigh wave dispersion
curves for geological structure. Geophys. J. Int. 2002, 151, 622–631. [CrossRef]

5. Wilken, D.; Rabbel, W. On the application of particle swarm optimization strategies on Scholte-wave inversion.
Geophys. J. Int. 2012, 190, 580–594. [CrossRef]

6. Lai, C.G.; Rix, G.J. Simultaneous Inversion of Rayleigh Phase Velocity and Attenuation for Near Surface
Characterization; Research Report; Georgia Institute of Technology: Atlanta, GA, USA, 1998. Available
online: https://pdfs.semanticscholar.org/7a5c/8eb282face291b1437dabb8d46c3f6874d6c.pdf (accessed on 28
July 2019).

7. Wu, D.S.; Wang, X.W.; Su, Q.; Hu, Z.D.; Xie, J.F. Simultaneous inversion of shear wave velocity and layer
thickness by surface-wave dispersion curves. In Proceedings of the 81st EAGE Conference & Exhibition,
London, UK, 3–6 June 2019.

8. Thomson, W.T. Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 1950, 21, 89–93.
[CrossRef]

9. Haskell, N.A. Dispersion of surface waves on multilayered media. Bull. Seismol. Soc. Am. 1953, 43, 17–34.
10. Press, F.; Harkrider, D.; Seafeldt, C.A. A fast, convenient program for computation of surface-wave dispersion

curves in multilayered media. Bull. Seismol. Soc. Am. 1961, 51, 495–502.
11. Knopoff, L. A matrix method for elastic wave problems. Bull. Seismol. Soc. Am. 1964, 54, 431–438.
12. Thrower, E.N. The computation of the dispersion of elastic waves in layered media. J. Sound Vib. 1965,

2, 210–226. [CrossRef]
13. Dunkin, J.W. Computation of modal solutions in layered, elastic media at high frequencies. Bull. Seismol.

Soc. Am. 1965, 55, 335–358.
14. Watson, T.H. A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space.

Bull. Seismol. Soc. Am. 1970, 60, 161–166.
15. Schwab, F.; Knopoff, L. Surface-wave dispersion computations. Bull. Seismol. Soc. Am. 1970, 60, 321–344.
16. Schwab, F. Surface-wave dispersion computations: Knopoff’s method. Bull. Seismol. Soc. Am. 1970, 60, 1491–1520.

http://dx.doi.org/10.1190/1.1444578
http://dx.doi.org/10.1190/1.3479491
http://dx.doi.org/10.1046/j.1365-246X.2002.01809.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05500.x
https://pdfs.semanticscholar.org/7a5c/8eb282face291b1437dabb8d46c3f6874d6c.pdf
http://dx.doi.org/10.1063/1.1699629
http://dx.doi.org/10.1016/0022-460X(65)90109-4


Appl. Sci. 2019, 9, 5214 21 of 21

17. Kennett, B.L.N.; Kerry, N.J. Seismic waves in a stratified halfspace. Geophys. J. Int. 1979, 57, 557–583.
[CrossRef]

18. Hisada, Y. An efficient method for computing Green’s functions for a layered half-space with sources and
receivers at close depths. Bull. Seismol. Soc. Am. 1994, 84, 1456–1472.

19. Chen, X. A systematic and efficient method of computing normal modes for multilayered half-space. Geophys.
J. Int. 1993, 115, 391–409. [CrossRef]

20. Abo-Zena, A. Dispersion function computations for unlimited frequency values. Geophys. J. Int. 1979,
58, 91–105. [CrossRef]

21. Kausel, E.; Roësset, J.M. Stiffness matrices for layered soils. Bull. Seismol. Soc. Am. 1981, 71, 1743–1761.
[CrossRef]

22. Kumar, J.; Naskar, T. A fast and accurate method to compute dispersion spectra for layered media using a
modified Kausel-Roësset stiffness matrix approach. Soil Dyn. Earthq. Eng. 2017, 92, 176–182. [CrossRef]

23. Buchen, P.W.; Ben-Hador, R. Free-mode surface-wave computations. Geophys. J. Int. 1996, 124, 869–887.
[CrossRef]

24. Jeffreys, H. Small corrections in the theory of surface waves. Geophys. J. Int. 1961, 6, 115–117. [CrossRef]
25. Takeuchi, H.; Saito, M. Study of shear velocity distribution in the upper mantle by mantle Rayleigh and Love

waves. J. Geophys. Res. 1962, 67, 2831–2839. [CrossRef]
26. Takeuchi, H.; Dorman, J. Paritial derivatives of surface wave phase velocity with respect to physical parameter

changes within the Earth. J. Geophys. Res. 1964, 69, 3429–3441. [CrossRef]
27. Anderson, D.L. Universal dispersion tables, 1, Love waves across oceans and continents on a spherical earth.

Bull. Seismol. Soc. Am. 1964, 54, 681–726.
28. Harkrider, D.G. The perturbation of Love wave spectra. Bull. Seismol. Soc. Am. 1968, 58, 861–880.
29. Aki, K.; Richards, P.G. Quantitative Seismology, 2nd ed.; University Science Books: Sausalito, CA, USA, 2002;

pp. 283–289.
30. Novotný, O. Partial derivatives of dispersion curves of Love waves in a layered medium. Stud. Geophys.

Geod. 1970, 14, 36–50. [CrossRef]
31. Novotný, O. Partial derivatives of dispersion curves of Love waves in a single-layered medium. Stud. Geophys.

Geod. 1971, 15, 24–35. [CrossRef]
32. Novotný, O.; Mufti, I.; Vicentini, A.G. Analytical partial derivatives of the phase- and group velocities for

Rayleigh waves propagating in a layer on a half-space. Stud. Geophys. Geod. 2005, 49, 305–321. [CrossRef]
33. Urban, L.; Cichowicz, A.; Vaccari, F. Computation of analytical partial derivatives of phase and group

velocities for Rayleigh waves with respect to structural parameters. Stud. Geophys. Geod. 1993, 37, 14–36.
[CrossRef]

34. Rodi, W.L.; Glover, P.; Li, T.M.C.; Alexander, S.S. A fast, accurate method for computing group-velocity
partial derivatives for Rayleigh and Love modes. Bull. Seismol. Soc. Am. 1975, 65, 1105–1114.

35. Cercato, M. Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion. Geophys.
J. Int. 2018, 213, 489–510. [CrossRef]

36. Cercato, M. Computation of partial derivatives of Rayleigh-wave phase velocity using second-order
subdeterminants. Geophys. J. Int. 2007, 170, 217–238. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1365-246X.1979.tb06779.x
http://dx.doi.org/10.1111/j.1365-246X.1993.tb01194.x
http://dx.doi.org/10.1111/j.1365-246X.1979.tb01011.x
http://dx.doi.org/10.1016/0148-9062(83)91665-0
http://dx.doi.org/10.1016/j.soildyn.2016.09.042
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05642.x
http://dx.doi.org/10.1111/j.1365-246X.1961.tb02965.x
http://dx.doi.org/10.1029/JZ067i007p02831
http://dx.doi.org/10.1029/JZ069i016p03429
http://dx.doi.org/10.1007/BF02585549
http://dx.doi.org/10.1007/BF01613602
http://dx.doi.org/10.1007/s11200-005-0012-6
http://dx.doi.org/10.1007/BF01613919
http://dx.doi.org/10.1093/gji/ggx558
http://dx.doi.org/10.1111/j.1365-246X.2007.03383.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Computations of Surface-Wave Phase-Velocity DCs Based on the Reduced Delta Matrix Method 
	Computation of PDs of Surface-Wave Phase Velocities 
	Computation of PDs of Surface-Wave Group Velocities 
	Fully Analytical Method 
	Hemi-Analytical Method 

	Package Description 
	Examples 
	Love-Wave Case 
	Rayleigh-Wave Case 
	A Two-Layer Model 
	A Six-Layer Model 


	Discussion and Conclusions 
	
	
	
	
	References

