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Abstract: The deployment of new radio access technologies always provides a good opportunity and
timing to optimize the existing mobile front- and backhaul (commonly called “anyhaul”). The legacy
systems (Long-Term Evolution (LTE), High-Speed Packet Access (HSPA), third-generation mobile
(3G), second-generation mobile (2G)) already extensively utilize the transmission and transport
capacities of the mobile anyhaul. With the current launch of 5G (fifth-generation mobile) and recent
LTE-A (Advanced Long-Term Evolution), additional new transmission capacities are required again.
Depending on the traffic and network topology, additional cell sites are built, and even more locations
are connected with fiber optics. The existing microwave and millimeter-wave links are rotated
toward those aggregation points that already have optical-fiber access. Due to the increased cell-site
density, the average distance of the radio access links can be reduced by network and topology
optimization. The reduced hop lengths combined with adaptive modulation and automatic power
control bring an opportunity for capacity increase in shortened radio links. Links newly deployed for
5G find a wide spectrum in the millimetric V, E, W, and D frequency bands. This paper discusses
the availability and hop-length targets of the anyhaul links that should be carefully kept by proper
planning and monitoring.
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1. Introduction

This invited paper is an extended version of the paper presented at the 42nd Telecommunications
and Signal Processing conference [1]. The paper investigates the recommended hop length and
availability of microwave and millimeter-wave (µ/mmW) radio links operating in traditional and
new frequency bands. In Sections 2 and 3, it is shown that, in addition to the preferred fiber-optical
access, µ/mmW radio links continue to play an essential role in fronthaul and backhaul (commonly
called “anyhaul”) deployments of future mobile networks. In Section 4, a straightforward calculation
method is given for the fade margin (FM) of the links by using radio equipment parameters and
system gain (SG). Then, it is explained how to determine link availability from the calculated FM
and for the given hop length by taking rain and atmospheric attenuation into account. In Section 5,
maximum recommended hop-length curves are plotted as a function of rain-rate intensity for the
different frequency bands. The paper—as a planning guideline—focuses on real deployment scenarios.
Compared to earlier research and case studies, a general approach is presented for the practical
link designs [1]. With the step-by-step calculation method presented, the different antenna size,
the link polarization, and the used modulation modes can be taken into account. The presented
calculation method and charts provide useful help in the planning phase of newly deployed µ/mmW
links. The results also help in optimization projects, when existing links are shortened by rotating
toward new fiber access points. For the first time, maximum hop-lengthvs vs. rain-rate curves are
plotted that belong to the pre-determined availability of the radio links. Earlier, these calculations
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were done using planning tools; here, the results are plotted by calculations of a simple Excel macro.
The charts presented in Section 5 are illustrative examples, and the presented method can be used for
any equipment and antenna combinations having different system and antenna gain values. Finally, in
Section 6, an interesting conclusion is drawn; in Central/Eastern Europe, even smaller countries exhibit
significant geographical variations of rainfall-rate intensities. Therefore, to maximize hop lengths for a
given bit rate and SG, the local rainfall-rate statistics are recommended to be used during deployment
and optimization. Finally, the calculation method is helpful in the monitoring phase of mobile anyhaul
networks, when field results of the running µ/mmW links are compared to the planned parameters.

The new radio access technologies (RATs) enable diverse services and different use cases in mobile
networks (NWs). On one hand, the 5G (fifth-generation mobile) broadband services may require
Gbps (Gigabit/second) peak data rates or even beyond. On the other hand, several critical services,
e.g., remote control, robotics, or vehicular applications, require ultra-high reliability and low latency
(Figure 1) [2]. Therefore, the deployment of 5G necessitates a quick expansion of the fiber-optical
transport network, as well as the µ/mmW radio links in the entire mobile front- and backhaul [1–6].
The existing mobile anyhaul networks already provide the transmission capacity for the recently
deployed Long-Term Evolution (LTE-A (Advanced), LTE) evolved Node-Bs, as well as the capacity for
the legacy second- and third-generation (2G/3G) base stations in most of the countries [7,8].
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Figure 1. Fifth-generation mobile (5G): enabler for diverse use cases and services.

With the new 5G radio access points (RAPs), the density of sites is further increasing. Combined
systems mesh various generations that are either legacy 2G sites, 3G Node-Bs, LTE eNode-Bs, or new
5G RAPs. The different RATs (or simply “generations”) are frequently co-located to accelerate network
rollouts, and they re-use earlier site investments to benefit from the capacity of the existing front- or
backhaul. Earlier RATs are continuously modernized, often “re-farmed” toward 4G and 5G, resulting
in a continuous expansion and optimization of the mobile anyhaul [1–9]. This paper investigates how
the earlier deployed and new µ/mmW links can contribute to the demands of bandwidth increase.
Topology optimization, shortened radio links, adaptive modulation, and automatic transmit power
control (ATPC) techniques can all contribute to extra capacity for the sites. However, for 5G, low
latency and high availability requirements should also be fulfilled [2,5].
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2. Connection Options and Topology Optimization after Site Densification

With the deployment of pico-cells and 5G introduction, the distance between neighboring sites is
continuously decreasing. Meanwhile, the capacity demands of the sites are increasing. As a result,
more and more locations require fiber-optical connection or microwave links with increased access
transmission capacity [1–8]. The rapid network expansion inherently provides the possibility of
optimization by means of topology re-planning. Thanks to the site densification, the hop lengths of the
micro- and millimeter-wave access links can be reduced. A recent case study estimated significant
hop-length reduction with 5G deployment [9]. The shorter links can either use higher millimeter-wave
frequencies where available bandwidths are wider; alternatively, when the same hardware is re-used,
the average output power can be regulated by ATPC, and elevated modulation can provide higher bit
rates [9–14]. Thus, the access capacity can be increased and, with careful re-design, the possible radio
interference can simultaneously be reduced. Figure 2 shows two connection scenarios: how 5G and
LTE cells can be connected to the LTE and 5G cores in the early 5G deployment phase, and then to a
common 5G core in the mature phase of 5G. More connection options are discussed in Reference [3].
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Figure 2. Different 5G interfaces: (a) in early 5G phase; (b) in mature 5G phase.

As an example, the µ/mmW links of an urban access network are shown (dark lines) in Figure 3,
as seen in the link planning tool. Line-of-sight (LoS) information for possible new radio hops is plotted
with light-green lines. High sites having fiber-optical access points are considered as transmission
hubs (e.g., the locations 102A and 270C in Figure 3) and are target end-points of new links deployed
after site densification.

Route diversity can be achieved with short radio chains composed of a few µ/mmW hops and
fiber-optical loop-back. Alternatively, the entire loop can be fiber-optic and, from the aggregation
points, radio links can access the sites in star or in tree topology [8,15]. It should be mentioned also
that very long radio chains of multiple hops increase the delay and, therefore, cannot be tolerated by
low latency 5G services. Finally, a full mesh topology composed of µ/mmW radios, free-space optical
(FSO) links, and fiber-optical cables provides the mobile anyhaul [16–18]. Satellite links are very rarely
used in Europe due to the high associated installation and lease costs and the relatively low capacity
provided. Twisted pair or coaxial cables are limited in the bandwidth distance product; therefore,
metallic cables were step-by-step replaced by optical fibers. Lightweight optical fibers are already
widely used for remote antenna heads as feeder lines, and there is a significant research activity of
radio-over-fiber (RoF) systems to deliver combined “fiber/wireless” networks for a reduced cost, with
easier installation to support 5G deployments [5,17–23].
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Figure 3. Example of topology re-planning for new and co-located sites.

The evolving networking scenario is shown in Figure 4. Due to low latency requirements,
cloudification, and 5G slicing, the cloud core networks tend to be more distributed toward the edge
sites. Current distributed radio access networks tend to be more centralized, and the role of fiber
optics in cloud RANs (radio access networks) is increasing [17–23]. However, the microwave and
millimeter-wave links still continue to form an essential portion of the mobile anyhaul [1,3,4,6,7,9].
Business analysts forecast an initial 50%/50% split of fiber and µ/mmW access for 5G. Later on, this
split may change to 75% optical fiber and 25% radio, when new optical access points—often called
PoPs (points of presence)—are added to the networks. This paper focuses on the radio links of the
mobile anyhaul. The possible new mmW frequency bands, the radio link availability targets, and the
outage caused by rain are discussed in later sections of the paper.
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3. Higher Link Frequencies and Bit Rates

As the access links are getting shorter and the capacity demands are increasing continuously,
frequencies in millimeter-wave bands are becoming more and more employed [1,4–6,9,11–13].
The millimeter-wave bands V, E, W, and D (57–66, 71–86, 92–114.25, and 130–174.8 GHz, respectively)
are coming into focus because wider radio-frequency (RF) bandwidths are available and, as such, the bit
rate of the connections is increased and latency is reduced [12–14]. The European Telecommunication
Standards Institute (ETSI) discussed the possible frequency bands in Reference [24]. The channel
spacing may reach GHz values, i.e., as a multiple of 250 MHz, as seen in Table 1. In the 71–86-GHz
bands, the link bit rates go beyond Gbit/s. In the widest 2-GHz RF channel, the link bit rate is above
10 Gbps with equipment from the best equipment class of ETSI [14,24–26].

Table 1. Channel separation and link bit rates in the different frequency bands.

Frequency Bands
(GHz)

Channel Separation Options 1

Minimum; . . . ; Maximum (MHz)

Capacities 1 According to
Equipment Class and Channel

Separation (Mbit/s)

13, 15 1.75; 3.5; 7; 14; 28; 56 4–431
18 1.75; 3.5; 7; 13.75; 27.5; 55; 110 4–862

23, 26, 28, 32, 38, 42 3.5; 7; 14; 28; 56; 112 4–862
50, 52, 55 3.5; 7; 14; 28; 56 2–128

57–64, 64–66
(V band)

30 or 50, multiple of 30 or 50,
maximum 2000

28.5–3400
(unlicensed band)

71, 76, 81, 86
(E band)

62.5; 125; 250; 500; 750; 1000; 1250;
1500; 1750; 2000 35–11200

1 For more details, see European Telecommunication Standards Institute, ETSI EN 302 217-1 [24].

Please note that there may be deviations from the frequency allocation rules indicated in Table 1
based on local decisions of the national communication authorities. The European Conference of Postal
and Telecommunications Administrations (CEPT) already allocates frequencies up to 175 GHz [27–29].
Actual research of fiber/wireless systems goes above 200 GHz [5,12,19,30].

Different methods are utilized to increase the overall transmission capacity of a radio link.
A traditional approach is to combine two radio channels operating with different carrier frequencies.
Multiple channels operating at different carrier frequencies can also be branched together. Polarization
multiplexed links (often simply called “dual-polar” or “cross-polar” links) add up the two different
polarizations (i.e., vertical and horizontal) to double the transmission capacity [13,14,31–34]. However,
dual-polar links require special antennas, and are more sensitive to interference and rain, as discussed
in later sections. The combination of cross-polarized and multi-frequency techniques is also well
known and widely used. For example, by adding two radio channels (in the same frequency band)
and two polarizations, the link capacity can be quadrupled. A novel and interesting approach is to
aggregate parallel links operating in different frequency bands to increase capacity. A recent field trial
reported an aggregated bit rate of 100 Gbps over microwaves with these techniques [35]. Dual-band
antennas are available to combine traditional frequency bands with the E band [9,26].

4. Link Parameters and Availability Calculation

In addition to the climatic and meteorological factors, the availability recommendations
for individual links depend on the topology and diversity methods used. Instead of “bulky”
hardware-based 1 + 1 link protection, in the urban environment, route diversity is recommended [15].
The installation of additional parabolic antennas for link diversity is avoided due to the undesired visual
impact. The availability targets are split into site- and link-specific targets. Overall link availability
targets are usually given as “four-” or “five-nines”. Each radio access link should have, e.g., A = 99.99%
availability over time, including outages due to rain and equipment failures. This 99.99% availability
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corresponds to an annual outage of approximately 52 min. Outages of the individual links are caused
by the following:

• propagation (intensive rain and other atmospheric conditions, such as snow, fog, oxygen, or water
vapor absorption at very high frequencies);

• link unavailability due to radio equipment failure.

With reasonable dish sizes, the link unavailability (U) should be U = 0.01% of the time or less.
The link planning guidelines target individual link availability for an annual timeframe that includes
the seasonal fluctuations of weather conditions. The goal is to ensure reliable links, regardless of the
undesired effects of propagation phenomena and rain. Exceptions may occur, when antenna size is
limited due to civil work constraints, e.g., wind load or authorities not permitting the installation of
bigger diameter dishes. In the calculations, the frequently used frequency bands are investigated [24].
This paper focuses on rain intensities R < 100 mm/h that are typical in Central and Eastern Europe.
For completeness, higher rain rates are also calculated, following the rain and propagation model of
the International Telecommunication Union, ITU-R P recommendations [36–39].

4.1. System Gain Calculation

The International Telecommunication Union (ITU) defines system gain as follows [1,40,41]:

SG(BER)[dB] = PTX
[dBm]

− PRXth(BER)[dBm]. (1)

The system gain appropriately characterizes the transmitter and the receiver modules of the digital
µW or mmW radio link. Thus, SG helps to determine the maximum distance that the equipment can
connect with a given, pre-defined availability. PTX is the “nominal” transmit power at the output of
the transceiver module (point C/C’ in Figure 5). The reference points are according to the definition of
ETSI (as provided in Reference [24]). For simplicity, neither feeder lines nor additional branching are
indicated in the figure (for multi-channel or dual-polar links). When there is no feeder or additional
branching network, then the transceiver can be directly connected to the transmitting antenna, as
plotted in Figure 5. In this case (C′ = D′), the output power PTX can be measured at the connection
point of the antenna (D/D’ in Figure 5).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 22 

For completeness, higher rain rates are also calculated, following the rain and propagation model of 
the International Telecommunication Union, ITU-R P recommendations [36–39]. 

4.1. System Gain Calculation 

The International Telecommunication Union (ITU) defines system gain as follows [1,40,41]: 𝑆𝐺ሺ𝐵𝐸𝑅ሻ[ୢ] =  𝑃ଡ଼[ୢ୫]  − 𝑃 ଡ଼୲୦ሺ𝐵𝐸𝑅ሻ[ୢ୫].  (1)

The system gain appropriately characterizes the transmitter and the receiver modules of the 
digital µW or mmW radio link. Thus, SG helps to determine the maximum distance that the 
equipment can connect with a given, pre-defined availability. PTX is the “nominal” transmit power at 
the output of the transceiver module (point C/C’ in Figure 5). The reference points are according to 
the definition of ETSI (as provided in Reference [24]). For simplicity, neither feeder lines nor 
additional branching are indicated in the figure (for multi-channel or dual-polar links). When there 
is no feeder or additional branching network, then the transceiver can be directly connected to the 
transmitting antenna, as plotted in Figure 5. In this case (C’=D’), the output power PTX can be 
measured at the connection point of the antenna (D/D’ in Figure 5). 

Figure 5. Block diagram of the microwave and millimeter-wave (µ/mmW) transceiver (without feeder 
lines), according to European Telecommunication Standards Institute, ETSI EN 302 217. The reference 
points follow Reference [24]. 

“Nominal” refers to the fact that, in a wide frequency band and at changing ambient 
temperatures, variation of a few dB of the output power may occur and is tolerated [24,42]. The 
calculations focus on the output power level that is guaranteed at any frequency and temperature 
within the operational range of the outdoor unit (ODU). PRXth is the receiver sensitivity threshold, i.e., 
the input power at the receiver that is required for demodulation. Again, if there is no feeder and 
branching network, then this input power level can be measured directly at the antenna connection 
point (point D in Figure 5). In a digital link, the sensitivity threshold of the receiver is defined for a 
given modulation mode and bit error rate (BER) [41,43]. In the case of transceivers capable of adaptive 
modulation, each modulation mode and the corresponding bit rate has its own set of BER thresholds 
[10]. In this paper, we use the threshold values belonging to BER = 10−6. Please note that BER = 10−3 
thresholds are also often used. From a system design point of view, any gain due to error correction 
coding (e.g., FEC, forward error correction) is already considered in the given thresholds. 

It is important to mention that an alternative system gain definition also includes the gains of 
the transmit (TX) and receive (RX) antennas (please see Reference [33]). 𝑆𝐺ୟሺ𝐵𝐸𝑅ሻ[ୢ] =  𝑃ଡ଼[ୢ୫] + 𝐺ଡ଼ୟ[ୢ୧] + 𝐺ୖଡ଼ୟ[ୢ୧] − 𝑃 ଡ଼୲୦ሺ𝐵𝐸𝑅ሻ[ୢ୫], (2)

where GTXa and GRXa stand for the transmit and receive antenna gains, respectively. As indicated with 
the “dBi” unit, at microwave and at millimeter-wave frequencies—by definition—the antenna gains 

PTX GTX

C’    D’

C     D

receiver receive 
RF filter

A

receiver

EZ

transmitter

A’ B’E’Z’

branching

B

payload 
processing

X’1
X’2

X’n …

payload 
processing

X1
X2

Xn …

modulator transmitter transmit 
RF filter

PRX GRX

de-
modulator

Figure 5. Block diagram of the microwave and millimeter-wave (µ/mmW) transceiver (without feeder
lines), according to European Telecommunication Standards Institute, ETSI EN 302 217. The reference
points follow Reference [24].

“Nominal” refers to the fact that, in a wide frequency band and at changing ambient temperatures,
variation of a few dB of the output power may occur and is tolerated [24,42]. The calculations focus on
the output power level that is guaranteed at any frequency and temperature within the operational
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range of the outdoor unit (ODU). PRXth is the receiver sensitivity threshold, i.e., the input power at the
receiver that is required for demodulation. Again, if there is no feeder and branching network, then
this input power level can be measured directly at the antenna connection point (point D in Figure 5).
In a digital link, the sensitivity threshold of the receiver is defined for a given modulation mode and bit
error rate (BER) [41,43]. In the case of transceivers capable of adaptive modulation, each modulation
mode and the corresponding bit rate has its own set of BER thresholds [10]. In this paper, we use the
threshold values belonging to BER = 10−6. Please note that BER = 10−3 thresholds are also often used.
From a system design point of view, any gain due to error correction coding (e.g., FEC, forward error
correction) is already considered in the given thresholds.

It is important to mention that an alternative system gain definition also includes the gains of the
transmit (TX) and receive (RX) antennas (please see Reference [33]).

SGa(BER)[dB] = PTX
[dBm] + GTXa

[dBi] + GRXa
[dBi]
− PRXth(BER)[dBm], (2)

where GTXa and GRXa stand for the transmit and receive antenna gains, respectively. As indicated with
the “dBi” unit, at microwave and at millimeter-wave frequencies—by definition—the antenna gains are
compared to the gain of the isotropic antenna. To distinguish between the two alternative definitions
of system gain, in Equation (2), we note SGa to indicate that both TX and RX antenna gains are added
already. The two system gain definitions are illustrated in Figure 6, where only the µ/mmW parts are
indicated. The payload and modulator/demodulator blocks shown in Figure 5 are not repeated in
Figure 6.
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Figure 6. System gain definitions—with and without antennas [1].

Using the alternative system gain definition SGa is convenient when the transceiver has either an
integrated antenna built together with the ODU (Figure 7a) or a flip-mount antenna directly attached to
the ODU (Figure 7b). For dual-polarization and multi-channel links, additional signal combiners and/or
feeder waveguides are required (Figure 7c,d) that introduce additional losses into the entire system.

A microwave or millimeter-wave link is operational, as long as the system gain is higher than the
sum of link losses minus the sum of link gains in a hop.

Link losses[dB]
− Link gains[dB] < SG[dB]. (3)

When designing µ/mmW links, the network planners should use the SG values carefully, i.e., they
must remember which definition is used by the equipment manufacturers when the parameters are
specified. The calculation of a complete link is presented in the next section.
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4.2. Link Budget and Fading Margin Calculations

The received signal level (RSL) behind the receiving antenna is calculated as follows [31,41,43]:

PRX
[dBm] = PTX

[dBm] + GTXa
[dBi] + GRXa

[dBi]
− PL[dB], (4)

where PL is the propagation loss. With outdoor units integrated with or directly mounted onto
the antenna (Figure 7a,b), the waveguide and additional branching loss terms are zero in Equation
(4) [31,40]. As the link is single-polarized, a polarization combiner between the ODU and the antenna
(Figure 7c) is not discussed [34]. The propagation loss PL is calculated as follows:

PL[dB] = FSL[dB] + Ar
[dB] + Aa

[dB] + Amp
[dB] + Ao

[dB]. (5)

In clear LoS conditions, the obstacle loss Ao is zero. At high frequencies, the effect of multipath
fading Amp is usually not relevant, thanks to the very short hops. Typically, in an urban environment,
any alternative propagation path is blocked by buildings or other obstacles. Multipath fading is more
relevant at lower frequencies (i.e., frequencies at 18 GHz or below) and where reflection from large
water surfaces may happen, e.g., propagation over lake or sea. Ar and Aa are the terms of rain and
atmospheric attenuation in Equation (5). The unfaded received signal level PRXu is determined by the
free space loss (FSL), the transmitted power PTX, and the gain of the antennas (Figure 8).

PRXu
[dBm] = PTX

[dBm] + GTXa
[dBi] + GRXa

[dBi]
− FSL[dB]. (6)

The free space loss is calculated as follows [1,31,40]:

FSL( f , d)[dB] = 92.44 + 20· log
(

f [GHz]
)
+ 20· log

(
d [km]

)
, (7)

where f is the frequency of the link, and d is the hop length. The constant of 92.44 dB allows the
calculation in convenient GHz and km units for the frequency and distance, respectively. The fade
margin (FM) is the difference between the unfaded RSL and the receiver sensitivity threshold.

FM[dB] = PRxu
[dBm]

− PRXth(BER)[dBm]. (8)

FM should compensate for all unwanted factors degrading the link availability: rain, fog, dust,
snow, atmospheric attenuation, and interference. Interference degrades the sensitivity threshold PRXth

of the receiver. In a sunny scenario, the link can switch to an elevated modulation mode to carry more
data. Combining Equations (1), (6), and (8), we get

FM( f , d, Ø) [dB] = SG[dB] + GTXa
[dBi] + GRXa

[dBi]
− FSL[dB]. (9)
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Equation (9) simplifies to Equation (10) when the transmit and receive antennas have equal gain
(i.e., same antenna type and dish size are used at both ends of the link).

FM( f , d, Ø) [dB] = SG[dB] + 2Gant
[dBi]
− FSL[dB]. (10)

As seen, at a given frequency, a higher system gain results in a better fade margin of the link for a
given d hop length and Ø antenna diameter. In mobile front- and backhaul expansion projects (simply
“anyhaul” or also called “X-haul” [13,25]), the manufacturer and the type of the radio equipment
are usually defined. Thus, parameters SG, PTX, and PRXth are given and cannot be selected freely.
In several projects, for example, it is expected to re-use the equipment running in the field. Only few
parameters remain free for the planners in practice, when the new links in the network are designed.
In the planning phase, therefore, both the frequency band f and the antenna diameters should be
carefully selected for a given hop length d. Lower frequencies are more “valuable” and should be
reserved for long-haul links. For simultaneously reducing the undesired radio interference [43] and
increasing the FM, preferably bigger dish diameters and the use of ATPC are recommended.
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Radio links using adaptive modulation have different PRXth thresholds for the different modulation
modes (Figure 9). The low modulation mode is active in the rainy minutes when FM compensates for
the loss caused by rain. During sunny periods when the FM is available, the link can jump to elevated
modulation modes; thus, more data can be transmitted [1,11,31–34]. For simplicity, Figure 9 shows
quadrature amplitude modulation (QAM) only up to the 512 states [10]. State-of-the-art transceivers
can use up to 4096-QAM to reach multi Gigabit/s bit rates as discussed in Section 3.

Finally, the link is operational as long as its fade margin is greater than the losses caused by the
rain and by the atmospheric attenuation (obstacle losses and interference are not considered).

FM [dB] > Ar,0.01%
[dB] + Aa

[dB]. (11)
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Figure 9. Adaptive link modulation when ensuring guaranteed bit rate during intensive rain.

4.3. Rain and Atmospheric Attenuation

The rain attenuation calculation follows the methodology discussed in ITU-R P.530 [36–38].
The rain attenuation term A0.01% refers to the attenuation that is exceeded for 0.01% of the time and
caused by intensive rainfall. This rain attenuation—exceeded in 0.01% of the time—is given as

A0.01%
[dB] = γRdeff = γR

d
1 + d/d0

. (12)

In Equation (12), γR is the specific attenuation (in dB/km) due to rain, and deff is the effective
hop length.

deff =
d

1 + d/d0
. (13)

When the rain rate is R0.01% ≤ 100 mm/h, then

d0 = 35e−0.015R0.01% . (14)

When R0.01% > 100 mm/h, then d0 = 35 × e−1.5 (i.e., R = 100 mm/h is used for all rain rates above
100 mm/h). However, such intensive rain is not relevant in the Central and Eastern Europe region [37].
According to ITU-R P.838, the specific attenuation for vertical polarization is calculated as follows:

γR,V = kVRαV , (15)

and that for horizontal polarization is calculated as follows:

γR,H = kHRαH , (16)

where the constants kV, αV, kH, and αH depend on the frequency f and the polarization of the link [38].
V and H stand for vertical and horizontal polarization, respectively.

The atmospheric attenuation, Aa, is caused by the absorption of gaseous particles in the air.
Compared to rain attenuation (Ar,0.01% in Equation (11)), for few-km short hops, Aa is negligibly small
in most of the frequency bands used by µ/mmW links. As seen in Figure 10, up to 300 GHz, there are
four remarkable attenuation peaks [39]. Water vapor causes extra attenuation in the 23 GHz band
(where Asp = 0.2 dB/km) and around 180 GHz.
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GHz range [39,44,45]. As seen in Figure 11, the attenuation due to oxygen absorption is very high: 
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Figure 10. Specific attenuation due to oxygen (blue line), water vapor (orange line), and total attenuation
(red line) according to International Telecommunication Union, ITU-R P.676-12. Reproduced with
permission from ITU [39].

Other high attenuation peaks are caused by oxygen absorption in the 56–64 GHz and in the
120 GHz range [39,44,45]. As seen in Figure 11, the attenuation due to oxygen absorption is very high:
about Asp = 13–15 dB/km in the 58–62-GHz band. Therefore, the 57–63 GHz links are limited to a few
hundred meters, and the use of vertical polarization is recommended [44,45]. On the other hand, at
56–64 GHz, due to the very high atmospheric attenuation, the chance for interference from other links
is rather small, enabling severe frequency re-use. The 30 or 50 MHz bands are allocated by CEPT in
this range, as listed in Table 1.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 22 
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For the frequently used bands, Table 2 summarizes the typical atmospheric attenuation values per
km (at sea level). These values are used in the calculations.

Table 2. Atmospheric attenuation at different frequencies.

Frequency Band (GHz) 13 15 18 23 28 32 38 58 60 80 90 100

Asp, atmospheric
attenuation (dB/km) 0.02 0.03 0.07 0.2 0.1 0.09 0.13 13 15 0.36 0.4 0.45

For the entire link distance d, the total gaseous attenuation caused by water vapor and oxygen is
calculated as follows:

Aa
[dB] = Asp

[dB/km]
·d[km]. (17)

The atmospheric attenuation per km, Asp, is shown together with rain attenuation in Figure 12 up
to 200 GHz [12,30,32]. As seen, between 64 GHz and 120 GHz, there is a useful frequency “window”
where new mmW links can benefit from a wide spectrum with atmospheric attenuation below 1 dB/km.
Also, as seen in Figure 12, rain attenuation is dominant at all frequencies, except for 60, 120, and
180 GHz, where the atmospheric attenuation peaks are visible even when the rainfall rate is above
20 mm/h.
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minimum, the first Fresnel zone of the link should be clean [32,41]. However, in some urban 
environments, the obstacle loss cannot be avoided, e.g., when the link must operate behind window 
lamels or camouflage to reduce the visual impact of the antenna (Figure 13c). In such cases, the extra 
loss caused by the obstacle (Figure 13) should be taken into account in the link budget calculation 
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Figure 12. Combined atmospheric and rain attenuation in dB/km as a function of frequency [12]. The
figure is re-printed with the permission of ETSI.

Equation (11) has no closed-form solution. After inserting the rain and atmospheric attenuation
formulas (Equations (12)–(17)) into Equation (11), the maximum hop length d can be calculated
numerically for a given R0.01% rainfall rate, polarization (either V or H), and frequency f.

SG + 2Gant > 92.44 + 20 log( f ) + 20 log(d) + kV/HRαV/H
d

1 + d/35e−0.015R0.01%
+ Aspd, (18)

where f is in GHz and d is in km units. The SG, Gant, and all the attenuation terms are in dB. Index
V/H shows that parameters k and α are different for the two polarizations. In Section 5, systematic
calculation results are given for typical system values considered in dense access networks.

4.4. Obstacle Losses

By careful link design and installation, any unwanted extra loss should be avoided, to preserve
the highest possible fade margin for the link. Microwave and millimeter-wave links require clean
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line-of-sight conditions that are checked in the planning phase of the links in two ways. The first
method is to use digital maps, digital terrain, and clutter models in the link planning tool. The second
method—not to be forgotten—involves site visits, where the LoS of the planned link is confirmed
and photographed. It is strongly recommended to always document the clean LoS in an LoS report
and to insert the confirmed LoS paths into the planning tool (green lines in Figure 3). With actual
high-performing digital cameras, links of 50 km or even longer can be checked. Later, trees (Figure 13b),
new buildings, cranes, electric cables, or chimneys may block the link. As a rule of thumb, at least,
the first Fresnel zone of the link should be clean [32,41]. However, in some urban environments, the
obstacle loss cannot be avoided, e.g., when the link must operate behind window lamels or camouflage
to reduce the visual impact of the antenna (Figure 13c). In such cases, the extra loss caused by the
obstacle (Figure 13) should be taken into account in the link budget calculation (Equation (5)).Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 22 
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Figure 13. (a) Ice and snow on the radome of a parabolic dish; the photo is re-printed with permission 
from RACOM [34]. (b) Extra attenuation due to a tree in the near field. (c) ODU installed behind a 
church window (polycarbonate lamels). (d) Metal cables inside the first Fresnel zone of the µW link. 
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Figure 13. (a) Ice and snow on the radome of a parabolic dish; the photo is re-printed with permission
from RACOM [34]. (b) Extra attenuation due to a tree in the near field. (c) ODU installed behind a
church window (polycarbonate lamels). (d) Metal cables inside the first Fresnel zone of the µW link.

5. Results and Calculation Examples

Results of systematic hop-length calculations for short- and medium-haul digital µ/mmW
point-to-point links are presented in this section. Solving Equation (18), the recommended maximum
distances were calculated. All the links operate in ETSI-defined communication bands widely used
in Europe, at frequencies of 13, 15, 18, 23, 26, 28, 32, 38, 58, and 80 GHz. Up to 38 GHz, the
links in the calculations used 14 MHz channel spacing (ETSI and ITU channel raster) and 32-TCM
(trellis coded modulation) for 34 Mbit/s [10,24]. The 58 GHz links used 50 MHz channel spacing.
The transmitters were set to the highest output power and the links had identical antenna size on both
ends. The main parameters of the calculated links are summarized in Tables 3 and 4. In the 13–38
GHz bands, slip-mounted 60 cm- and 30 cm-diameter parabolic dishes are used (marked with ø). At
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58 GHz, ø 30 cm parabolic dishes and integrated 20 cm rectangular antennas are used (marked with
�). The integrated rectangular 58 GHz antenna is a grid composed of radiating waveguide elements.
The low-profile antenna structure and its measurement are discussed in Reference [46]. The system
and antenna gain values are illustrative examples. Naturally, the simulation can also run with different
SG values and with asymmetric antenna configuration.

Table 3. Transmit power, antenna gain, and receiver threshold of the calculated 13–38 GHz links.
BER—bit error rate.

Frequency
Band
(GHz)

Nominal
PTX

(dBm)

Gant
ø 30 cm
(dBi) 1, 2

Gant
ø 60 cm
(dBi) 1, 3

PRXth at
BER = 10−6

(dBm)

SGa = SG + 2Gant

ø 30 cm
(dB)

ø 60 cm
(dB)

13 20 30.9 35.8 −74 155.8 165.6
15 18 32.1 36.8 −76 158.2 167.6
18 18 34.2 38.7 −73 159.4 168.4
23 18 35.3 40.4 −75 163.6 173.8
26 18 36.6 41.2 −73 164.2 173.4
28 16 38.1 42.2 −72 164.2 172.4
32 16 38.9 43.7 −72 165.8 175.4
38 16 40.1 45.2 −73 169.2 179.4

1 Antennas in the calculations are ValuLine from Andrew, a CommScope Company. 2 The physical size of the 30-cm
(one foot) antenna is 39 cm (outer diameter). 3 The physical size of the 60-cm (two feet) antenna is 69 cm (outer
diameter) [47,48].

Table 4. Transmit power, antenna gain, and receiver threshold of the calculated 58 GHz links.

Frequency
Band
(GHz)

Nominal
PTX

(dBm)

Gant
� 20 cm

(dBi)

Gant
ø 30 cm

(dBi)

PRXth at
BER = 10−6

(dBm)

SGa = SG + 2Gant

� 20 cm
(dB)

ø 30 cm
(dB)

58 5 36 41.5 −74 146 157

The graphs in Figures 14 and 15 were drawn using the rain model according to ITU-R P.838 [38].
The shadowed regions show typical rainfall rates in Central and Eastern Europe, (H and K rain
zones according to ITU-R P.837 [37]). The curves were calculated without any additional obstacle
loss (Figure 13). Single-polarized links were calculated, and there was no polarization combiner loss
calculated in the link budget. Antennas were directly connected to the transceivers, thus no waveguide
losses were considered due to feeder lines. Vertical polarization is shown in Figures 14a and 15a.
Horizontal polarization is shown in Figure 14b and in Figure 15b. As earlier discussed in Section 4, at
58 GHz frequency, the atmospheric attenuation is very high. Therefore, horizontal polarization is not
recommended, and only vertical polarization is calculated [44,45,49]. Note that 7–15 GHz links are
rarely used in a dense urban environment. For the 13–18 GHz links, the minimum recommended dish
diameter is 60 cm. Several communication authorities specify very strict antenna pattern requirements
for the lower frequency bands to avoid interference (e.g., minimum antenna gain, maximum sidelobe,
front-to-back ratio) [50]. In practice, the 30 cm dishes are not permitted in the frequency bands below
18 GHz in some countries to achieve better frequency re-use. Therefore, the calculated 13–18 GHz links
with 30 cm dishes are shown only for comparison (the upper three curves in Figure 15a,b).

Finally, calculation results are shown for the E band. In the examples, the parameters of the Nokia
millimeter-wave radio family are used, as given in Table 5. The “Wavence” radios can operate with
several channel spacing options at 80 GHz: 62.5 MHz, 125 MHz, 250 MHz, 500 MHz, 750 MHz, 1 GHz,
1.25 GHz, 1.5 GHz, and 2 GHz. The 80 GHz radio uses adaptive modulation up to 256-QAM.
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Figure 14. Recommended hop lengths as a function of rainfall intensity. (a) Hops with vertical
polarization, 34 Mbit/s, 14 MHz, and ø 60 cm dishes. For the 58 GHz link, ø 30 cm dishes are used in
the calculations. (b) Hops with horizontal polarization, 34 Mbit/s, 14 MHz, and ø 60 cm dishes.
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Figure 15. Recommended hop lengths as a function of rainfall intensity. (a) Hops with vertical
polarization, 34 Mbit/s, 14 MHz, and ø 30 cm dishes. In the 58 GHz band, � 20 cm rectangular antennas
are used. (b) Hops with horizontal polarization, 34 Mbit/s, 14 MHz, and ø 30 cm dishes.

Table 5. Transmit power, antenna gain and receiver threshold of the calculated 80 GHz links.
BPSK—binary phase-shift keying; QPSK—quadrature phase-shift keying; QAM—quadrature
amplitude modulation.

Modulation
Mode

Nominal
PTX

(dBm)

Gant
ø 12 cm

(dBi)

Gant
ø 39 cm

(dBi)

Gant
ø 69 cm

(dBi)

PRXth at
BER = 10−6

(dBm)

SGa = SG + 2Gant

ø 12 cm
(dB)

ø 39 cm
(dB)

ø 69 cm
(dB)

BPSK 1/4 16

38 43.1 50.9

−76.4 168.4 178.6 194.2
BPSK 1/2 16 −73.4 165.4 175.6 191.2

BPSK 16 −70.4 162.4 172.6 188.2
QPSK 16 −67.4 159.4 169.6 185.2

16-QAM 14 −60.8 150.8 161.0 176.6
32-QAM 14 −57.7 147.7 157.9 173.5
64-QAM 13.5 −55.2 144.7 154.9 170.5

128-QAM 12.5 −51.8 140.3 150.5 166.1

In the calculations, 1 GHz RF bandwidth was selected. Three antenna configurations and different
modulation modes were compared (from binary phase-shift keying (BPSK) to 128-QAM). The ø 12-cm
antenna was integrated with the ODU (see Figure 7a). The one-foot and two-foot antennas were
slip-mounted. Figure 16 plots the calculation results. As seen, depending on the antenna size and
modulation used, the links can operate in distances of 1–4 km with A = 99.99% availability in the K
rain zone. Calculations show that the predicted behavior is very similar for horizontal and vertical
polarization in the E band (Figure 16d), which needs to be experimentally verified by long-term
measurements. Finally, the curves, such as that shown in Figure 16e, help to decide the minimum
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required modulation mode and, as such, the bit rate that a link can support in the case of intensive rain
for a given hop length. The continuous monitoring of radio RSL and modulation mode is supported
by Wavence radios, as illustrated in the example of Figure 16f.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 22 
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Figure 16. Recommended hop lengths as a function of rainfall intensity. (a) Hops with vertical
polarization, 1 GHz channel and ø 12 cm dishes. (b) Hops with vertical polarization, 1 GHz channel and
ø 39 cm dishes. (c) Hops with vertical polarization, 1 GHz channel and ø 69 cm dishes. (d) Comparison
of vertical and horizontal links at the different modulation modes. (e) Comparison of hops with
different dish sizes. Modulations are quadrature phase-shift keying (QPSK) and 128-QAM. (f) Example
of monitoring the local and remote received signal level (RSL) and modulation modes.

6. Local Rainfall Rates and Experimental Verification

As seen in the global rain-rate map of Figure 17, the Central and Eastern European countries fall
mainly into the rain-rate zones of 25 mm/h, 32 mm/h, and 42 mm/h, called E, H, and K zones in the ITU
recommendations. In the planning phase, the rainfall rate is often approximated with one single value
for medium and small countries, i.e., 42 mm/h for the entire territory of Hungary, following ITU-R
P.837-1 [37].
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activities in the Czech Republic and in Hungary [12,44,52,53]. Rainfall and RSL results are stored with 
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Figure 17. Global map of rain-rate zones, reproduced with permission from RACOM [51].

It is worth mentioning that advanced link planning tools provide the possibility to define rain-rate
polygons inside a country when more accurate data are available. Even for medium- or relatively
small-size European countries, the rainfall rate may change significantly inside the country. Switzerland
is shown in Figure 18a as an example, where the R0.01% rain rates vary from 26 mm/h to 46 mm/h in the
different rain zones. Research activities are ongoing in several countries to determine accurate local
rainfall rates, specific for the region. Fixed µ/mmW links are monitored together with meteorological
data continuously. There are also remarkable long-term rain-rate measurement activities in the Czech
Republic and in Hungary [12,44,52,53]. Rainfall and RSL results are stored with high accuracy and
time resolution. The statistical evaluation of rain attenuation is based on the long-term data collected
experimentally. Figure 18b shows significant rainfall intensity differences calculated for Hungary [53].
Long-term trial and operator network experience were also published for the 58 GHz and 73 GHz
links [44,45,52,53].

Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 22 

 

Figure 17. Global map of rain-rate zones, reproduced with permission from RACOM [51]. 

It is worth mentioning that advanced link planning tools provide the possibility to define rain-
rate polygons inside a country when more accurate data are available. Even for medium- or relatively 
small-size European countries, the rainfall rate may change significantly inside the country. 
Switzerland is shown in Figure 18a as an example, where the R0.01% rain rates vary from 26 mm/h to 
46 mm/h in the different rain zones. Research activities are ongoing in several countries to determine 
accurate local rainfall rates, specific for the region. Fixed µ/mmW links are monitored together with 
meteorological data continuously. There are also remarkable long-term rain-rate measurement 
activities in the Czech Republic and in Hungary [12,44,52,53]. Rainfall and RSL results are stored with 
high accuracy and time resolution. The statistical evaluation of rain attenuation is based on the long-
term data collected experimentally. Figure 18b shows significant rainfall intensity differences 
calculated for Hungary [53]. Long-term trial and operator network experience were also published 
for the 58 GHz and 73 GHz links [44,45,52,53]. 

 
(a) 

 
(b) 

Figure 18. R0.01% in mm/h, the rainfall intensities exceeded 0.01% of the time. (a) Rain-rate contour 
lines in Switzerland. (b) Rain-rate regions in Hungary as calculated in Reference [53]. The figure is 
reproduced with permission from László Csurgai-Horváth. 

Figure 18. R0.01% in mm/h, the rainfall intensities exceeded 0.01% of the time. (a) Rain-rate contour
lines in Switzerland. (b) Rain-rate regions in Hungary as calculated in Reference [53]. The figure is
reproduced with permission from László Csurgai-Horváth.



Appl. Sci. 2019, 9, 5240 18 of 22

A very accurate meteorological report is available, e.g., for Norway [54]. Rainfall intensities
exceeded for 0.5%, 0.1%, 0.01%, and 0.001% of the time were measured over several decades. Such an
accurate report is very helpful in the availability design of µ/mmW links (Figure 19).
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Finally, it was shown with rain-rate maps that, even in medium- or small-size countries, there 
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0.001% of the time. (b) Rainfall rates in mm/h, exceeded 0.01% of the time. (c) Rainfall rates in
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Institute [54].

7. Discussion

Microwave and millimeter-wave links continue to support the mobile anyhaul networks both for
the legacy and the new 5G radio access points. Site densification and new fiber-optical aggregation
points result in shorter hop lengths for the µ/mmW links. In the coming years, a mesh topology
composed of fiber-optical, FSO, and µ/mmW radio links will be used with load sharing and route
diversity techniques. In the radio hops adaptive modulation, ATPC and channel aggregation techniques
support higher bit rates. New millimeter-wave frequency bands will receive emphasis thanks to
the wide spectrum available. In the millimetric E and V bands, multi-Gbps links can support 5G
deployments with high bit rates and low latency.

In this paper, hop-length recommendations were given for the digital µ/mmW radio links. Using
the ITU recommendations for rain and atmospheric attenuation, a detailed fade margin and availability
calculation method was presented. The presented calculation method takes antenna size, link frequency,
polarization, and modulation mode into account. Example radio link calculations were shown with
typical system gain and antenna size values. During the numerical calculations, rainfall rate statistics
were considered that are typical in Central and Eastern European countries. Recommended hop length
was plotted as a function of rainfall rate for the different frequency bands, link polarizations, and
dish sizes. The calculated charts provide useful help in the planning, optimization and monitoring of
µ/mmW links.

Finally, it was shown with rain-rate maps that, even in medium- or small-size countries, there may
be significant rainfall rate differences in Europe. For more accurate availability and optimal hop-length
calculations, locally collected meteorological data should be utilized in the radio link planning tools.
As a result, the new links can be planned with the required availability targets, and the existing access
network can be optimized to support the increased capacity demands of 5G deployments.
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Acronyms

A availability
Aa atmospheric attenuation
Ao obstacle loss
Asp specific attenuation (in dB/km)
ATPC automatic transmit power control
BER bit error rate
BPSK binary phase-shift keying
CEPT The European Conference of Postal and Telecommunications Administrations
d distance: hop length of the radio links
dB deciBel
dBi antenna gain in dB unit, compared to the gain of the isotropic antenna
dBm power in dB, relative to 1 mW
EN European Norm
ETSI European Telecommunication Standards Institute
FEC forward error correction
FM fade margin
FSL free space loss
FSO free space optical (link)
Gant antenna gain
GRXa antenna gain of the receiver
GTXa antenna gain of the transmitter
Gbps gigabit/second
H horizontal (polarization of a link)
HSPA high speed packet access
IDU indoor unit
ITU International Telecommunication Union
LoS line-of-sight
LTE long-term evolution
LTE-A LTE Advanced
Mbps megabit/second
mmW millimeter-wave frequencies: 30 GHz–300 GHz
NW network
ODU outdoor unit
PL propagation loss
PRX power received at the input of the transceiver
PTX power transmitted at the output of the transceiver
PRXth receiver threshold (for BER = 10−6)
PRXu unfaded RSL at the input of the transceiver
PoP point of presence
QAM quadrature amplitude modulation
QPSK quadrature phase-shift keying
R rainfall rate in mm/h
RAN radio access network
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RAP radio access point
RAT radio access technology
RF radio frequency
RoF radio-over-fiber
RSL received signal level
RX receive or receiver
SG system gain
SGa system gain with TX and RX antenna gains included
TCM trellis coded modulation
TX transmit or transmitter
U unavailability
V vertical (polarization of a link)
Ø diameter
µ/mmW microwave and millimeter-wave
2G 2nd generation mobile network, GSM
3G 3rd generation mobile network, UTRAN
4G 4th generation mobile network, LTE
5G 5th generation mobile network
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