Development of Zirconium-Based Alloys with Low Elastic Modulus for Dental Implant Materials
Abstract
:1. Introduction
2. Experimental Details
2.1. Alloy Manufacturing
2.2. X-ray Diffraction (XRD) Test
2.3. Microstructure Characterization
2.4. Mechanical Property Test
2.5. Electrochemical Corrosion Measurement
3. Results and Discussion
3.1. Microstructure and Phase Observation
3.2. Mechanical Properties
3.3. Elastic Modulus Measurement
3.4. Corrosion Measurement
4. Conclusions
- (1)
- In the Zr–7Cu–xSn alloys, Zr2Cu, an intermetallic compound was distributed along grain boundaries. As the Sn content increases, the Zr matrix decreases and the Zr2Cu phase coarsened to confirm solid solution strengthening.
- (2)
- The compression test was performed to obtain the stress–strain curves of the alloys. The compressive strength of the Zr–7Cu–xSn alloy was in the range of 860–1200 MPa. The elastic modulus was obtained in the range of 14–18 GPa. It is possibly considered zirconium-based alloys are well suited as implant materials to neglect the stress-shielding effect.
- (3)
- A polarization test was conducted to measure the corrosion behavior of Zr–7Cu–xSn alloys. The addition of Sn lowered the current density of Zr, and the average value of the current density of Zr–7Cu–xSn alloy was about 0.0100 μA/cm2. Therefore, it can be regarded as a biomaterial having good corrosion resistance.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miura, K.; Yamada, N.; Hanada, S.; Jung, T.-K.; Itoi, E. The bone tissue compatibility of a new Ti–Nb–Sn alloy with a low Young’s modulus. Acta Biomater. 2011, 7, 2320–2326. [Google Scholar] [CrossRef] [PubMed]
- Cremasco, A.; Andrade, P.N.; Contieri, R.J.; Lopes, E.S.N.; Afonso, C.R.M.; Caram, R. Correlations between aging heat treatment, ω phase precipitation and mechanical properties of a cast Ti–Nb alloy. Mater. Des. 2011, 32, 2387–2390. [Google Scholar] [CrossRef]
- Guo, Q.; Zhan, Y.; Mo, H.; Zhang, G. Aging response of the Ti–Nb system biomaterials with β-stabilizing elements. Mater. Des. 2010, 31, 4842–4846. [Google Scholar] [CrossRef]
- Cicciù, M.; Fiorillo, L.; Herford, A.S.; Crimi, S.; Bianchi, A.; D’Amico, C.; Laino, L.; Cervino, G. Bioactive Titanium Surfaces: Interactions of Eukaryotic and Prokaryotic Cells of Nano Devices Applied to Dental Practice. Biomedicines 2019, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, J.-Y.; Tsutsumi, Y.; Doi, H.; Nomura, N.; Kim, K.-H.; Hanawa, T. Enhancement of calcium phosphate formation on zirconium by micro-arc oxidation and chemical treatments. Surf. Coat. Technol. 2011, 205, 4948–4955. [Google Scholar] [CrossRef]
- Sundararajan, G.; Rama Krishna, L. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf. Coat. Technol. 2003, 167, 269–277. [Google Scholar] [CrossRef]
- Sreekanth, D.; Rameshbabu, N.; Venkateswarlu, K. Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceram. Int. 2012, 38, 4607–4615. [Google Scholar] [CrossRef]
- Venkateswarlu, K.; Rameshbabu, N.; Sreekanth, D.; Bose, A.C.; Muthupandi, V.; Babu, N.K.; Subramanian, S. Role of electrolyte additives on in-vitro electrochemical behaviour of micro arc oxidized titania films on Cp Ti. Appl. Surf. Sci. 2012, 258, 6853–6863. [Google Scholar]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Zhang, B.; Kwok, C.T. Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications. J. Mater. Sci. Mater. Med. 2011, 22, 2249–2259. [Google Scholar] [CrossRef]
- Xu, R.; Hu, X.; Yu, X.; Wan, S.; Wu, F.; Ouyang, J.; Deng, F. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells. Int. J. Nanomed. 2018, 13, 5045–5057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.L.; Niinomi, M.; Akahori, T. Effects of alloying additions on mechanical properties of Ti–Hf and Ti–Ta alloys. Mater. Sci. Eng. A 2004, 384, 92–101. [Google Scholar] [CrossRef]
- Rao, S.; Ushida, T.; Tateishi, T.; Okazaki, Y.; Asao, S. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-Med. Mater. Eng. 1996, 6, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Rae, T. The toxicity of metals used in orthopaedic prostheses. An experimental study using cultured human synovial fibroblasts. J. Bone Jt. Surg. Br. Vol. 1981, 63-B, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Hallab, N.J.; Vermes, C.; Messina, C.; Roebuck, K.A.; Glant, T.T.; Jacobs, J.J. Concentration-and composition-dependent effects of metal ions on human MG-63 osteoblasts. J. Biomed. Mater. Res. 2002, 60, 420–433. [Google Scholar] [CrossRef]
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Nag, S.; Banerjee, R.; Fraser, H. A novel combinatorial approach for understanding microstructural evolution and its relationship to mechanical properties in metallic biomaterials. Acta Biomater. 2007, 3, 369–376. [Google Scholar] [CrossRef]
- Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 2002, 33, 477–486. [Google Scholar] [CrossRef]
- Niinomi, M. Recent titanium R&D for biomedical applications in japan. JOM 1999, 51, 32–34. [Google Scholar]
- Saldana, L.; Mendezvilas, A.; Jiang, L.; Multigner, M.; Gonzalezcarrasco, J.; Perezprado, M.; Gonzalezmartin, M.; Munuera, L.; Vilaboa, N. In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 2007, 28, 4343–4354. [Google Scholar] [CrossRef]
- Yan, Y.; Han, Y. Structure and bioactivity of micro-arc oxidized zirconia films. Surf. Coat. Technol. 2007, 201, 5692–5695. [Google Scholar] [CrossRef]
- Wen, C.E.; Yamada, Y.; Hodgson, P.D. Fabrication of novel TiZr alloy foams for biomedical applications. Mater. Sci. Eng. C 2006, 26, 1439–1444. [Google Scholar] [CrossRef]
- Okazaki, Y.; Rao, S.; Tateishi, T.; Ito, Y. Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mater. Sci. Eng. A 1998, 243, 250–256. [Google Scholar] [CrossRef]
- Niinomi, M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials 2003, 24, 2673–2683. [Google Scholar] [CrossRef]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Niinomi, M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater. 2003, 4, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, H. Cu-Zr (Copper-Zirconium). J. Phase Equilib. Diffus. 2012, 33, 417–418. [Google Scholar] [CrossRef]
- Okamoto, H. Sn-Zr (Tin-Zirconium). J. Phase Equilib. Diffus. 2010, 31, 411–412. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int. J. Biomater. 2011, 2011, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhan, Y.; Jiang, W. β-Type Ti–Mo–Si ternary alloys designed for biomedical applications. Mater. Des. 2012, 34, 479–482. [Google Scholar] [CrossRef]
- Natali, A.N.; Carniel, E.L.; Pavan, P.G. Investigation of viscoelastoplastic response of bone tissue in oral implants press fit process. J. Biomed. Mater. Res. 2009, 91, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, Y.; Niu, H.; Zhang, Y.; Du, Y.; Zhang, W.; Huo, W. Electrochemical corrosion behavior and elasticity properties of Ti–6Al–xFe alloys for biomedical applications. Mater. Sci. Eng. C 2016, 62, 36–44. [Google Scholar] [CrossRef] [PubMed]
Zr–7Cu–xSn | 1% | 5% | 10% | 15% |
---|---|---|---|---|
Zr | 92 | 88 | 83 | 78 |
Cu | 7 | 7 | 7 | 7 |
Sn | 1 | 5 | 10 | 15 |
Zr–7Cu–xSn | 1% | 5% | 10% | 15% |
---|---|---|---|---|
Compressive strength (MPa) | 861 | 853 | 1159 | 1173 |
Yield strength (MPa) | 614 | 652 | 900 | 969 |
Elongation (%) | 34.5 | 23.3 | 20.2 | 19.3 |
Elastic modulus (GPa) | 14.7 | 14.4 | 15.6 | 17.8 |
Hardness (Hv) | 247 | 293 | 362 | 369 |
Elastic energy (MJ/m3) | 14.4 | 16.4 | 28 | 28.8 |
Zr–7Cu–xSn | 1% | 5% | 10% | 15% |
---|---|---|---|---|
Icorr [μA/cm2] | 0.00065 | 0.0039 | 0.00090 | 0.0031 |
Ecorr [mV] | −360.8 | −226.3 | −215.5 | −288.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; An, S.; Huh, C.; Kim, C. Development of Zirconium-Based Alloys with Low Elastic Modulus for Dental Implant Materials. Appl. Sci. 2019, 9, 5281. https://doi.org/10.3390/app9245281
Kim M, An S, Huh C, Kim C. Development of Zirconium-Based Alloys with Low Elastic Modulus for Dental Implant Materials. Applied Sciences. 2019; 9(24):5281. https://doi.org/10.3390/app9245281
Chicago/Turabian StyleKim, Minsuk, Seongbin An, Chaeeul Huh, and Chungseok Kim. 2019. "Development of Zirconium-Based Alloys with Low Elastic Modulus for Dental Implant Materials" Applied Sciences 9, no. 24: 5281. https://doi.org/10.3390/app9245281
APA StyleKim, M., An, S., Huh, C., & Kim, C. (2019). Development of Zirconium-Based Alloys with Low Elastic Modulus for Dental Implant Materials. Applied Sciences, 9(24), 5281. https://doi.org/10.3390/app9245281