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Abstract: This paper proposes a new method for configuring hybrid energy storage systems on
the user side with a distributed renewable energy power station. To reasonably configure the
hybrid energy storage system, this paper divides the whole optimization into two stages from
the two dimensions of capacity and power: supercapacitor and battery optimization. To minimize
the fluctuation of new energy output when the user’s investment is as small as possible, a dual agent
fuzzy optimization algorithm is used in the configuration of the supercapacitor. When the battery is
configured, the optimization objective is to maximize the user’s income and minimize the number of
charges and discharges in an optimization cycle. By dividing two objective functions, multi-objective
optimization is integrated into single-objective optimization, the battery life is extended, and the total
revenue of the user in the whole life cycle is increased.

Keywords: hybrid energy storage; user side; fuzzy optimization

1. Introduction

Recently, due to the rapid development of the global economy, the power consumption on the user
side has increased significantly [1], and the difference between peak and valley loads on the user side
is increasing [2,3]. Therefore, with the further expansion of peak-valley difference of users’ electricity
load, the government has established a two-part tariff system to encourage users to participate actively
in load regulation [4]. The electricity charged by the two-part tariff in a charge cycle (CC) is as follows,

p = Ppeak × a + E× b (1)

where Ppeak is the maximum load in the charge cycle, a is the demand price, E is the quantity of
electricity consumed during the charge cycle, and b is the energy price.

Due to the increasing depletion of fossil fuels, many high-load industrial users are building
photovoltaic power (PV) generation devices on the user side [5,6]. However, PV generation is greatly
affected by light intensity and many other environmental factors [7,8], and its output fluctuates
obviously. If directly connected to the grid, PV generation will affect the power quality and stability
of the grid. Therefore, it is necessary to install energy storage devices (ES) in photovoltaic power
generation system to suppress output fluctuations [9].
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Figure 1. Structural chart of user-side photovoltaic hybrid energy storage model.

The power density and energy density when configuring ES on the user side need to be fully
considered [10]. This paper establishes a hybrid energy storage model to suppress photovoltaic
fluctuations, as shown in Figure 1. The expression of the load after configuration Ploada f ter is

Ploada f ter = Pload + PES + PPV (2)

where Pload is the original user load, PES is the ES output (the discharge is negative, and the charge is
positive), and PPV is the PV output.

In this paper, supercapacitors (SC) are selected as ES with high power density and lithium-ion
batteries as ES with high energy density. This form of hybrid energy storage can reduce ES loss [11]
and improve the power quality of the grid [12,13]. In [14], ES on the user side were divided into two
layers: scheduling and operating. These two layers were optimized separately. R. Xiong et al. [15]
proposed three evaluation indicators for the optimal allocation of ES on the user side from an economic
point of view. In [16], the probabilistic weighted Markov process was used to predict future loads and
determine the charging and discharging strategy based on state trajectory and ES loss. The whole
life-cycle cost and benefit of ES were comprehensively considered in [17,18], but the model revenue
part was too basic, and peak load reduction was not considered. Hu X. et al. [19] analyzed the pricing
strategy under a fixed investment return period on the basis of three different mechanisms, but they
did not consider the actual charging and discharging strategy, and the evaluation of the overall value
of ES was incomplete.

To summarize, the existing optimal configuration schemes hardly consider prolonging the energy
storage life from the point of reducing the number of charging and discharging cycles in each CC.
There is seldom reference analyzing the impact of self-built distributed renewable energy generation on
user-side ES configurations. Therefore, this paper establishes a two-stage multi-objective optimization
model [20]. The optimization objective of the first stage is to suppress the fluctuation of PV output.
The optimization objectives of the second stage are increasing the income of users’ ES investment
and reducing the number of ES actions in each CC. The constraint conditions of this model include
the limitation of the number of charging and discharging cycles, the SOC of ES, and the caps on
ES investment.
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The remainder of this paper is arranged as follows. The SC optimization model (Stage 1) and
the large capacity battery optimization model (Stage 2) are introduced in Section 2. A two-stage
optimization model based on fuzzy theory is proposed in Section 3. The case analysis is discussed in
Section 4. Finally, the conclusion of paper is presented in Section 5.

2. Two-Stage Optimization Model of Hybrid Energy Storage on the User-Side

2.1. Stage 1: Supercapacitor Configuration

2.1.1. Model of Super Capacitor from the User’s Perspective

Taking the basic reference output as 1000 kW [21], the corresponding curve spectrum is solved by
fast Fourier transform. In this paper, three common filtering algorithms are used to filter photovoltaic
data: median filter (MF), wavelet transform (WT), and moving average filter (MAF) [22,23]. Because
MF is very effective in smoothing impulse noise, it can protect the sharp edge curve of photovoltaic
output by selecting the appropriate point to replace the bad point with large fluctuations. [24] MF is
selected to process photovoltaic data in this paper. The time and frequency spectra of each waveform
are shown in Figure 2. It can be seen from the Figure 2 that among the three filter algorithms, the median
filtering output is the smoothest. The proportion of high-frequency components after filtering is shown
in Table 1. In this paper, the price of a capacitor per unit capacity is set as cSCE , the price of a capacitor
per unit power is set as cSCP , and then the mathematical model is established from the user’s point of
view as follows.

Min : Cinvest1 = cSCP × PSC + cSCE × ESC (3)

s.t.PSC,cha,t ≤ PSC × BSC,cha,t (4)

PSC,dis,t ≤ PSC × BSC,dis,t (5)

BSC,dis,t + BSC,cha,t ≤ 1 (6)

SOCSC(t + 1) = SOCSC(t)−
ηPSC(t)∆t

ESC
(7)

SOCSCmin < SOCSC < SOCSCmax (8)

SOCSCinitial = SOCSC f inal (9)

where PSC is the rated power of SC, ESC is the rated capacity of SC (discharge is positive, and charge is
negative), and SOCSC is the SOC of SC, which has upper and lower limits of SOCSCmax and SOCSCmin,
respectively. η is the charge–discharge coefficient, ∆t is the time interval. BSC,cha,t and BSC,dis,t are
boolean variables, representing charge and discharge state constraints, BSC,dis,t = 1 if SC is in the
discharge state, BSC,dis,t = 0 if SC is in the charge state, and BSC,cha,t is the same as BSC,dis,t. In the
optimization model, the objective function indicates that the user wants capacitor investment to be as
small as possible, and the constraints indicate that the charging state of the capacitor needs to be kept
within the normal range. Capacitor charging and discharging upper limits are determined by the rated
power of the capacitor.

Table 1. High-frequency ratio.

Primary Photovoltaic Output Wavelet Transform Moving Average Filtering Median Filtering

0.3981 0.3953 0.3235 0.3197
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kW

Figure 2. Comparison of three filtering algorithms.

2.1.2. Model of Power Quality from Grid’s Perspective

Due to the limitation of investment and operation of SC, it is difficult for SC to achieve the effect
of the median filter and ideally suppress the fluctuations in photovoltaic output. Therefore, from the
perspective of a power grid, it is necessary to establish a filter index R to minimize the proportion of
high-frequency components in the total output:

Min : R =
∑

fmax
f= fsamp , f 6=0 Q f

Q0
(10)

where Q f is the high-frequency component of filtered output and f denotes frequency. This index
represents the proportion of high-frequency output in the conventional output and minimizes the
proportion under the normal operation of capacitors.
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2.2. Stage 2: Large Capacity Battery Configuration

According to the IEC 600300-3-3 standard [25], under the two-part tariff system, the user’s tariff is
closely related to the peak load on the grid side during the CC. According formula (2), the grid side
load is related to the PV output after stabilization. Therefore, the user’s load after PV compensation is
used as the underlying optimization parameter to input the battery optimization configuration model
for optimization. The optimal allocation model of batteries in the life cycle is as follows.

Maximum total revenue:

Max : Cinvest2 = Cinc + Crec − Cinvest − Cmaintain (11)

Minimum number of charging and discharging cycles:

Min : N =
T

∑
t=1

Bcha(t) +
T

∑
t=1

Bdis(t) (12)

Energy storage scheduling revenue can be divided into demand and cost savings:

Cinc = Cneed + Cstrategy (13)

Cstrategy =
Y

∑
y=1

DAY

∑
day=1

(
T

∑
t=1

d(t)(Pdis,day,y(t)− Pcha,day,y(t))∆t)(
1 + i
1 + d

)y (14)

Cneed =
Y

∑
y=1

(
M

∑
m=1

(α ∗ δPpeak,m,y))(
1 + i
1 + d

)y (15)

Energy storage recovery income:
Crec = βCinvest (16)

Investment cost of energy storage:

Cinvest = cPPmax + cEEmax (17)

Energy storage operation and maintenance cost:

Cmaintain =
Y

∑
y=1

(CmPmax)(
1 + i
1 + d

)y (18)

Constraint condition:
s.t. Cinvest ≤ Cinvestmax (19)

loada f ter = load− outputpv (20)

loada f ter − Pdis + Pcha ≤ (1− δ)Ppeak,m,y (21)

0 ≤ Pdis(t) ≤ PmaxBdis(t) (22)

0 ≤ Pcha(t) ≤ PmaxBcha(t) (23)

Bdis(t) + Bcha(t) ≤ 1 (24)
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B denotes the state of charge and discharge. Bdis = 1 if energy storage is in the discharge state, Bdis = 0
if energy storage is in the charge state, and Bcha is the same as Bdis. Therefore, the sum of these two
boolean variables can be used to calculate the total number of charging and discharging cycles.

SOCmin < SOCbattery < SOCmax (25)

SOCbattery,initial,m = SOCbattery, f inal,m (26)

SOCbattery(t) = SOCbattery(t− 1) +
[ηchaPcha(t)− Pdis(t)/ηdis]∆t

Emax
(27)

where Cinc represents the benefit of peak-valley arbitrage, Cstrategy, and demand savings Cneed, Crec

is the revenue of recycling energy storage; Cinvest represents the energy storage investment; Cmaintain
represents the cost of energy storage operation and maintenance; Pdis,day,y denotes the discharge
power of energy storage on the day-th day of the y-th year; and Pcha,day,y denotes energy storage
charging power. α represents electricity demand price, δ denotes peak shaving rate, Ppeak,m,y represents
the peak value of the original load in the m-th month of the y-th year. i denotes inflation rate,
and d denotes the discount rate. Pmax denotes the rated battery power, and Emax represents the
rated capacity of the battery. d(t) denotes the peak-valley time-of-use tariff at t-time. η denotes
the charge–discharge coefficient. The SOC constraints of the batteries are consistent with the SOC
constraints of the supercapacitors.

3. Two-Stage Optimization Algorithm Based on Fuzzy Optimization

3.1. Multi-Objective Fuzzy Optimization

In the above model, there are two competing objective functions, and it is impossible for both of
them to achieve the optimum at the same time. For the multi-objective programming problem, it is
advisable to use the theory of fuzzy sets to transform the problem into a single-objective problem.
On the premise of satisfying all constraints, considering user investment and smoothing photovoltaic
output, the total cost of investing in supercapacitors and the total proportion of high-frequency
components in the output need to be as small as possible. There is an upper limit and no lower limit in
these two objectives. Therefore, the reduced half-line is chosen as their membership function, as shown
in Figure 3. In the membership function, the ordinate represents the satisfaction of each subject (i.e.,
grid and user) and the abscissa represents the index of each subject. It can be seen from Figure 3 that
the main body will eventually reach the most satisfactory level.

C01 D01

user investment

C02 D02

High Frequency Components

C02+C01+

Figure 3. Membership function of two optimization objectives.
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Two membership functions can be expressed as

µ( f1(x)) =


1, if f1(x) < C01;
C01+D01− f1(x)

D01 , if C01 ≤ f1(x) ≤ C01 + D01;

0, if f1(x) > C01 + D01.

(28)

µ( f2(x)) =


1, if f2(x) < C02;
C02+D02− f2(x)

D02 , if C02 ≤ f2(x) ≤ C02 + D02;

0, if f2(x) > C02 + D02.

(29)

where C01 is the result when the minimum investment of users is taken as the optimization objective,
C02 is the result when the smoothest photovoltaic output is considered separately, C01 + D01 is the
maximum acceptable value for user investment, and C02 + D02 is the maximum allowable value for
the proportion of high-frequency components in the PV output. Taking λ as the smallest subordinate
variable in all subordinate functions, satisfaction can be expressed as

λ = Min : {µ( f1(x)), µ( f2(x))} (30)

According to the principle of maximum membership degree, the original multi-objective optimal
allocation problem can be transformed into a membership degree that satisfies all constraints,
i.e., satisfaction maximum. At this time, the optimization results will comprehensively satisfy of
both users and grids and can be simply represented by the following models.

Min : −λ (31)

s.t.C01 ≤ f1(x) + D01 ∗ λ ≤ C01 + D01 (32)

C02 ≤ f2(x) + D02 ∗ λ ≤ C02 + D02 (33)

0 ≤ λ ≤ 1 (34)

Supercapacitor Operation Constraints: (4)–(9).

3.2. Two-Stage Optimization Algorithm Based on GUROBI

In summary, the specific steps of the two-stage algorithm for optimizing the configuration in this
paper are as follows.

Step 1: Input photovoltaic output data and load data
Step 3: Determine whether the fluctuation of output data meets the grid-connected requirements,

and if it meets the requirements, move to step 5. If not, adjust the fuzzy parameters, increase
the investment of the supercapacitor, and return to step 2 to recalculate the filtering effect.

Step 3: If the requirement is not met, calculate the fuzzy parameters from the viewpoint of users and
power grid.

Step 4: Establish a fuzzy optimization model to optimize the configuration of supercapacitors, verify
whether the photovoltaic output after capacitance configuration meets the requirements,
and return to step 2 if it does not meet the requirements.

Step 5: Calculate user loads with the superimposed photovoltaic output if the requirements are met.
Step 6: According to the overlapped load, establish the optimal battery allocation model under a

two-part tariff.
Step 7: Use GUROBI to solve the model and obtain the optimal configuration scheme of hybrid energy

storage in the photovoltaic scenario.
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Remark 1. To achieve the two goals of reducing charging and discharging cycles and improving the user’s
income, rewrite the battery optimization target as follows.

Max :
Cinvest2

N
(35)

Remark 2. To successfully solve the problem with GUROBI, as many nonlinear terms in the objective function
need to be removed as possible. Therefore, the inflation term in objective functions (14), (15), and (18) is removed
to simplify the optimization process. After the optimization, the results are added for analysis.

4. Case Study

The year-round load data of heavy-duty industrial users in Jiangsu Province China are chosen
as an example in this paper. The specifications of batteries and supercapacitors are shown in Table 2.
To simplify the model, it is assumed that the batteries are continuously optimized and that the
supercapacitors are discretely optimized. The parameters of a supercapacitor are selected as Table 3,
and the price of SC is CNY1218. The charge of unit electricity of demand is 40 CNY/(kW ·month).
The time-of-use tariff is consistent with the current system in Jiangsu.

Table 2. Relative parameters of the energy storage system.

Performance Index Battery Super Capacity

Power Cost Coefficient (CNY/kW) 1500 1500
Capacity Cost Coefficient (CNY/kWh) 1000 27000
Operation Cost Coefficient (CNY/kW) 0.05 0.05

Charging and discharging efficiency 0.85 0.95
Range of SOC (0.2, 0.8) (0.1, 0.9)

Table 3. Selected supercapacitor parameters.

Specification Parameter Numerical Value

Capacity (F) 10
Rated voltage (V) 5
Rated current (A) 40
Rated power (kW) 0.2

Rated capacity (kWh) 0.034

4.1. Optimal Allocation of SC

(1) Input the PV output data, load data, and SC price data, calculate the proportion of PV output
in the total load output and SC charging and discharging behavior after MF, and obtain the
minimum investment cost C01 of SC, the maximum investment cost f 1max of SC, and the
high-frequency component strength after filtering.

(2) Input the PV output data, load data and SC price data; calculate the PV output spectrum after MF
and the original spectrum of PV output; and obtain the minimum allowable high-frequency ratio
C02 of PV output, the maximum high-frequency ratio f 2max of PV output, and the corresponding
SC investment.

(3) According to D01 = f 1max − C01 and D02 = f 2max − C02, substitute D01 and D02 into
formulas (25) and (26) to obtain the membership functions, and the multi-objective optimization
problems of users and power grids can be transformed into single-objective optimization.
Satisfaction can be obtained using GUROBI as Table 4.
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Table 4. Maximum satisfaction index and optimized results.

λ λ( f 1) λ( f 2) f 1(CNY × 104) f 2

0.39 0.96 0.39 28.796 0.39
0.73 0.73 0.96 41.412 0.33
0.52 0.94 0.52 30.45 0.37
0.82 0.82 0.86 36.54 0.34

4.2. Optimal Allocation of Batteries

The battery configuration corresponding to the maximum load is chosen to optimize the user’s
load for the whole year of 2017. The upper limit of the number of battery charging and discharging
cycles is set to 4000. The results of the investments and returns of users in the life cycle are shown in
Table 5.

Table 5. Total investment results.

Project Economic Performance

Total Investment (CNY ×104 ) 396.54
Super Capacitor Investment (CNY ×104 ) 36.5

Battery Investment (CNY ×104 ) 360.04
Operation and Maintenance Investment (CNY ×104 ) 0.504

Total revenue (CNY ×104 ) 746.05
Income share of demand savings 34.63 %

Years of Return on Investment (year) 7.49
Annual return on investment 12.5 %

Annual average cycle times of charge and discharge 377

4.3. Discussion

According to the results of fuzzy optimization, the optimum degree of satisfaction is 0.82, and 296
supercapacitors need to be configured at this time. The corresponding output curve is shown in
Figure 4. The curve of satisfaction of the two objectives with capacitance investment is shown in
Figure 4. Figure 5 shows that due to the investment limitation of SC, there are upper and lower limits
of SC output, which cannot fully achieve the effect of MF. The intersection of Figure 5 is the optimal
configuration point that satisfies the grid and users.
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Figure 4. SC output.
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Figure 5. Satisfaction degree.

In this paper, the typical daily load of the industrial user for 12 months is selected by a
clustering algorithm.

The large daily load, medium daily load and small daily load of these 12 typical daily loads
are selected and optimized, respectively. The output curves of the three kinds of loads are shown in
Figures 6–8. It can be seen from the figure that the peak load after energy storage adjustment was
successfully reduced by 10–20%, and the energy storage was charged to reduce the overall electricity
price in the late night and other low price periods.

According to the configuration results, the larger the load level is, the larger the energy storage
specifications that need to be configured. Therefore, the battery configuration corresponding to the
maximum load was chosen to optimize the user’s load for the whole year of 2017.

The industrial user selected in this paper shows obvious characteristics of working and
non-working days. By reducing the maximum load requirement of each month, this model reduces
the monthly electricity demand and improves the user’s income. Under the current hourly tariff
background, the cost can be recovered after installing hybrid energy storage for 7.5 years, which shows
that the model has application value and popularization significance.

Figure 6. Energy storage configuration for minimum load.
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Figure 7. Energy storage configuration for medium load.

Figure 8. Energy storage configuration for maximum load.

Because the non-working day load has no peak and does not require energy storage regulation,
the number of energy storage charging and discharging cycles throughout the year is greatly reduced.
With that load characteristic, the average energy storage only needs 377 cycles in 2017, which achieves
the target of minimizing the number of charge and discharge cycles so that the energy storage can be
used for 10.61 years in total.

5. Conclusions

In this application scenario, supercapacitors are used to suppress the fluctuation of photovoltaic
output, and batteries are used to reduce the user’s maximum load demand. The characteristics of this
model are as follows.

(1) This paper uses fuzzy optimization theory to optimize capacitor configuration from two aspects
of power grid and users. Considering the benefits of users and the stability of the power grid, it
can be seen from the calculation examples that both sides reach a more satisfactory state.

(2) The whole multi-objective optimization process is divided into two stages to make the
optimization process clear. In the second stage, the multi-objective optimization uses the method
of dividing objective functions to ensure the user’s benefit and reduce the number of charging
and discharging cycles in each CC, to improve the service life of energy storage. It can be seen
from the calculation results that ES life is extended to 10.61 years after the number of CCs is
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determined, which successfully compensates for the investment and operation cost of ES systems
and enables users to make profits.
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The following abbreviations are used in this manuscript.

SC supercapacitor
cha charge
dis discharge
CNY Chinese Yuan
CC Charge Cycle
PV Photovoltaic
ES Energy Storage
MF Median Filter
WT Wavelet Transform
MAF Moving Average Filter
SOC State of Charge
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