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Abstract: Currently, the bike frame quality check (QC) mostly relies on human operation in industry.
However, some drawbacks such as it being time-consuming, having low accuracy and involving
non-computerized processes are still unavoidable. Apart from these problems, measured data are
difficult to systematically analyze for tracking sources of product defects in the production process.
For this reason, this paper aims to develop a 3D geometry mathematical model suitable for bicycle
frames QC using robotic arm-based measurement. Unlike the traditional way to find coefficients
of a space sphere, the proposed model requires only three check point coordinates to achieve the
sphere axis coordinate and its radius. In the practical work, the contact sensor combined with the
robotic arm is used to realize the compliance items measurement in shaft length, internal diameter,
verticality, parallelism, etc. The proposed model is validated based on both mathematic verification
and actual bike frame check.
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1. Introduction

In recent years, bike riding has become a popular leisure sport around the world. For this reason,
analysts forecast that the global high-end bicycle market will grow with a compound annual growth
rate (CAGR) of 4.82% during the period 2017–2021 according to the report from Research and Markets
Ltd. It is known that high-end bikes demand a high quality of bike frame [1–7]. Unfortunately, frame
QC still relies on the Vernier caliper, the plug gauge, the cylindrical gauge, and the thread gauge, etc.
It normally takes a long time to complete the process. Consequently, the automation measurement
process for the QC of the bike frame is essential in industry [8–12].

The coordinate-measuring-machine (CMM) is now being widely applied as part of workpiece
inspection in the production line [13–17]. It can be used to measure the geometry of physical objects
by sensing the discrete points on the object surface with a probe, including mechanical, optical, laser,
and white light. Basically, it has two major advantages: (1) high precision up to 0.001 mm and
(2) high reliability in both hardware and software. However, the CMM inspection planning session has
been a challenging issue because of its time-consuming nature using traditional methods, e.g., expert
experiences and technical documents data mining. Additionally, it may suffer from some following
disadvantages: (1) Its operation speed is limited. (2) It is sensitive to the environment temperature
and humidity. (3) It is not applicable to irregular shape object measurements. (4) It has a high cost.
Obviously, CMM is not suitable for the bike frame measurement due to the restriction of the operation
range. Alternatively, robotic arms are typically used for multiple industrial applications such as
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material handling, welding, thermal spraying, assembly, palletizing, drilling, and painting, etc. [18–21].
For instance, a platform based on a robotic arm using three degrees of freedom (DoF) principle was
proposed to estimate the calibration parameters of microelectromechanical systems (MEMS) [22]. It can
be placed indifferent positions for collecting a dataset of points evenly distributed. This case implies
that the measurement technique using robotic arms may provide a good solution for the bike frame
QC process.

2. System Description

2.1. System Structure

The proposed system structure of bike frame quality check is shown in Figure 1a, consisting of
subsystems such as robotic arm, graphical user interface (GUI), programmable logic controller (PLC),
contact sensor, mathematical model, database, and workbench. Each subsystem is responsible to carry
out a specific task, described as follows. (1) Robotic arm can carry the contact sensor and move it to
the check points. Therefore, the coordinates of check points can be found based on the robotic arm
coordinate system. (2) The contact sensor can feedback a digital signal to the robotic arm immediately
once it touches the surface of the check points. (3) PLC is to control the rotating disk to rotate the
bike frame 90◦ for the robotic arm to reach every check point. (4) Graphical user interface (GUI)
provides a friendly user interface for users to input data and display a real-time measurement outcome.
(5) Mathematical model presents a geometry algorithm that can effectively integrate the sphere formula
with the inner product of normal vector to find four parameters in the sphere formula using only three
measured points. Accordingly, the center coordinate of check point and its diameter can be calculated
accurately and simply. (6) A database using MySQL is used to store the measured data and export
measurement data report. (7) The workbench shown in Figure 1b is designed to sustain all hardware
devices. It contains: (1) a fixing frame, (2) A rotating disk, (3) a work platform, and (4) a sensor pedestal.
Moreover, the XAML and C# package are used to build up the system software such as the robotic arm
simulation object, the window object, the control object, and the 3D-geometry mathematical model.
Through Transmission Control Protocol (TCP) and Internet Protocol (IP) (TCP/IP), the contact sensor
and robotic arm can communicate with each other between different objects.
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In this study, we mainly focused on the development of mathematical model required for the
bike frame quality check using a robotic arm. Based on the proposed mathematical model, the robotic
arm is combined with the contact sensor to implement the bike frame quality check in shaft length,
internal diameter, verticality, and parallelism, etc. The major devices used in the proposed system are
listed as follows:

(1) Robotic arm: YASKAWA-GP7
(2) Contact sensor: Compact module changing touch-trigger probe (Renishaw TP20)
(3) PLC: DELTA DVP –PM1000M
(4) Database: MySQL

2.2. Introduction of Bike Frame

Generally, the bike frame consists of: (1) a B.B rotating shaft, (2) a S/T rotating shaft, (3) a S/T
groove, (4) a T/T rotating shaft, (5) a shock absorber, (6) and H/T, where they are required for quality
check, as shown in Figure 2.
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3. Mathematical Model

The check items of bike frame for quality evaluation mainly include the shaft length, internal
diameter, verticality, and parallelism located in different shafts. The proposed mathematical model
provides the solutions for checked point coordinate calculation. It is described as follows.

3.1. Generation of Bike Frame Center Plane

Initially, the center plane of a bike frame should be generated from the B.B rotating shaft, as
shown in Figure 3, which is used as the base of the coordinate system. The coordinate of the
center point aa3(aa3x, aa3y, aa3z), as shown in Figure 3, can be determined from aa1(aa1x, aa1y, aa1z)

and aa2(aa2x, aa2y, aa2z) as:

aa3x =
aa1x + aa2x

2 aa3y =
aa1y + aa2y

2
aa3z =

aa1z + aa2z

2
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3.2. Center Plane Offset

The center plane offset is used to check if there is a shift at the center plane. For this purpose,
the y-axis aa3y taken from the center point aa3(aa3x, aa3y, aa3z) is regarded as the center standard plane.

In Figure 4, two check points, i.e., cc1 and cc22, coordinates at the S/T rotating shaft are expressed as:

cc1(cc1x, cc1y, cc1z) cc22(cc22x, cc22y, cc22z)

cc is defined as the center point between cc1 and cc22 as:

cc
(

cc1x + cc22x

2
,

cc1y + cc22y

2
,

cc1z + cc22z

2

)
w1 shown in Equation (1) is defined as the center plane offset at the S/T rotating shaft, and it is the

distance between the y axis coordinate of the cc point and the center plane.

w1 =

∣∣∣∣∣∣cc1y + cc22y

2
− aa3y

∣∣∣∣∣∣ (1)
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The coordinates of the eight check points are shown as follows:

f f 1( f f 1x, f f 1y, f f 1z) f f 2( f f 2x, f f 2y, f f 2z) f f 3( f f 3x, f f 3y, f f 3z) f f 4( f f 4x, f f 4y, f f 4z)

gg1(gg1x, gg1y, gg1z) gg2(gg2x, gg2y, gg2z) gg3(gg3x, gg3y, gg3z) gg4(gg4x, gg4y, gg4z)

The length f f 1gg1 between two check points ( f f 1 and gg1) is:

f f 1gg1 =

√
(gg1x − f f 1x)

2 +
(
gg1y − f f 1y

)2
+ (gg1z − f f 1z)

2 (2)

Similarly, the lengths f f 2gg2, f f 3gg3, and f f 4gg4 can be formulated according to Equation (2),
where the number one changes to numbers two to four, respectively.

Average length (L) between two check points ( f f 2 and gg2) is:

L =
f f 1gg1 + f f 2gg2 + f f 3gg3 + f f 4gg4

4
(3)

3.2.2. T/T Rotating Shaft Internal Diameter

The three check points at the T/T rotating shaft can be used to calculate the internal diameter, as
shown in Figure 6.
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The coordinates of the three check points are expressed as:

d1(d1x, d1y, d1z) d2(d2x, d2y, d2z) d3(d3x, d3y, d3z)

The vectors
−−−−→
d3d1 and

−−−−→
d3d2 are:

−−−−→
d3d1 =

(
(d1x − d3x),

(
d1y − d3y

)
, (d1z − d3z)

)
(4)

−−−−→
d3d2 =

(
(d2x − d3x),

(
d2y − d3y

)
, (d2z − d3z)

)
(5)

The use cross product for the vectors
−−−−→
d3d1 and

−−−−→
d3d2 , and their normal vector

→
n can be obtained

as:
→
n =

−−−−→
d3d2 ×

−−−−→
d3d1 =

(
nx, ny, nz

)
(6)

where

nx =

∣∣∣∣∣∣∣
(
d2y − d3y

)
(d2z − d3z)

(d1z − d3z)
(
d1y − d3y

) ∣∣∣∣∣∣∣
ny = −

∣∣∣∣∣∣ (d2x − d3x) (d2z − d3z)

(d1x − d3x) (d1z − d3z)

∣∣∣∣∣∣
nz =

∣∣∣∣∣∣∣ (d2x − d3x)
(
d2y − d3y

)
(d1x − d3x)

(
d1y − d3y

) ∣∣∣∣∣∣∣
The spherical general shown in Equation (7) is used to find the axis point coordinate and axial

bore radius in Figure 6:
x2 + y2 + z2 + dx + ey + f z + g = 0 (7)

where the spherical axis point coordinate (d4) in Figure 6 is
(
−d
2

,
−e
2

,
− f
2

)
, and d, e, f, and g are

real numbers.

The vector
−−−−→
d4d3 can be obtained as:

−−−−→
d4d3 =

(
(d3x) −

(
−d
2

)
,
(
d3y

)
−

(
−e
2

)
, (d3z) −

(
− f
2

))
(8)

The vectors
−−−−→
d4d3 and

→
n are perpendicular to each other so that their inner product is zero.

−−−−→
d4d3 ·

→
n = 0 (9)
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Following this, we substitute the coordinates of three check points d1(d1x, d1y, d1z),
d2(d2x, d2y, d2z), d3(d3x, d3y, d3z) into Equation (7) to form Equations (10)–(12). Additionally, Equation
(13) is obtained based on Equation (9).

(d1x)
2 +

(
d1y

)2
+ (d1z)

2 + d(d1x) + e
(
d1y

)
+ f (d1z) + g = 0 (10)

(d2x)
2 +

(
d2y

)2
+ (d2z)

2 + d(d2x) + e
(
d2y

)
+ f (d2z) + g = 0 (11)

(d3x)
2 +

(
d3y

)2
+ (d3z)

2 + d(d3x) + e
(
d3y

)
+ f (d3z) + g = 0 (12)∣∣∣∣∣∣∣

(
d2y − d3y

)
(d2z − d3z)

(d1z − d3z)
(
d1y − d3y

) ∣∣∣∣∣∣∣((d3x) −
(
−d
2

))
−

∣∣∣∣∣∣ (d2x − d3x) (d2z − d3z)

(d1x − d3x) (d1z − d3z)

∣∣∣∣∣∣((d3y
)
−

(
−e
2

))
+

∣∣∣∣∣∣∣ (d2x − d3x)
(
d2y − d3y

)
(d1x − d3x)

(
d1y − d3y

) ∣∣∣∣∣∣∣
(
(d3z) −

(
− f
2

))
= 0

(13)

The parameters values (d, e, f, g) can be thus be found by solving the simultaneous equations from
Equations (10)–(13).

Consequently, d4

(
−d
2

,
−e
2

,
− f
2

)
can be obtained, and the axial bore radius of T/T rotating shaft can

be calculated as:
d4d1 = d4d2 = d4d3 =

1
2

√
d2 + e2 + f 2 − 4g (14)

3.2.3. Parallelism

In Figure 7, the parallelism angle between B.B. and T/T rotating shafts can be calculated as follows:Appl. Sci. 2019, 9, 5355 8 of 17 
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−−−−→
a2a1 =

(
(a1x − a2x),

(
a1y − (−333.5)

)
, (a1z − a2z)

)
(15)

−−−−→
d5′d4 =

0,

d4y −

(
d1y + d11y

)
2

, 0

 (16)

Using the inner product formula, the parallelism angel θ between
−−−−→
a2a1 and

−−−−→
d5′d4 can be

calculated as:

cosθ =

−−−−→
d5′d4 ·

−−−−→
a2a1∣∣∣∣∣∣−−−−→d5′d4

∣∣∣∣∣∣
∣∣∣∣∣∣−−−−→a2a1

∣∣∣∣∣∣
(17)
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3.2.4. Verticality

In Figure 8, the verticality angel between B.B. and H/T rotating shafts can be calculated as follows.

−−−−→
a2g4 =

(
(g4x − a2x),

(
g4y − (−333.5)

)
, (g4z − a2z)

)
(18)
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Use the inner product formula, the verticality angel θ between
−−−−→
a2a1 and

−−−−→
a2g4 can be calculated as:

cosθ =

−−−−→
a2a1 ·

−−−−→
a2g4∣∣∣∣∣∣∣∣∣

−−−−→
−−−−→
a2a1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣−−−−→a2g4

∣∣∣∣∣∣
(19)

4. Model Verification Using the Real Data

The proposed mathematical model is verified using the real data taken from the SOLIDWORKS
drawing of the bike frame.

4.1. The Center Plane

From Figure 3, the two check points are:

aa1(139.59,−297, 109.14) aa2(139.59,−370, 108.85)

The center point of B.B rotating shaft is aa3(aa3x, aa3y, aa3z), where:

aa3x =
139.59 + 139.59

2
= 139.59

aa3y =
−297 + (−370)

2
= −333.5

aa3z =
109.14 + 108.85

2
= 108.995

∴ aa3(139.59,−333.5, 108.995)

Accordingly, the center plane is located at aa3y = −333.5mm.

4.2. Bike Center Plane Offset

From Figure 4, it is known that:

cc1(107.23,−373.75, 138.38) cc2(107.23,−327.25, 138.38)

The cc is located at the center point between cc1 and cc2.
Therefore,

cc(107.23,−350.5, 138.38)
w1 =

∣∣∣−350.5− (−333.5)
∣∣∣ = 17mm

As above, it is confirmed that the theoretical value matches the computational result.
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4.3. The H/T Rotating ShaftLength

In Figure 5, the coordinates of eight check points are shown as follows.

f f 1(625.05, 123.58, 600.41) f f 2(598.67, 150.63, 594.12) f f 3(650.93, 151.37, 606.57)
f f 4(624.70, 177.33, 600.32) gg1(651.01, 123.77, 493.51) gg2(623.60, 150.68, 486.98)
gg3(676.13, 149.86, 499.50) gg4(649.70, 177.24, 493.20)

Accordingly,

f f 1gg1 =

√
(651.01− 625.05)2 + (123.77− 123.58)2 + (493.51− 600.41)2 � 110mm

f f 2gg2 =

√
(623.60− 598.67)2 + (150.68− 150.63)2 + (486.98− 594.12)2 � 110mm

f f 3gg3 =

√
(676.13− 650.93)2 + (149.86− 151.37)2 + (499.50− 606.57)2 � 110mm

f f 4gg4 =

√
(649.70− 624.70)2 + (177.24− 177.33)2 + (493.20− 600.32)2 � 110mm

The average length (L) is obtained as:

L =
f f 1gg1 + f f 2gg2 + f f 3gg3 + f f 4gg4

4
� 110mm

As above, the calculated value is confirmed equal to the theoretical value.

4.4. T/T Rotating Shaft Internal Diameter

In Figure 6, the coordinates of three check points (d1, d2, d3) are shown as follows:

d1 = (55.39, 24, 353.63) d2 = (55.85, 24, 366.87) d3 = (66.64, 24, 359.98)
Therefore,

−−−−→
d3d1 = (−11.25, 0,−6.35)
−−−−→
d3d2 = (−10.79, 0, 6.89)

→
n =

−−−−→
d3d2 ×

−−−−→
d3d1 =

(
nx, ny, nz

) (20)

where;

nx =

∣∣∣∣∣∣ 0 6.89
0 −6.35

∣∣∣∣∣∣ = 0

ny =

∣∣∣∣∣∣ −10.79 6.89
−11.25 −6.35

∣∣∣∣∣∣ = −146.029

nz =

∣∣∣∣∣∣ −10.79 0
−11.25 0

∣∣∣∣∣∣ = 0
→
n = (0,−146.029, 0)

According to Equation (7), the axis point coordinate is d4
(
−d
2

,
−e
2

,
− f
2

)
.

Therefore,
−−−−→
d4d3 =

(
66.64−

(
−d
2

)
, 24−

(
−e
2

)
, 359.98−

(
− f
2

))
(21)

−−−−→
d4d3 and

→
n are perpendicular to each other so that:

−−−−→
d4d3 ·

→
n = 0

⇒

0 ·
(
66.64−

(
−d
2

))
− 146.029 ·

(
24−

(
−e
2

))
+ 0 ·

(
359.98−

(
− f
2

))
= 0 (22)
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e = −48 (23)

Substitute the coordinates of d1, d2 and d3 into Equation (10), as follows.

(55.39)2 + (24)2 + (353.63)2 + d(55.39) + e(24) + f (353.63) + g = 0 (24)

(55.85)2 + (24)2 + (366.87)2 + d(55.85) + e(24) + f (366.87) + g = 0 (25)

(66.64)2 + (24)2 + (359.98)2 + d(66.64) + e(24) + f (359.98) + g = 0 (26)

⇒

d = −118.27901 f = −720.25544 g = 133709.17771
As above, it can be obtained:

d4
(
−d
2

,
−e
2

,
− f
2

)
= d4(59.1395, 24, 360.12772)

The radius between the axis and check point is:

d4d1 = d4d2 = d4d3 =
1
2

√
d2 + e2 + f 2 − 4g �

15
2
(mm) (27)

Accordingly, the internal diameter of T/T rotating shaft is:

=
√

d2 + e2 + f 2 − 4g � 15mm

As above, the calculated value is confirmed equal to the theoretical value.

4.5. Parallelism Between T/T and B.B Rotating Shafts Axes

In Figure 8, the coordinates of two check points (d1, d11) are:

d1(55.39, 24, 353.63) d11(55.39,−24, 353.63)

The coordinate of middle point d5 located between d1 and d2 is:

d5(55.39, 0, 353.63)

The X-axis and Y-axis coordinates of axis point d4 at the T/T rotating shaft are transferred to d5 to

form d5′. Therefore, the vector formed by d4 and d5′ is
−−−−→
d5′d4.

d5′ = (59.1395, 0, 360.12772)
−−−−→
d5′d4 = (0, 24, 0)

(28)

In Figure 7,
a1(94.98, 48, 723.32) a2(94.98,−333.5, 723.32)

−−−−→
a2a1 at the B.B rotating shaft is:

−−−−→
a2a1 = (0, 48− (−333.5), 0) = (0, 381.5, 0) (29)

The parallelism angel (θ) between
−−−−→
a2a1 and

−−−−→
d5′d4 can be calculated as:

cosθ =

−−−−→
d5′d4 ·

−−−−→
a2a1∣∣∣∣∣∣−−−−→d5′d4

∣∣∣∣∣∣
∣∣∣∣∣∣−−−−→a2a1

∣∣∣∣∣∣
=

(0, 24, 0) · (0, 381.5, 0)∣∣∣(0, 24, 0)
∣∣∣ · ∣∣∣(0, 381.5, 0)

∣∣∣ = 9156
9156

= 1 (30)
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∴ θ = 0
◦

As above, the T/T and B.B rotating shafts axes are confirmed parallel.

4.6. Verticality Between H/T and B.B Rotating Shafts Axes

The vector
−−−−→
a2g4 from the B.B rotating shaft to H/T axis point (g4) is:

−−−−→
a2g4 = (559.7486,−5,−154.8109)

where a2(94.98,−333.5, 723.32) and g4(654.7286,−338.5, 568.5091).

The verticality angel (θ) between
−−−−→
a2a1 and

−−−−→
a2g4 can be calculated as:

cosθ =
−−−−→

a2a1 ·
−−−−→

a2g4∣∣∣∣∣∣∣∣∣∣∣
−−−−→
−−−−→

a2a1

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣−−−−→a2g4

∣∣∣∣∣∣
=

(0, 381.5, 0) · (559.7486,−5,−154.8109)∣∣∣(0, 381.5, 0)
∣∣∣ · ∣∣∣(559.7486,−5,−154.8109)

∣∣∣
=

−1907.5
381.5× 580.7839

= −0.0086 � 0

(31)

∴ θ = 90
◦

As above, the H/T and B.B rotating shafts axes are confirmed vertical.

5. Practical Verification

The process of real bike frame quality check is carried out based on the proposed 3D geometry
mathematical model. The real system profile is shown in Figure 9.
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5.1.2. Bike Center Plane Offset

The GUI of bike center plane offset is shown in Figure 11. The performance result is 17 mm and
that matches the theoretical value.
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5.1.3. H/T Rotating Shaft Length

The GUI of H/T rotating shaft length is shown in Figure 12. The performance result is 110 mm
and that matches the theoretical value.
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5.1.4. T/T Rotating Shaft Internal Diameter

The GUI of T/T rotating shaft internal diameter is shown in Figure 13. The performance result is
15 mm and that matches the theoretical value.
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5.1.5. Parallelism

The parallelism between T/T and B.B rotating shafts axes using GUI is shown in Figure 14. The
performance result is θ = 0

◦

that matches the theoretical value.
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5.2. Practical Results 

The measurement results from 10-times average values using the real bike frame are concluded 
in Table 1. Based on the same bike frame, the error between the proposed model and the Vernier 
caliper is below 0.05 mm, and the repeatability is at the range of 0.1 mm. This verifies that the 
proposed model presents both robust and stable performance. Nevertheless, the measured data 
reveals that the tested frame has some defects occurred in the center plane offset, parallelism and 
verticality.  

Table 1. Measured values using the proposed model. 

Check 
point 

Check item 
T/T rotating 

shaft 
H/T rotating 

shaft 
Center plane offset –2.71 mm Not applicable 

Parallelism °2.8  Not applicable 
Verticality Not applicable °65.114  

Internal diameter 14.86 mm Not applicable 
Length Not applicable 109.89 mm 

Figure 14. GUI of parallelism: (a) synchronous action; (b) GUI result.

5.1.6. Verticality

The verticality between H/T and B.B rotating shafts axes using GUI is shown in Figure 15. The
performance result is θ = 90

◦

that matches the theoretical value.
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5.2. Practical Results

The measurement results from 10-times average values using the real bike frame are concluded in
Table 1. Based on the same bike frame, the error between the proposed model and the Vernier caliper is
below 0.05 mm, and the repeatability is at the range of 0.1 mm. This verifies that the proposed model
presents both robust and stable performance. Nevertheless, the measured data reveals that the tested
frame has some defects occurred in the center plane offset, parallelism and verticality.

Table 1. Measured values using the proposed model.

Check Item
Check Point T/T Rotating Shaft H/T Rotating Shaft

Center plane offset −2.71 mm Not applicable

Parallelism 8.2◦ Not applicable

Verticality Not applicable 114.65◦

Internal diameter 14.86 mm Not applicable

Length Not applicable 109.89 mm

To clarify the uncertainty of the measurement, the estimated standard deviation for a series of n
measurements is expressed mathematically as:

s =

√√√√ n∑
i=1

(xi − x)2

n− 1
(32)

where xi is the result of the ith measurement and x is the arithmetic mean of the n measurement results.
When a set of several repeated readings has been taken, the mean, x, and estimated standard

deviation, s, can be calculated. The measurement uncertainty, u, of the mean is therefore defined as:

u =
s
√

n
(33)

where n is the number of measurements in the set.
The estimated standard deviation and measurement uncertainty based on 10 measurements

for S/T rotating shaft, T/T rotating shaft, and H/T rotating shaft is shown in Tables 2–4, respectively.
From the statistics, it is obvious that both standard deviation (s) and measurement uncertainty (u) for
all shaft measurements present a very low value no more than 0.018. Thus, accuracy and robustness of
the proposed model is thus confirmed.
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Table 2. Standard deviation (s) and measurement uncertainty (u) at S/T rotating shaft.

Check Item
Estimated Topic

Standard Deviation (s) Measurement Uncertainty (u)

Center Plane Offset 0.007 0.002

Internal Diameter 0.009 0.003

Length 0.006 0.002

Parallelism 0.010 0.003

Table 3. Standard deviation (s) and measurement uncertainty (u) at T/T rotating shaft.

Check Item
Estimated Topic

Standard Deviation (s) Measurement Uncertainty (u)

Center Plane Offset 0.005 0.002

Internal Diameter 0.018 0.006

Length 0.007 0.002

Parallelism 0.011 0.003

Table 4. Standard deviation (s) and measurement uncertainty (u) at H/T rotating shaft.

Check Item
Estimated Topic

Standard Deviation (s) Measurement Uncertainty (u)

Internal Diameter 0.007 0.002

Length 0.005 0.002

Verticality 0 0

6. Conclusions

Traditional methods for the QC of bike frame products usually use general jigs or Vernier
calipers. However, this kind of measurement process may take tens of minutes to complete. Another
disadvantage is that it is difficult to analyze the measured data due to lack of computerization. For these
reasons, the proposed 3D geometry mathematical model has successfully developed an accurate bike
frame measurement based on a robotic arm with a contact sensor. In this study, the proposed model
requires only three simultaneous equations to find the axis coordinate and its radius instead of four
equations in a space sphere. It verifies that the measured data obtained from the model performance is
consistent with the SOLIDWORKS drawing, including H/T rotating shaft length, T/T rotating shaft
internal diameter, parallelism, and verticality, etc. Accordingly, it is applicable for industrial QC
applications in a variety of bike frames. Other than these advantages, the stylus probe used in this
proposed model presents both simple and accurate performance. However, successful measurement
depends on the activity range of robotic arm that the certain features of bike frames should be reached
by the stylus probe. In the future work, the optical sensors used in CMM may provide an alternative
solution, although more complex signal processing algorithm should be addressed.
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