A Supercritical CO2 Waste Heat Recovery System Design for a Diesel Generator for Nuclear Power Plant Application
Abstract
:1. Introduction
2. S-CO2 Bottoming Cycle Study for Diesel Generator
2.1. Cycle Layout and Analysis Method
2.2. Assumptions and Constraints
2.3. Sensitivity Analysis of S-CO2 Cycles
2.3.1. Simple Recuperation Cycle
2.3.2. Simple Recuperation Cycle with SA Heat
2.3.3. Modified Recompression Cycle with SA Heat
2.3.4. Partial Heating Cycle
2.3.5. Partial Heating Cycle with SA Heat
2.3.6. Modified Partial Heating Cycle with SA Heat
3. Discussion and Summary
4. Component Design
4.1. Turbomachinery Design
4.2. Heat Exchanger Design
5. Off-Design Analysis
Quasi-Steady State Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
: | efficiency | |
: | mass flow rate | |
: | enthalpy | |
T: | temperature | |
P: | pressure | |
s: | entropy | |
: | work | |
: | compressor inlet pressure | |
: | flow split ratio | |
cp: | specific heat capacity | |
ρ: | fluid density | |
ω: | the angular frequency of the rotor | |
: | velocity | |
: | gravity force acceleration | |
: | head | |
: | diameter | |
: | specific speed | |
: | specific diameter | |
Acronyms | ||
S-CO2: | supercritical carbon dioxide | |
MW: | mega watt | |
AAC DG: | alternate alternating current diesel generator | |
SBO: | station black out | |
EDG: | emergency diesel generator | |
NPPs: | nuclear power plants | |
APR1400: | advanced power reactor with an electrical power output of 1400 MW | |
WHRI: | waste heat recovery index | |
ORC: | organic Rankine cycle | |
KAIST-CCD: | KAIST-closed cycle design | |
REFPROP: | reference fluid thermodynamic and transport properties database | |
MT: | main turbine | |
MC: | main compressor | |
HT: | high temperature | |
LT: | low temperature | |
SA: | scavenge air | |
C: | compressor | |
PC: | precooler | |
HX: | heat exchanger | |
TB: | turbine | |
CP: | compressor | |
ANL: | argonne national laboratory | |
KAIST-TMD: | KAIST-turbomachinery design | |
1D: | one-dimension | |
KAIST-HXD: | KAIST-heat exchanger design |
References
- Kim, B.K.; Jeong, B.S.; Jo, M.K. Post-Fukushima Action Plan in Korea; Oxford Christ Church: Oxford, UK, 2011. [Google Scholar]
- Emirates Nuclear Energy Corporation. BRAKA Nuclear Power Plant Units 1&2 Preliminary Safety Analysis Report; Emirates Nuclear Energy Corporation: Abu Dhabi, UAE, 2010. [Google Scholar]
- Lee, S.K. Development Status of Emergency Diesel Generator Status Diagnosis in Nuclear Power Plants. J. Electr. World 2014, Special And+, 82–88. [Google Scholar]
- Dostal, V.; Hejzlar, P.; Driscoll, M.J. The supercritical carbon dioxide power cycle: Comparison to other advanced power cycles. Nucl. Technol. 2006, 154, 283–301. [Google Scholar] [CrossRef]
- Chen, Y.; Lundqvist, P.; Johansson, A.; Platell, P. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery. Appl. Therm. Eng. 2006, 26, 2142–2147. [Google Scholar] [CrossRef]
- Yoon, H.J.; Ahn, Y.; Lee, J.I.; Addad, Y. Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor. Nucl. Eng. Des. 2012, 245, 223–232. [Google Scholar] [CrossRef]
- Feher, E.G. Supercritical thermodynamic power cycle, presented to the IECEC. Douglas Paper, 2 August 1967; 4348. [Google Scholar]
- Bae, S.J.; Lee, J.; Ahn, Y.; Lee, J.I. Preliminary studies of compact Brayton cycle performance for small modular high temperature gas-cooled reactor system. Ann. Nucl. Energy 2015, 75, 11–19. [Google Scholar] [CrossRef]
- Martelli, E.; Nord, L.; Bolland, O. Design criteria and optimization of heat recovery steam cycles for integrated reforming combined cycles with CO2 capture. Appl. Energy 2012, 92, 255–268. [Google Scholar] [CrossRef]
- Heo, J.Y.; Kim, M.S.; Baik, S.; Bae, S.J.; Lee, J.I. Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor. Appl. Energy 2017, 206, 1118–1130. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, J.; Kim, S.G.; Lee, J.I.; Cha, J.E. The design study of supercriticalcarbon dioxide integral experiment loop. In Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013. [Google Scholar]
- Cho, S.K.; Kim, M.; Baik, S.; Ahn, Y.; Lee, J.I. Investigation of the bottoming cycle for high efficiency combined cycle gas turbine system with supercritical carbon dioxide power cycle. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Kim, M.S.; Ahn, Y.; Kim, B.; Lee, J.I. Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle. Energy 2016, 111, 893–909. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: NIST Reference fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0; National Institute of Standards and Technology: Gaithersburg, DC, USA, 2010.
- Pavri, R.; Moore, G.D. Gas Turbine Emissions and Control; GE Power Systems: Atlanta, GA, USA, 2001. [Google Scholar]
- Cziesla, F.; Bewerunge, J.; Senzel, A. Lünen e state-of-the art ultra supercritical steam power plant under construction. In Proceedings of the POWER-GEN Europe 2009, Cologen, Germany, 26–29 May 2009. [Google Scholar]
- Kimzey, G. Development of a brayton bottoming cycle using supercritical carbon dioxide as the working fluid, a report submitted in partial fulfillment of the requirements for gas turbine industrial fellowship. In University Turbine Systems Research Program; Electric Power Research Institute: Palo Alto, CA, USA, 2012. [Google Scholar]
- Musgrove, G.O.; Pittaway, C.; Vollnogle, E.; Chordia, L. Tutorial: Heat exchangers for supercritical CO2 power cycle applications. In Proceedings of the 5th International Symposium-Supercritical CO2 Power Cycles, San Antonio, TX, USA, 28–31 March 2016. [Google Scholar]
- Bae, S.J.; Lee, J.I.; Ahn, Y.H.; Lee, J.K. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application. J. Power Sources 2014, 270, 608–618. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Lee, J.I. Study of various brayton cycle designs for small modular sodium-cooled fast reactor. Nucl. Eng. Des. 2014, 276, 128–141. [Google Scholar] [CrossRef]
- Kulhanek, M.; Dostal, V. Thermodynamic analysis and comparison of supercritical carbon dioxide cycles. In Proceedings of the Supercritical CO2 Power Cycle Symposium, Boulder, CO, USA, 24–25 May 2011. [Google Scholar]
- Campanari, S.; Macchi, E. Thermodynamic analysis of advanced power cycles based upon solid oxide fuel cells, gas turbines and rankine bottoming cycles, 98-GT-585. In Proceedings of the ASME International Gas Turbine and Aero engine Congress and Exhibition, Stockholm, Sweden, 2–5 June 1998. [Google Scholar]
- Jakhrani, A.Q.; Othman, A.; Rigit, A.R.H.; Samo, S.R. Estimation of carbon footprints from diesel generator emissions. In Proceedings of the International Conference Green Ubiquitous Technology, Jakarta, Indonesia, 7–8 July 2012. [Google Scholar]
- Hewitt, C.H.; Pugh, S.J. Approximate design and costing methods for heat exchangers. Heat Transf. Eng. 2007, 28, 76–86. [Google Scholar] [CrossRef]
- Sienicki, J.J.; Moisseytsev, A.; Fuller, R.; Wright, S.; Pickard, P. Scale Dependencies of Supercritical Carbon Dioxide Brayton Cycle Technologies and Optimal Size for a Next-Step Supercritical CO2 Cycle Demonstration. In Proceedings of the Supercritical CO2 Power Cycle Symposium, Boulder, CO, USA, 24–25 May 2011. [Google Scholar]
- Balje, O.E. Turbomachines: A Guide to Design, Selection, and Theory; A Wiley-Interscience Publication: New York, NY, USA, 1980. [Google Scholar]
- Lee, J.; Lee, J.I.; Yoon, H.J.; Jae, E.C. Supercritical Carbon Dioxide turbomachinery design for water-cooled Small Modular Reactor application. Nucl. Eng. Des. 2017, 270, 76–89. [Google Scholar] [CrossRef]
- Lee, J.; Cho, S.; Lee, J.I. The Effect of Real Gas Approximations on S-CO2 Compressor Design. J. Turbomach. 2018, 140. [Google Scholar] [CrossRef]
- Cho, S.K.; Lee, J.; Lee, J.I.; Cha, J.E. S-CO2 turbine design for decay heat removal system of sodium cooled fast reactor. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, Korea, 13–17 June 2016. [Google Scholar]
- Shah, R.K.; Sekulic, D.P. Fundamentals of Heat Exchanger; John Wiley & Sons, Inc.: Hoboken, NY, USA, 2002. [Google Scholar]
- Baik, S.; Kim, S.G.; Lee, J.; Lee, J.I. Study on CO2-water printed circuit heat exchanger performance operating under various CO2 phases for S-CO2 power cycle application. Appl. Therm. Eng. 2017, 113, 1536–1546. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Kim, M.S.; Lee, J.I. S-CO2 cycle design and control strategy for the SFR application. In Proceedings of the 5th International Symposium–Supercritical CO2 Power Cycles, San Antonio, TX, USA, 28–31 March 2016. [Google Scholar]
Current Status | Improvements | |
---|---|---|
Electric Power System | * 2 EDGs/unit - Loss of offsite power * 1 AAC DG/2 or 4 units - Loss of cooling function (SBO) | * Movable vehicle for generator and batteries - ~2014, All NPPs |
Cooling System | * Redundancy (2 trains) * SFP has multiple sources | * Prepare supplementary methods - fire truck, etc. - ~2013, All NPPs |
Fire Protection System | * Fire hazards analysis/10 years * Fire protection plans | * Improving the firefighting plan * Improving fire protection facility - ~2015, All NPPs |
Class 1E Components | Loading Sequence at LOOP | Power (kW) |
---|---|---|
Load Sequence Group ×2 | 0.0 s | 694.9 × 2 |
Safety injection pump 1 | 5.0 s | 715 |
Safety injection pump 3 | 10.0 s | 715 |
Motor driven AFW pump | 15.0 s (if required) | 930.9 |
Containment spray pump (That interlocks with shutdown cooling pump) | 20.0 s | 738.1 |
Component cooling water pump | 25.0 s | 1225 |
Essential service water pump | 30.0 s | 636.8 |
Essential central chiller | 35.0 s | 806.0 |
Essential ESW intake structure/ CCW heat exchanger building chiller | 40.0 s | 304.9 |
Total Diesel Load on DBA/LOOP excluding Manual Load | 7461.7 |
NPP site | Unit | No. of DG | Power (kW) | Vendor (Engine/Generator) |
---|---|---|---|---|
Shin Kori | EDG 3/4 | 4 | 8000 | Doosan-MDT: 16PC2.6B, Alstom |
AAC DG 3, 4 | 1 | 7200 | Doosan-MDT: 16PC2.6B, Alstom | |
Shin Hanul | EDG 1/2 | 4 | 7200 | Doosan-SEMT: 16PC2-5V400, Alstom |
AAC DG 1, 2 | 1 | 7200 | Doosan-MDT: 18V32/40, Hyundai |
Specification | |
Engine | 18V/32/40 |
A (mm) | 8300 |
B (mm) | 4450 |
C (mm) | 12,750 |
H (mm) | 5240 |
W (mm) | 3500 |
Weight (t) | 139 |
Exhaust gas data | |
Temperature at turbine outlet | 306 °C |
Mass flowrate | 15.1 kg/h |
Volume flowrate | 92,700 m3/h |
Pressure (abs.) | 1.03 bar |
Permissible pressure drop after turbine | <0.03 bar |
Scavenged air data | |
Temperature at the compressor inlet | 25 °C |
Temperature at the air cooler outlet | 42 °C |
Mass flowrate | 14.7 kg/h |
Volume flowrate | 48,000 m3/h |
Pressure (abs.) | 3.2 bar |
Exhaust Gas | |
Power capacity | 7.2 MWe (80% load) |
Exhaust temperature at turbine outlet | 306 °C |
Pressure (abs.) | 1.03 bar |
Mass flow rate | 15.1 kg/s |
Scavenge Air | |
Air temperature at compressor inlet | 25 °C |
Air temperature at compressor outlet | 42 °C |
Pressure (abs.) | 3.2 bar |
Mass flow rate | 14.7 kg/s |
Species | Mole Fraction | Source | |
---|---|---|---|
Major species | Nitrogen (N2) | 0.78 | Inlet air |
Oxygen (O2) | 0.13 | Inlet air | |
Carbon dioxide (CO2) | 0.06 | Oxidation of fuel carbon | |
Water vapor (H2O) | 0.03 | Oxidation of fuel hydrogen |
Content | Unit | Value | |
---|---|---|---|
Heat source | - | Exhaust gas only or exhaust gas & scavenge air | |
Cycle minimum pressure | MPa | 22.0 | |
Pressure drop | Exhaust gas/Scavenge air | 0.202 (=2bar) | |
Others | 0.101 (=1bar) | ||
Temperature conditions | Air | °C | 25 |
Cooling water | 25 | ||
Min. temp. difference | 10 | ||
Compressor inlet | 35 | ||
Turbomachinery efficiency | Turbine | % | 88 |
Compressor | 75 | ||
Heat exchanger effectiveness | Exhaust gas | % | 90 |
Scavenge air | 90 | ||
Precooler | 90 | ||
Recuperator | 95 |
Cycle Layout | The Number of HX/TB/CP | Design Variables |
---|---|---|
(1-1) Simple recuperation | 3/1/1 | CO2 Mass flow rate, turbine outlet pressure |
(1-2) Simple recuperation with SA heat | 4/1/1 | CO2 Mass flow rate, turbine outlet pressure |
(2-1) Recompression cycle with SA heat | 5/1/2 | CO2 Mass flow rate, turbine outlet pressure, split ratio 1, split ratio 2 |
(3-1) Partial heating cycle | 4/1/1 | CO2 Mass flow rate, turbine outlet pressure, split ratio |
(3-2) Partial heating cycle with SA heat | 4/1/1 | CO2 Mass flow rate, turbine outlet pressure, split ratio |
(3-3) Modified partial heating cycle with SA heat | 4/1/1 | CO2 Mass flow rate, turbine outlet pressure, split ratio |
Cycle Layout | Optimal CO2 Mass Flow Rate (kg/s) | Number of HX/Turb./ Comp. (-) | Total Exchanged Heat (MWth) | Waste Heat Recovery (MWth) | Cycle Net Efficiency(%) | Net Produced Work (kWe) | WHRI (%) |
---|---|---|---|---|---|---|---|
(1-1) Simple recuperated cycle | 12 | 3/1/1 | 6.23 | 2.55 | 20.20 | 515 | 11.6 |
(1-2) Simple recuperation cycle with SA heat | 16 | 4/1/1 | 7.58 | 3.21 | 17.67 | 568 | 12.8 |
(2-1) Recompression cycle with SA heat | 18 | 5/1/2 | 8.29 | 3.45 | 17.65 | 613 | 13.8 |
(3-1) Partial heating cycle | 16 | 4/1/1 | 8.17 | 3.63 | 16.73 | 607 | 13.7 |
(3-2) Partial heating cycle with SA heat | 18 | 4/1/1 | 8.46 | 3.70 | 16.67 | 616 | 13.9 |
(3-3) Modified partial heating cycle with SA heat | 20 | 4/1/1 | 8.99 | 3.91 | 16.47 | 645 | 14.5 |
Type: Radial | |||||||
---|---|---|---|---|---|---|---|
Mass flow rate (kg/s) | Stages | Diameter (m) | Specific Speed | Specific diameter | Efficiency (%) | RPM | |
Turbine | 20 | 1 | 0.1 | 0.54 | 4.33 | 88 | 56,000 |
Compressor | 20 | 1 | 0.07 | 0.63 | 4.62 | 75 | 56,000 |
Parameter. | Pre-Cooler | Recuperator |
---|---|---|
Type | PCHE | PCHE |
Shape | Zig-zag flow channel | Zig-zag flow channel |
Hot channel fluid | CO2 | CO2 |
Cold channel fluid | Water | CO2 |
Hot channel D (semi-circular) | 2.0 mm | 2 mm |
Cold channel D (semi-circular) | 2.0 mm | 1.8 mm |
Hot channel No | 8500 | 135,000 |
Cold channel No | 8500 | 6750 |
Hot side Re # (Avg) | 70,215 | 54,602 |
Cold side Re # (Avg) | 5008 | 37,820 |
Length | 0.78 m | 0.96 m |
Volume | 0.088 | 0.12389 |
Pinch point | 6.1 °C | 4.97 °C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, J.K.; Kim, M.S.; Oh, B.S.; Son, S.; Lee, J.; Lee, J.I. A Supercritical CO2 Waste Heat Recovery System Design for a Diesel Generator for Nuclear Power Plant Application. Appl. Sci. 2019, 9, 5382. https://doi.org/10.3390/app9245382
Ham JK, Kim MS, Oh BS, Son S, Lee J, Lee JI. A Supercritical CO2 Waste Heat Recovery System Design for a Diesel Generator for Nuclear Power Plant Application. Applied Sciences. 2019; 9(24):5382. https://doi.org/10.3390/app9245382
Chicago/Turabian StyleHam, Jin Ki, Min Seok Kim, Bong Seong Oh, Seongmin Son, Jekyoung Lee, and Jeong Ik Lee. 2019. "A Supercritical CO2 Waste Heat Recovery System Design for a Diesel Generator for Nuclear Power Plant Application" Applied Sciences 9, no. 24: 5382. https://doi.org/10.3390/app9245382
APA StyleHam, J. K., Kim, M. S., Oh, B. S., Son, S., Lee, J., & Lee, J. I. (2019). A Supercritical CO2 Waste Heat Recovery System Design for a Diesel Generator for Nuclear Power Plant Application. Applied Sciences, 9(24), 5382. https://doi.org/10.3390/app9245382