Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas
Abstract
:1. Introduction
2. Various Questions on Quantum Non-Locality
- (i)
- the case [12] in which states that are non-maximally entangled violate Bell inequalities when using single-particle detectors with non-ideal quantum efficiency below 82%;
- (ii)
- for non-maximally entangled states, the Kullback–Leibler distance with the closest local distribution [56] is larger;
- (iii)
- the simulation of entanglement with non-local resources is more favorable when maximally entangled states are considered rather then the non-maximally ones.
3. Non-Locality in Higher Dimensional Spaces
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bell, J.S. On The Einstein Podolsky Rosen Paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 1966, 38, 477. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 77. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 1935, 23, 807. [Google Scholar] [CrossRef]
- Schrödinger, E. Probability relations between separated systems. Proc. Camb. Philos. Soc. 1936, 32, 446–452. [Google Scholar] [CrossRef]
- Eberhard, P.H. Quantum Theory and Pictures of Reality: Foundations, Interpretations, and New Aspects; Schommers, W., Ed.; Springer: Berlin, Germany, 1989; p. 169. [Google Scholar]
- Bohm, D.; Hiley, B.J.; Goldstein, S. The Undivided Universe: An Ontological Interpretation of Quantum Mechanics; Routledge: New York, NY, USA, 1993. [Google Scholar]
- Cirel’son, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93–100. [Google Scholar] [CrossRef]
- Genovese, M. Research on hidden variable theories: A review of recent progresses. Phys. Rep. 2005, 413, 319–396. [Google Scholar] [CrossRef] [Green Version]
- Genovese, M. Interpretations of Quantum Mechanics and Measurement Problem. Adv. Sci. Lett. 2010, 3, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett. 1982, 49, 1804. [Google Scholar] [CrossRef] [Green Version]
- Eberhard, P.H. Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 1993, 47, 2800–2811. [Google Scholar] [CrossRef]
- Brida, G.; Genovese, M.; Novero, C.; Predazzi, E. New experimental test of Bell inequalities by the use of a non-maximally entangled photon state. Phys. Lett. A 2000, 268, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Rowe, M.A.; Kielpinski, D.; Meyer, V.; Sackett, C.A.; Itano, W.M.; Monroe, C.; Wineland, D.J. Experimental violation of a Bell’s inequality with efficient detection. Nature 2001, 409, 791–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giustina, M.; Mech, A.; Ramelow, S.; Wittmann, B.; Kofler, J.; Beyer, J.; Lita, A.; Calkins, B.; Gerrits, T.; Nam, S.W.; et al. Bell violation using entangled photons without the fair-sampling assumption. Nature 2013, 497, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef]
- Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.; Hamel, D.R.; Allman, M.S.; et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett. 2015, 115, 250402. [Google Scholar] [CrossRef]
- Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.; Abellán, C.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef]
- Quantum Information, Computation and Cryptography; Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D. (Eds.) Springer: Berlin, Germany, 2010. [Google Scholar]
- Genovese, M. Real applications of quantum imaging. J. Opt. 2016, 18, 073002. [Google Scholar] [CrossRef] [Green Version]
- Abramsky, S.; Brandenburger, A. The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 2011, 13, 113036. [Google Scholar] [CrossRef]
- Gisin, N. Is realism compatible with true randomness? arXiv 2010, arXiv:1012.2536. [Google Scholar]
- Leggett, A.J. Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. Found. Phys. 2003, 33, 1469–1493. [Google Scholar] [CrossRef]
- Gröblacher, G.; Paterek, T.; Kaltenbaek, R.; Brukner, C.; Zukowski, M.; Aspelmeyer, M.; Zeilinger, A. An experimental test of non-local realism. Nature 2007, 446, 871–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branciard, C.; Brunner, N.; Gisin, N.; Kurtsiefer, C.; Lamas-Linares, A.; Ling, A.; Scarani, V. Testing quantum correlations versus single-particle properties within Leggetts model and beyond. Nat. Phys. 2008, 4, 681–685. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Jones, S.J.; Doherty, A.C. Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox. Phys. Rev. Lett. 2009, 98, 140402. [Google Scholar] [CrossRef] [PubMed]
- Popescu, S. Nonlocality beyond quantum mechanics. Nat. Phys. 2014, 10, 264–270. [Google Scholar] [CrossRef]
- Khrennikov, A. Quantum versus classical entanglement: eliminating the issue of quantum nonlocality. arXiv 2019, arXiv:1909.00267. [Google Scholar]
- Haag, R. On quantum theory. Int. J. Quant. Inf. 2019, 17, 1950037. [Google Scholar] [CrossRef]
- Zukowsky, M.; Zeilinger, A.; Horne, M.A.; Ekert, A.K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 1993, 71, 4287. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A. Experimental consequences of objective local theories. Phys. Rev. D 1974, 10, 526. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1970, 23, 880. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.; Linden, N.; Massar, S.; Pironio, S.; Popescu, S.; Roberts, D. Nonlocal correlations as an information-theoretic resource. Phys. Rev. A 2005, 71, 022101. [Google Scholar] [CrossRef] [Green Version]
- Mermin, N.D. Quantum mysteries revisited. Am. J. Phys. 1990, 58, 731–734. [Google Scholar] [CrossRef]
- Greenberger, D.M.; Horne, M.A.; Zeilinger, A. Going Beyond Bells Theorem. In Bell’s Theorem, Quantum Theory and Conceptions of the Universe; Kafatos, M., Ed.; Springer: Dordrecht, The Netherlands, 1989; Volume 37. [Google Scholar]
- Greenberger, D.M.; Horne, M.A.; Shimony, A.; Zeilinger, A. Bells theorem without inequalities. Am. J. Phys. 1990, 58, 1131–1143. [Google Scholar] [CrossRef]
- Coecke, B.; Duncan, R.; Kissinger, A.; Wang, Q. Strong Complementarity and Non-locality in Categorical Quantum Mechanics. In Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, New Orleans, LA, USA, 25–28 June 2012. [Google Scholar] [CrossRef] [Green Version]
- Hardy, L. Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 1993, 71, 1665–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapp, H.P. A Bell-type theorem without hidden variables. Am. J. Phys. 2004, 72, 30. [Google Scholar] [CrossRef]
- Branciard, C.; Gisin, N.; Pironio, S. Characterizing the Nonlocal Correlations Created via Entanglement Swapping. Phys. Rev. Lett. 2010, 104, 170401. [Google Scholar] [CrossRef] [PubMed]
- Cavalvanti, E.G.; Wiseman, H.M. Bell nonlocality, signal locality and unpredictability (or What Bohr could have told Einstein at Solvay had he known about Bell experiments). Found. Phys. 2012, 42, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Hall, M. Complementary contributions of indeterminism and signaling to quantum correlations. Phys. Rev. A 2010, 82, 062117. [Google Scholar] [CrossRef] [Green Version]
- Srikanth, R. Operational nonlocality. arXiv 2018, arXiv:1811.12409. [Google Scholar]
- Aravinda, S.; Srikanth, R. Extending quantum mechanics entails extending special relativity. J. Phys. A Math. Theor. 2016, 49, 205302. [Google Scholar] [CrossRef] [Green Version]
- Salart, D.; Baas, A.; Branciard, C.; Gisin, N.; Zbinden, H. Testing the speed of ‘spooky action at a distance’. Nature 2008, 454, 861–864. [Google Scholar] [CrossRef]
- Cocciaro, B.; Faetti, S.; Fronzoni, L. Improved lower bound on superluminal quantum communication. Phys. Rev. A 2018, 97, 052124. [Google Scholar] [CrossRef] [Green Version]
- Bancal, J.-D.; Pironio, S.; Acin, A.; Liang, Y.-C.; Scarani, V.; Gisin, N. Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 2012, 8, 867–870. [Google Scholar] [CrossRef]
- Ghirardi, G.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 1986, 34, 470. [Google Scholar] [CrossRef] [PubMed]
- Vertesi, T.; Brunner, N. Quantum Nonlocality Does Not Imply Entanglement Distillability. Phys. Rev. Lett. 2012, 18, 030403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 1989, 40, 4277. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.-C.; Vertesi, T.; Brunner, N. Semi-device-independent bounds on entanglement. Phys. Rev. A 2011, 83, 022108. [Google Scholar] [CrossRef] [Green Version]
- Junge, M.; Palazuelos, C. Large Violation of Bell Inequalities with Low Entanglement. Commun. Math. Phys. 2011, 306, 695. [Google Scholar] [CrossRef] [Green Version]
- Vidick, T.; Wehner, S. More nonlocality with less entanglement. Phys. Rev. A 2011, 83, 052310. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B.G.; Liang, Y.-C.; Brunner, N.; Gisin, N.; Kwiat, P.G. Exploring the Limits of Quantum Nonlocality with Entangled Photons. Phys. Rev. X 2015, 5, 041052. [Google Scholar] [CrossRef] [Green Version]
- Methot, A.A.; Scarani, V. An anomaly of non-locality. Quant. Inf. Comput. 2007, 7, 157–170. [Google Scholar]
- Acin, A.; Gill, R.; Gisin, N. Optimal Bell Tests Do Not Require Maximally Entangled States. Phys. Rev. Lett. 2005, 95, 210402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.-C.; Masanes, L.; Rosset, D. All entangled states display some hidden nonlocality. Phys. Rev. A 2012, 86, 052115. [Google Scholar] [CrossRef] [Green Version]
- Masanes, L.; Liang, Y.-C.; Doherty, A.C. All Bipartite Entangled States Display Some Hidden Nonlocality. Phys. Rev. Lett. 2008, 100, 090403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navascues, M.; Vertesi, T. Activation of Nonlocal Quantum Resources. Phys. Rev. Lett. 2011, 106, 060403. [Google Scholar] [CrossRef] [Green Version]
- Buscemi, F. All Entangled Quantum States Are Nonlocal. Phys. Rev. Lett. 2012, 108, 200401. [Google Scholar] [CrossRef] [Green Version]
- Giampaolo, S.M.; Streltsov, A.; Roga, W.; Bruß, D.; Illuminati, F. Quantifying nonclassicality: Global impact of local unitary evolutions. Phys. Rev. A 2013, 87, 012313. [Google Scholar] [CrossRef] [Green Version]
- Dakic, B.; Vedral, V.; Brukner, C. Necessary and Sufficient Condition for Nonzero Quantum Discord. Phys. Rev. Lett. 2010, 105, 190502. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Skrzypczyk, P.; Šupic, I. All Entangled States can Demonstrate Nonclassical Teleportation. Phys. Rev. Lett. 2017, 119, 110501. [Google Scholar] [CrossRef] [Green Version]
- Brassard, G.; Cleve, R.; Tapp, A. Cost of Exactly Simulating Quantum Entanglement with Classical Communication. Phys. Rev. Lett. 1999, 83, 1874. [Google Scholar] [CrossRef] [Green Version]
- Steiner, M. Towards quantifying non-local information transfer: Finite-bit non-locality. Phys. Lett. A 2000, 270, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Colbech, R.; Renner, R. Hidden Variable Models for Quantum Theory Cannot Have Any Local Part. Phys. Rev. Lett. 2008, 101, 050403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elitzur, A.; Popescu, S.; Rohrlich, D. Quantum nonlocality for each pair in an ensemble. Phys. Lett. A 1992, 162, 25–28. [Google Scholar] [CrossRef]
- Scarani, V. Local and nonlocal content of bipartite qubit and qutrit correlations. Phys. Rev. A 2008, 77, 042112. [Google Scholar] [CrossRef] [Green Version]
- Branciard, C.; Gisin, N.; Scarani, V. Local content of bipartite qubit correlations. Phys. Rev. A 2010, 81, 022103. [Google Scholar] [CrossRef] [Green Version]
- Brunner, N.; Gisin, N.; Popescu, S.; Scarani, V. Simulation of partial entanglement with nonsignaling resources. Phys. Rev. A 2008, 78, 052111. [Google Scholar] [CrossRef] [Green Version]
- Amselem, E.; Danielsen, L.E.; Lopez-Tarrida, A.J.; Portillo, J.R.; Bourennane, M.; Cabello, A. Experimental Fully Contextual Correlations. Phys. Rev. Lett. 2012, 108, 200405. [Google Scholar] [CrossRef] [PubMed]
- Portmann, S.; Branciard, C.; Gisin, N. Local content of all pure two-qubit states. Phys. Rev. A 2012, 86, 012104. [Google Scholar] [CrossRef] [Green Version]
- Brunner, N.; Cavalcanti, D.; Salles, A.; Skrzypczyk, P. Bound Nonlocality and Activation. Phys. Rev. Lett. 2011, 106, 020402. [Google Scholar] [CrossRef] [Green Version]
- Aolita, L.; Gallego, R.; Acín, A.; Chiuri, A.; Vallone, G.; Mataloni, P.; Cabello, A. Fully nonlocal quantum correlations. Phys. Rev. A 2012, 85, 032107. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.; Pironio, S. Popescu-Rohrlich Correlations as a Unit of Nonlocality. Phys. Rev. Lett. 2005, 95, 140401. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.S.; Masanes, L. Interconversion of nonlocal correlations. Phys. Rev. A 2005, 72, 052312. [Google Scholar] [CrossRef] [Green Version]
- Forster, M.; Wolf, S. Bipartite units of nonlocality. Phys. Rev. A 2011, 84, 042112. [Google Scholar] [CrossRef] [Green Version]
- Forster, M.; Winkler, S.; Wolf, S. Distilling Nonlocality. Phys. Rev. Lett. 2009, 102, 120401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, N.; Skrzypczyk, P. Nonlocality Distillation and Postquantum Theories with Trivial Communication Complexity. Phys. Rev. Lett. 2009, 102, 160403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, R.; Wurflinger, L.E.; Acin, A.; Navascues, M. Operational Framework for Nonlocality. Phys. Rev. Lett. 2012, 109, 070401. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.; Rhorlich, D. Quantum nonlocality as an axiom. Found. Phys. 1994, 24, 379. [Google Scholar] [CrossRef]
- Buhrman, H.; Cleve, R.; Massar, S.; de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 2010, 82, 665. [Google Scholar] [CrossRef] [Green Version]
- Wehner, S. Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities. Phys. Rev. A 2006, 73, 022110. [Google Scholar] [CrossRef] [Green Version]
- Braunstein, S.L.; Caves, C. Wringing out better Bell inequalities. Ann. Phys. 1990, 202, 22–26. [Google Scholar] [CrossRef]
- Cabello, A. Maximum quantum nonlocality between systems that never interacted. Phys. Lett. A 2012, 337, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Navascués, M.; Guryanova, Y.; Hoban, M.J.; Acín, A. Almost quantum correlations. Nat. Comm. 2015, 6, 6288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brassard, G.; Buhrman, H.; Linden, N.; Methot, A.A.; Tapp, A.; Unger, F. Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial. Phys. Rev. Lett. 2006, 96, 250401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisin, N. Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 1996, 210, 151–156. [Google Scholar] [CrossRef]
- Marcovitch, S.; Reznik, B.; Vaidman, L. Quantum-mechanical realization of a Popescu-Rohrlich box. Phys. Rev. A 2007, 75, 022102. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-A.; Yang, T.; Zhang, A.; Zhao, Z.; Cabello, A.; Pan, J.-W. Experimental Violation of Bell’s Inequality beyond Tsirelson’s Bound. Phys. Rev. Lett. 2006, 97, 170408. [Google Scholar] [CrossRef] [Green Version]
- Cabello, A. Violating Bell’s Inequality Beyond Cirel’son’s Bound. Phys. Rev. Lett. 2002, 88, 060403. [Google Scholar] [CrossRef] [Green Version]
- Masanes, L.I.; Acin, A.; Gisin, N. General properties of nonsignaling theories. Phys. Rev. A 2006, 73, 012112. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M.M.; Perez-Garcia, D.; Fernandez, C. Measurements Incompatible in Quantum Theory Cannot Be Measured Jointly in Any Other No-Signaling Theory. Phys. Rev. Lett. 2009, 103, 230402. [Google Scholar] [CrossRef] [Green Version]
- Quintino, M.T.; Vértesi, T.; Brunner, N. Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell Nonlocality. Phys. Rev. Lett. 2014, 113, 160402. [Google Scholar] [CrossRef] [Green Version]
- Uola, R.; Moroder, T.; Gühne, O. Joint Measurability of Generalized Measurements Implies Classicality. Phys. Rev. Lett. 2014, 113, 160403. [Google Scholar] [CrossRef] [Green Version]
- Stevens, N.; Busch, P. Steering, incompatibility, and Bell-inequality violations in a class of probabilistic theories. Phys. Rev. A 2014, 89, 022123. [Google Scholar] [CrossRef] [Green Version]
- Karthik, H.S.; Usha Devi, A.R.; Rajagopal, A.K. Joint measurability, steering, and entropic uncertainty. Phys. Rev. A 2015, 91, 012115. [Google Scholar] [CrossRef] [Green Version]
- Te’eni, A.; Peled, B.Y.; Cohen, E.; Carmi, A. Multiplicative Bell inequalities. Phys. Rev. A 2019, 99, 040102(R). [Google Scholar] [CrossRef] [Green Version]
- Carmi, A.; Herasymenko, Y.; Cohen, E.; Snizhko, K. Bounds on nonlocal correlations in the presence of signaling and their application to topological zero modes. New J. Phys. 2019, 21, 073032. [Google Scholar] [CrossRef] [Green Version]
- Quintino, M.T.; Bowles, J.; Hirsch, F.; Brunner, N. Incompatible quantum measurements admitting a local-hidden-variable model. Phys. Rev. A 2016, 93, 052115. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, F.; Quintino, M.T.; Brunner, N. Quantum measurement incompatibility does not imply Bell nonlocality. Phys. Rev. A 2018, 97, 012129. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, J.; Wehner, S. The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics. Science 2010, 330, 1072. [Google Scholar] [CrossRef] [Green Version]
- Banik, M.; Rajjak Gazi, M.; Ghosh, S.; Kar, G. Degree of complementarity determines the nonlocality in quantum mechanics. Phys. Rev. A 2013, 87, 052125. [Google Scholar] [CrossRef] [Green Version]
- Bush, M.; Heinosaari, T.; Schultz, J.; Stevens, N. Comparing the degrees of incompatibility inherent in probabilistic physical theories. Eur. Phys. J. 2013, 103, 10002. [Google Scholar] [CrossRef]
- Carmi, A.; Cohen, E. On the Significance of the Quantum Mechanical Covariance Matrix. Entropy 2018, 20, 500. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 1988, 60, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piacentini, F.; Avella, A.; Gramegna, M.; Lussana, R.; Villa, F.; Tosi, A.; Brida, G.; Degiovanni, I.; Genovese, M. Investigating the Effects of the Interaction Intensity in a Weak Measurement. Sci. Rep. 2018, 8, 6959. [Google Scholar] [CrossRef]
- Piacentini, F.; Avella, A.; Levi, M.P.; Gramegna, M.; Brida, G.; Degiovanni, I.P.; Cohen, E.; Lussana, R.; Villa, F.; Tosi, A.; et al. Measuring Incompatible Observables by Exploiting Sequential Weak Values. Phys. Rev. Lett. 2016, 117, 170402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmi, A.; Cohen, E. Relativistic independence bounds nonlocality. Sci. Adv. 2019, 5, eaav8370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, D.J.; Jones, S.J.; Wiseman, H.M.; Pryde, G.J. Experimental EPR-steering using Bell-local states. Nat. Phys. 2010, 6, 845–849. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.-X.; Zhou, J.; Ren, C.; Su, H.Y.; Chen, J.-L. Chained Einstein-Podolsky Rosen steering inequalities with improved visibility. Int. J. Quantum Inf. 2018, 16, 1850034. [Google Scholar] [CrossRef] [Green Version]
- Ou, Z.Y.; Pereira, S.F.; Kimble, H.J.; Peng, K.C. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett. 1992, 68, 3663. [Google Scholar] [CrossRef] [Green Version]
- Bowen, W.P.; Schnabel, R.; Lam, P.K.; Ralph, T.C. Experimental Investigation of Criteria for Continuous Variable Entanglement. Phys. Rev. Lett. 2003, 90, 043601. [Google Scholar] [CrossRef] [Green Version]
- Hald, J.; Sorensen, J.L.; Schori, C.; Polzik, E.S. Spin Squeezed Atoms: A Macroscopic Entangled Ensemble Created by Light. Phys. Rev. Lett. 1999, 83, 1319–1322. [Google Scholar] [CrossRef]
- Howell, J.C.; Bennink, R.S.; Bentley, S.J.; Boyd, R.W. Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion. Phys. Rev. Lett. 2004, 92, 210403. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 1988, 40, 913. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.D.; Drummond, P.D.; Bowen, W.P.; Cavalcanti, E.G.; Lam, P.K.; Bachor, H.A.; Andersen, U.L.; Leuchs, G. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications. Rev. Mod. Phys. 2009, 81, 1727. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.H.; Gillett, G.; de Almeida, M.P.; Branciard, C.; Fedrizzi, A.; Weinhold, T.J.; Lita, A.; Calkins, B.; Gerrits, T.; Wiseman, H.M.; et al. Conclusive quantum steering with superconducting transition-edge sensors. Nat. Commun. 2012, 3, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walborn, S.P.; Salles, A.; Gomes, R.M.; Toscano, F.; Souto Ribeiro, P.H. Revealing Hidden Einstein-Podolsky-Rosen Nonlocality. Phys. Rev. Lett. 2011, 106, 130402. [Google Scholar] [CrossRef] [PubMed]
- Sainz, A.B.; Brunner, N.; Cavalcanti, D.; Skrzypczyk, P.; Vértesi, T. Postquantum Steering. Phys. Rev. Lett. 2015, 115, 190403. [Google Scholar] [CrossRef] [Green Version]
- Fritz, T. Nonlocality with less complementarity. Phys. Rev. A 2012, 85, 022102. [Google Scholar] [CrossRef] [Green Version]
- Short, A.J.; Popescu, S.; Gisin, N. Entanglement swapping for generalized nonlocal correlations. Phys. Rev. A 2006, 73, 012101. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J. Information processing in generalized probabilistic theories. Phys. Rev. A 2007, 75, 032304. [Google Scholar] [CrossRef] [Green Version]
- Pitowsky, I. Geometry of quantum correlations. Phys. Rev. A 2008, 77, 062109. [Google Scholar] [CrossRef] [Green Version]
- Linden, N.; Popescu, S.; Short, A.J.; Winter, A. Quantum Nonlocality and Beyond: Limits from Nonlocal Computation. Phys. Rev. Lett. 2007, 99, 180502. [Google Scholar] [CrossRef] [Green Version]
- Gisin, N. Impossibility of covariant deterministic nonlocal hidden-variable extensions of quantum theory. Phys. Rev. A 2011, 83, 020102. [Google Scholar] [CrossRef] [Green Version]
- Palazuelos, C. Superactivation of Quantum Nonlocality. Phys. Rev. Lett. 2012, 109, 190401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junge, M.; Palazuelos, C.; Perez-Garcia, D.; Villanueva, I.; Wolf, M.M. Operator Space Theory: A Natural Framework for Bell Inequalities. Phys. Rev. Lett. 2010, 104, 170405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalcanti, D.; Acin, A.; Brunner, N.; Vertesi, T. All quantum states useful for teleportation are nonlocal resources. Phys. Rev. A 2013, 87, 042104. [Google Scholar] [CrossRef] [Green Version]
- Ghirardi, G.C.; Rimini, A.; Weber, T. A general argument against superluminal transmission through the quantum mechanical measurement process. Lett. Nuov. Cim. 1980, 27, 293–294. [Google Scholar] [CrossRef]
- Hyomony, A. Natural Science and Mathaphysics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Maudlin, T. Space-Time in the quantum world. In Bohmian Mechanics and Quantum Theory: An Appraisal; Cushing, J.T., Fine, A., Goldstein, S., Eds.; Springer: Berlin, Germany, 1996; pp. 285–307. [Google Scholar]
- Maccone, L. A Fundamental Problem in Quantizing General Relativity. Found. Phys. 2019, 49, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Cohen, E.; Elitzur, A.C. Can a Future Choice Affect a Past Measurement’s Outcome? Ann. Phys. 2015, 355, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Ahn, D.; Myers, C.R.; Ralph, T.C.; Mann, R.B. Quantum state cloning in the presence of a closed timelike curve. Phys. Rev. A 2013, 88, 022332. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S.; Maccone, L.; Garcia-Patron, R.; Giovannetti, V.; Shikano, Y.; Pirandola, S.; Rozema, L.A.; Darabi, A.; Soudagar, Y.; Shalm, L.K.; et al. Closed Timelike Curves via Postselection: Theory and Experimental Test of Consistency. Phys. Rev. Lett. 2011, 106, 040403. [Google Scholar] [CrossRef] [Green Version]
- Genovese, M. Cosmology and Entanglement. Adv. Sci. Lett. 2009, 2, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K. “Time” replaced by quantum correlations. Int. J. Theor. Phys. 1984, 23, 701–711. [Google Scholar] [CrossRef]
- Oreshkov, O.; Costa, F.; Brukner, C. Quantum correlations with no causal order. Nat. Commun. 2012, 3, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myrvold, W.C. On peaceful coexistence: Is the collapse postulate incompatible with relativity? Stud. Hist. Philos. Sci. Part B 2002, 33, 435–466. [Google Scholar] [CrossRef] [Green Version]
- Tumulka, R. On spontaneous wave function collapse and quantum field theory. Proc. R. Soc. A 2006, 462, 1897–1908. [Google Scholar] [CrossRef] [Green Version]
- Hooft, G. Quantum gravity as a dissipative deterministicsystem. Class. Quantum Grav. 1999, 16, 3263–3279. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fort. Phys. 2013, 61, 781–811. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef] [Green Version]
- Garattini, R. Self sustained traversable wormholes? Class. Quantum Grav. 2005, 22, 1105. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genovese, M.; Gramegna, M. Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas. Appl. Sci. 2019, 9, 5406. https://doi.org/10.3390/app9245406
Genovese M, Gramegna M. Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas. Applied Sciences. 2019; 9(24):5406. https://doi.org/10.3390/app9245406
Chicago/Turabian StyleGenovese, Marco, and Marco Gramegna. 2019. "Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas" Applied Sciences 9, no. 24: 5406. https://doi.org/10.3390/app9245406
APA StyleGenovese, M., & Gramegna, M. (2019). Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas. Applied Sciences, 9(24), 5406. https://doi.org/10.3390/app9245406