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Abstract: This paper proposes a multicriteria decision-making (MCDM) approach, coupling
intervalued trapezoidal intuitionistic fuzzy number (IVTIFN) with the technique for order preference
by similarity to ideal solution (TOPSIS) to facilitate the selection of pipe materials. Their integration
can maximize the advantage in better expressing decision maker’s preference on the proposed
evaluation criteria by using a bounded limit instead of an exact value, to rank material alternatives
based upon their functional, economic and environmental attributes. To reduce possible information
overlapping resulted from the criteria, Mahalanobis distance is incorporated into IVTIFN–TOPSIS to
improve the selection results. An illustrative example is provided to verify the proposed approach
and demonstrate its practical application, in which four common alternative materials, including
carbon steel, galvanized steel, polyvinyl chloride (PVC) and high-density polyethylenes (HDPE), are
subject to precise selection to determine their adaptability in waste-water piping. The selection result
indicates that the plastic materials are superior to the metal materials. In particular, HDPE is the
optimal material alternative for waste-water collection and transport.

Keywords: materials selection; pipe material; multicriteria decision making; IVTIFN; TOPSIS;
Mahalanobis distance

1. Introduction

Pipe materials are prone to chemical corrosion or scaling during waste-water collection and
transportation, due to complex and harmful compounds contained. If the corrosion intensifies, it may
cause failure of piping system, resulting in leakage and possible environmental damage [1]. Selection
of appropriate materials is a premise to help with the careful design of a piping system, ultimately to
ensure its operation in a safe and reliable way.

Material selection is crucial for engineering design [2]. It is a complex issue, in which a decision
maker may encounter a number of conflicting or competing attributes, e.g., that the economic and
functional performance of materials to some extent may not match each other [3]. Basically, the selection
of materials is to meet the design requirements [4]. Mercer [5] presented that reliability and longevity
was critical to selection of pipe materials, in which internal pressure and external loads were the
primary criteria to assess their performances. Anojkumar et al. [6] further incorporated the mechanical
properties with corrosion resistance into the selection criteria of pipe materials. Zhang et al. [7] took the
compatibility of materials with the working fluid into the selection criteria of heating pipes. In addition
to materials’ functional performances, economic attributes are also important factors in influencing
material selection to decrease the manufacturing cost [8,9]. Kayfeci [10] made a selection from five
insulation materials based on their market price. Mendrinos et al. [11] evaluated the performance of
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pipe materials for a borehole heat exchanger (BHE) in terms of their installation costs. Zhao et al. [12]
designed economic evaluation criteria for the selection of plastic pipes, including procurement cost,
processing cost and market share. With the concept of environmentally conscious design emerging
in lean manufacturing, material selection pays more attention to mitigation of the product’s lifecycle
environmental impact [13]. Du et al. [14] investigated the possible lifecycle impacts on different pipe
materials to lead optimal selection. Akhtar et al. [15] selected the optimal pipe among four common
sewage pipes based on their lifecycle environmental impacts.

The above-mentioned studies inform us of the key criteria that should be considered in
pipe-materials selection, including functional, economic, and environmental aspects. However, they
seldom surveyed the impact of correlation among different criteria that may give rise to information
overlapping. Our study filled such a gap by using the correlation test to eliminate the most interrelated
criteria, through which Mahalanobis distance is further coupled with the multicriteria decision-making
(MCDM) method to reduce the uncertainty of the selection results.

Multicriteria decision making (MCDM) is classified into multiple-objective decision making
(MODM) and multiple-attribute decision making (MADM) [16]. The former mainly focuses on
applying optimization to satisfy predefined objective functions, whilst the latter ranks a finite number
of alternatives according to their performances on a set of predetermined attributes [12,17]. Since
multiple factors are being taken into decision analysis, MADM methods, including the Analytic
Hierarchy Process (AHP), Elimination Choice Translating Reality (ELECTRE), the Preference-ranking
Organization Method for Enrichment Evaluations (PROMETHEE), the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS), Vise Kriterijumska Optimizacija I Kompromisno Resenje
(VIKOR), Complex Proportional Assessment (COPRAS), etc., are widely employed to help decision
makers carry out trade-offs among various alternatives. AHP has evolved into weighting the
assignment of different criteria in a hierarchical indicator system [18], dealing with the inconsistency of
group decision making [19], and examining the performance of Pareto-optimality on a set of feasible
solutions [20]. ELECTREmay couple with AHP to rank alternatives depending upon their outranking
relationships [21]. However, the methods fail to explain the information that lies in the differences
of ranking scores [22]. PROMETHEE fills such gap by using different scores to indicate the degree
of preference among alternatives [23]. AHP, ELECTRE and PROMETHEE are based upon pairwise
comparison among attributes to rank alternatives, which is time consuming in computation, especially
when the number of alternatives or attributes enlarges in the decision-making process [24,25]. TOPSIS,
VIKOR and COPRAS are comparatively simple, systematic, and logical for decision makers to obtain
the optimal option when facing a number of competing criteria [26]. TOPSIS and VIKOR are similar
but different from their normalizations in selected indicators [27]. The latter focuses on a compromise
solution between individual utility and group utility, by which the alternatives ranking may be deviated
due to the differences in subjective weightings [28,29]. Similarly, COPRAS is identified by using the
utility degree to rank alternatives, which may cause results sensitive to the process of normalization [30].
TOPSIS is more adaptive to qualitative and quantitative information, by discriminating alternatives in
terms of their Euclidean distances from the ideal solution [31,32]. It has been identified as reliable and
efficient in a number of studies on materials selection, for its easy computation and clear trade-offs
among various criteria [33]. In addition, TOPSIS is inherently effective to couple with fuzzy set to
tackle the uncertainty involved in decision making on materials selection [34,35].

Engineering designers usually express their preference or judgment in a linguistic environment,
which may result in vagueness [36]. The TOPSIS is unable to deal with such vagueness, which calls
for improvement [37]. Fuzzy set provides the insight into TOPSIS development, by transforming the
linguistic information into fuzzy numbers, to indicate decision maker’s preference and judgment [38,39].
However, linguistic variables in an ordinary fuzzy set are not clear enough to express the decision
maker’s preference by using an exact numerical value of either 0 or 1 [40,41]. In such a case, this
study applies intervalued trapezoidal intuitionistic fuzzy number (IVTIFN) to handling ambiguity
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in linguistic information, by which its predetermined numerical interval may better specify the
fuzzification in a fixed bounded limit [42].

This study provides a MCDM-based computational approach, which couples IVTIFN with the
TOPSISto aid engineers in the selection of commercially available materials. Mahalanobis distance is
incorporated into IVTIFN–TOPSIS, to discriminate similarities of alternative materials by eliminating
the highly correlated decision criteria. An illustrative case example is given to demonstrate its actual
application. The study is expected to provide insight into sustainable design of waste-water piping
system, ultimately to improve its sustainability.

2. Materials and Methods

2.1. An Indicator System for Pipe Materials Selection

An indicator system for pipe materials selection is established, as shown in Figure 1.
These indicators are classified into three categories, indicating materials’ functional, economic and
environmental attributes, to reflect the most crucial criteria that should be considered in materials
selection for a piping-system design.

The functional attribute reflects the specific performance that certain material must satisfy [21]. In
this study, a number of typical criteria are identified to examine functional performances regarding pipe
materials, in order to ensure reliability and reduce environmental risk during waste-water collection
and transport, including tensile strength (C1), elastic modulus (C2), linear expansion (C3), scaling
resistance (C4), and corrosion resistance (C5). C1 reflects materials’ capability to withstand a maximum
load of tensile stress [43]. C2 reflects the ability of materials to resist elastic deformation, while C3 shows
materials’ resistibility to deformation caused by temperature change [44,45]. Scaling and corrosion
resistance play key roles in pipe materials’ functional performance to decrease piping failure [46].

Cost plays an important role in materials selection, by which three criteria are considered,
consisting of the materials’ marketing price (C6), density (C7) and Hazen–Williams roughness (C8).
It is worthy of note that C7 and C8 have indirect impacts on the costs of pipeline construction and
operation. The pipe material with a larger density may entail a heavier cost on pipeline installation [47].
In addition, the degree of roughness of pipe material is positively correlated with the maintenance cost
in sewage transportation [48].

With environmental considerations being gradually immersed into product design, selection of
materials focuses on environmental impact throughout a product’s entire lifecycle [49]. In such a context,
three indicators are proposed to indicate the environmental performance of pipe material: energy
consumption (C9), human health risk (C10) and material recyclability (C11). Energy consumption
here focuses on the power consumption related to pipeline construction and maintenance, which may
contribute to indirect carbon emissions [49]. Health risk indicates the hazard of toxic components
released to the workers in the pipe materials’ processing and welding [12]. The material recyclability is
used to reflect the potentials of waste prevention, thus to reduce landfill disposal of waste materials [50].
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Assume that the number of involved engineering designers for the pipe materials selection is e,
and the kth designer’s fuzzy rating corresponding to the jth alternative material in the ith criteria is
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given as follows:
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where B denotes the beneficial criteria, rU
j3 = max
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ij3 ; whilst C represents cost criteria, rL
j1 = min
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The best and worst value of the jth criterion is denoted as x̃∗j = max
i

x̃ij, x̃−j = min
i

x̃ij, respectively.

The normalized rating is:

ãij =
x̃ij − x̃−j

x̃∗j − x̃−j
(9)

The normalized matrix of ratings is thus constructed:

A =


ã11 · · · ã1n

...
. . .

...
ãm1 · · · ãmn

 (10)

where m indicates the number of material alternatives, n is the number of evaluation criteria.
The engineering designers may also apply linguistic remarks, including Excellent (E), Good (G),

Fair (F), Poor (P), Very Poor (VP), to classify alternatives’ performance with respect to each criterion.
This performances of the alternative materials are by analogy to such remarks, and are converted into
corresponding fuzzy numbers, shown in Table 1.

Table 1. Transformation of linguistic remarks to fuzzy numbers.

Linguistic Remark Fuzzy Number
Performances of Alternatives Relative Importance of Criteria

Very Poor (VP) Extremely Low (EL) ((0.1, 0.1, 0.2), (0.05,0.1, 0.25))
Poor (P) Low (L) ((0.2, 0.3, 0.4), (0.15, 0.3, 0.45))
Fair (F) Medium (M) ((0.4, 0.5,0.6), (0.35, 0.5,0.65))

Good (G) High (H) ((0.6, 0.7,0.8), (0.55, 0.7, 0.85))
Excellent (E) Extremely High (EH) ((0.8, 0.9, 0.9), (0.75, 0.9, 0.95))

Assume the weightings of the jth criteria assessed by the kth designer is

z̃jk =
[(

zL
jk1, zL

jk2, zL
jk3

)
,
(
zU

jk1, zU
jk2, zU

jk3

)]
. The obtained fuzzy weightings are aggregated as follows:

z̃j =
[(
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j2, zL
j3

)
,
(
zU

j1 , zU
j2 , zU

j3

)]
=

1
e

∑e

k=1
z̃jk (11)

To facilitate TOPSIS application, the obtained weightings shown in Equation (11) have to be
normalized as follows:

w̃j =
z̃j∑
j z̃j

(12)

Thus, the weighting matrix is constructed as follows:

w = diag(w̃1, w̃2, · · · , w̃n) (13)

2.3. TOPSIS

The above normalized ratings of material alternatives and the related weightings are input into
TOPSIS to obtain the distances between alternatives and the best/least alternative. These distances are
based on Euclidean distance (IVTIFN–TOPSIS (E)) and Mahalanobis distance (IVTIFN–TOPSIS (M))
respectively, to calculate their closeness coefficients for ranking the material alternatives.

The Euclidean distances between the material alternatives and the best/least alternative are
specified as follows:

D̃
+
Ei =

√∑
j

[
w̃j

(̃
aij − ã∗j

)]2
(14)
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D̃
−

Ei =

√∑
j

[
w̃j

(̃
aij − ã−j

)]2
(15)

The closeness coefficient is:

C̃Ei =
D̃
−

Ei

D̃
−

Ei + D̃
+
Ei

(16)

where C̃Ei =
[(

cL
Ei1, cL

Ei2, cL
Ei3

)
,
(
cU

Ei1, cU
Ei2, cU

Ei3

)]
.

A defuzzification method, center of gravity (COG), is applied to converting fuzzy numbers C̃Ei

into crisp scores CEi to rank the alternatives, given as follows [52]:

CEi =
√

CL
Ei ×CU

Ei =

√√√√√√∫
µL

C̃Ei
(x)xdx∫

µL
C̃Ei

(x)dx
×

∫
µU

C̃Ei
(x)xdx∫

µU
C̃Ei

(x)dx
(17)

The greater CEi is, the better the corresponding material is.
The Mahalanobis distances between alternatives and the best/least alternative are:

D̃
+
Mi =

√
(Ai −A∗)TwTΣ−1w(Ai −A∗) (18)

D̃
−

Mi =

√
(Ai −A−)TwTΣ−1w(Ai −A−) (19)

where Ai A∗, and A− indicates the ith material alternative, the best alternative and the least alternative,

respectively, Ai = (̃ai1, ãi2, · · · , ãin)
T, A∗ =

(̃
a∗1, ã∗2, · · · , ã∗n

)T
, A− =

(̃
a−1 , ã−2 , · · · , ã−n

)T
(̃a∗j = max

i
ãij,

ã−j = min
i

ãij). Σ is the co-variance matrix of A. If Σ is indicated as a singular matrix, the Moore–Penrose

generalized inverse matrix Σ−1 is used to replace Σ [53].
The closeness coefficient is:

C̃Mi =
D̃
−

Mi

D̃
−

Mi + D̃
+
Mi

(20)

where C̃Mi =
[(

cL
Mi1, cL

Mi2, cL
Mi3

)
,
(
cU

Mi1, cU
Mi2, cU

Mi3

)]
.

Similarly, the fuzzy numbers C̃Mi is converted into crisp scores CMi to rank the alternatives.
The greater CMi is, the better the corresponding material is.

CMi =
√

CL
Mi ×CU

Mi =

√√√√√√∫
µL

C̃Mi
(x)xdx∫

µL
C̃Mi

(x)dx
×

∫
µU

C̃Mi
(x)xdx∫

µU
C̃Mi

(x)dx
(21)

3. An Illustrative Case Example

The case example is to conduct materials selection for waste-water piping in a newly constructed
municipal sewage treatment plant in Chengdu City, China. According to the design requirements, the
nominal diameter of the pipeline is 200 mm, which has to tolerate the pressure of 1.6 MPa. Currently,
there is a wide variety of commercial pipe materials on the market, including carbon steels, copper,
ductile iron, polyethylene (PE), polyvinyl chloride (PVC), pentatricopeptide repeats (PPR), etc. Given
their applications to sewage treatment, this study chooses four common pipe materials, i.e., carbon steel
(M1), galvanized steel (M2), PVC (M3) and high-density PE (HDPE) (M4) for further precise selection.

A group comprised of five experienced engineers has been involved in the consultation on pipe
materials selection, including two project managers from the treatment plant and three engineers
who are engaged in the design of sewage collection and transportation system. Their subjective
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judgments on the performances of the four alternative materials in respect to each criterion are given
in Table 2. Table 3 shows the subjective judgments of the five involved engineers on the importance of
the proposed criteria.

Table 2. Subjective judgments on performances of the alternative materials.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Engineer 1

M1 E E VP VP VP G G F G G G
M2 E E VP P P E G F E E E
M3 F F F G G P P E P P P
M4 P P E E E F VP G P VP VP

Engineer 2

M1 E E F P P E E F E E G
M2 E E F P P E E F E E G
M3 F F G G G P P E P P F
M4 VP VP E E E F VP G P P P

Engineer 3

M1 E E P P VP F G F G G G
M2 P VP G G G P P G P F P
M3 F F E E E F P G VP P VP
M4 E E VP VP VP G G F G G G

Engineer 4

M1 E E VP P P E G F E E E
M2 F F F G G P P E P P P
M3 P P E E E F VP G P VP VP
M4 E E F P P E E F E E G

Engineer 5

M1 E E F P P E E F E E G
M2 F F G G G P P E P P F
M3 VP VP E E E F VP G P P P
M4 E E P P VP F G F G G G

Table 3. Subjective judgments on the importance of the proposed criteria.

Criteria Engineer 1 Engineer 2 Engineer 3 Engineer 4 Engineer 5

Functional
attribute

C1 EL L L L EL
C2 EL L EL L EL
C3 EL EL EL EL EL
C4 EH H H H EH
C5 EH EH H H H

Economic
attribute

C6 EH EH EH EH EH
C7 L M L L L
C8 L M M L L

Environmental
attribute

C9 EL EL EL EL EL
C10 EL EL L L L
C11 EL EL L L L

4. Results and Discussion

4.1. Evaluation Results

Table 4 shows that the ranking result from the IVTIFN–TOPSIS (E) model is M3 > M4 > M1
> M2. It is clear that two optional plastic materials, i.e., PVC (M3) and HDPE (M4), are the optimal
and near-optimal materials. Figure 3 shows that they have excellent performances in most criteria.
For instance, PVC and HDPE show better capacities in corrosive resistance (C4) and scaling resistance
(C5), which are the key functional premises to ensure the liability of the piping system. In contrast
to M3 and M4, they have their own advantages and disadvantages. PVC shows superiorities in
mechanical properties (C1 and C2), marketing price (C6) and roughness (C8). Nevertheless, HDPE
is more environmentally-friendly and capable of anti-corrosion. By taking the relative importance
of criteria into consideration, the most appropriate material for waste-water piping is PVC (M3). M1
performs better than M2 in most of the evaluation criteria, excepting C4 and C5.
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Table 4. Results of the IVTIFN–TOPSIS (E) model.

Model M1 M2 M3 M4

IVTIFN–TOPSIS (E) CEi 0.3272 0.2185 0.7170 0.6426
Ranking order 3 4 1 2
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Figure 3. Performance comparisons among the four alternative materials.

A correlation test is conducted to examine the correlation among criteria by using Pearson analysis,
through which Table 5 shows that a number of criteria are significantly correlated to each other,
highlighted by the functional attributes, i.e., among C1 to C5.

Table 5. Correlation matrix of the evaluation criteria.

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 1 0.9949 0.9951 −0.996 −0.996 −0.576 −0.952 −0.854 −0.974 −0.907 0.4032
C2 0.9949 1 0.9996 −0.987 −0.996 −0.655 −0.924 −0.902 −0.985 −0.87 0.4158
C3 0.9951 0.9996 1 −0.99 −0.998 −0.652 −0.92 −0.9 −0.98 −0.864 0.4396
C4 −0.996 −0.987 −0.99 1 0.9966 0.5508 0.9364 0.8357 0.9499 0.8906 −0.476
C5 −0.996 −0.996 −0.998 0.9966 1 0.6165 0.9224 0.8779 0.9665 0.869 −0.473
C6 −0.576 −0.655 −0.652 0.5508 0.6165 1 0.3526 0.9172 0.6853 0.2399 −0.407
C7 −0.952 −0.924 −0.92 0.9364 0.9224 0.3526 1 0.6882 0.9967 0.9922 −0.16
C8 −0.854 −0.902 −0.9 0.8357 0.8779 0.9172 0.6882 1 0.9108 0.5947 −0.455
C9 −0.974 −0.985 −0.98 0.9499 0.9665 0.6853 0.9967 0.9108 1 0.8713 −0.274

C10 −0.907 −0.87 −0.864 0.8906 0.869 0.2399 0.9922 0.5947 0.8713 1 −0.077
C11 0.4032 0.4158 0.4396 −0.476 −0.473 −0.407 −0.16 −0.455 −0.274 −0.077 1

The major purpose of the materials selection is to ensure reliable piping of waste water, by which
anticorrosion and anticlogging are the prerequisites. The criteria C4 and C5 have directly reflected
such functional performances. Although C1, C2, and C3 have certain relationships linked with pipe
reliability, their performances on waste-water piping are in a lower priority in contrast to C4 and
C5. In such context, they are eliminated from the eleven proposed criteria to decrease information
overlapping. Mahalanobis distance is further employed to examine whether the ranking results
are varied.

Table 6 shows that the materials alternative ranking by using IVTIFN−TOPSIS (M) is M4 > M3 >

M2 > M1. Compared with the result by using the IVTIFN−TOPSIS (E), it is clear that HDPE is regarded
as the optimal material, whilst carbon steel is the least suitable option.
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Table 6. Results of the IVTIFN−TOPSIS (M) model.

Model M1 M2 M3 M4

IVTIFN−TOPSIS (M) CMi 0.1461 0.3269 0.6430 0.7094
Ranking order 4 3 2 1

4.2. Discussion

Both of the results from the IVTIFN−TOPSIS (E) and the IVTIFN−TOPSIS (M) model indicate that
polymers are superior to the metal materials, which are consistent with that of Petit-Boix et al. [54]
indicating that plastic materials are suitable for sewage transport due to their excellent performances
on anticorrosion. Zhao et al. [12] combined AHP with gray relational analysis to select similar plastic
pipes for heating systems, through which PVC showed great advantages in cost saving, and PE was
better in its performance on anticlogging. Li further identified that HDPE was commonly used in
landfill leachate transport due to its receptivity to highly concentrated organic matter [55]. Such a
result may validate the rationality of our ranking results. Anojkumar et al. [6] further identified that
there was no significant difference in the application of TOPSIS and VIKOR to pipe materials selection,
but the former is much simpler and time-saving in computation. This may reflect the feasibility of our
proposed approach.

From the subjective judgment of the interviewed engineers, they attached great importance
to the price, corrosion resistance, and scaling resistance regarding the selection of pipe materials.
Such focus indicates that cost and functional properties are still the key drivers in materials selection [56].
However, the engineers pay little attention to the environmental attributes of materials, which reflects
that environmental management has not taken as a significant criterion in engineering design [49].
With raw materials being increasingly extracted, engineering design has to consider a transition towards
sustainability, not only to follow the economic bottom line, but also to improve the environmental
performance [57].

5. Conclusions

This study employs IVTIFN−TOPSIS to select materials for waste-water piping, in which IVTIFN
is used to deal with subjective and linguistic information. To overcome information overlapping and
overestimation of evaluation criteria, Mahalanobis distance is introduced to improve the computational
approach by elimination of highly correlated criteria.

A case example is to verify the model application, to conduct materials selection for waste-water
piping in a municipal treatment plant. Except for general attention given to the materials’ functionalities,
i.e., anticorrosion and anticlogging, the economic and environmental attributes have been taken into
consideration, to increase the sustainability of material selection. Four commonly-available commercial
materials, including PVC, HDPE, carbon steel, and galvanized steel are taken as the available
alternatives. Both of the results from the IVTIFN−TOPSIS (E) and the IVTIFN−TOPSIS (M) model
show that plastic pipes are better than the metal material alternatives. In particular, HDPE is the
optimal material, whilst PVC is near optimal for the piping system design.

The study is expected to provide insight into sustainable design of waste-water piping system.
However, there are limitations remaining in the proposed method. The materials’ performances in
respect of each criterion are mainly evaluated by the five invited engineers, whose judgments are
fully dependent upon their empirical experiences. This further may result in deliberate preferences in
the selection process. Future study will center on the quantification of the materials’ performances
regarding functional, economic and environmental attributes, thus to reinforce the objectivity of the
decision making.
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