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Abstract: The scattering of surface waves by a three-dimensional shallow cavity of arbitrary shape at
the surface of a homogenous, isotropic, linearly elastic half-space is theoretically investigated. A novel
analytical approach based on a reciprocity consideration is introduced in this article to determine the
particle displacements of the scattered wave field generated by the interaction between the surface
waves and the cavity. In the usual manner, the scattered field was shown to be equivalent to the
radiation from the distribution of tractions, calculated from the incident wave, on the surface of
the cavity. The radiation of surface waves subjected to the computed tractions applied at a single
location was found using reciprocity theorems. The field scattered by the cavity was subsequently
obtained from the superposition of displacements due to all the forces applied on the cavity surface.
Solutions for the scattering of surface waves by a spherical, a circular cylindrical (coin-shaped) and
a square cylindrical cavity are presented in detail. We here derive the closed-form expressions of
the displacement amplitudes, which represent the far-field scattered waves produced by each of the
cavities. An experimental setup using the ultrasonic pulse-echo technique was then carried out to
record the scattered echoes of surface waves from these cavities in order to provide practical validation
of the analytical findings. The vertical displacements measured at a significant distance of about
twenty-five wavelengths from the cavities of the same width and different depth were compared
with the corresponding theoretical predictions. The comparisons show excellent agreement for the
case of a spherical cavity and good agreement in the cases of a circular and a cylindrical cavity in
terms of trends and magnitudes. It is followed by a discussion on the results of the comparison and
the limitations of the proposed approach regarding the degree of smoothness and the size of cavity.

Keywords: surface wave; half-space; three-dimensional cavity; reciprocity

1. Introduction

Understanding the interaction of elastic waves with surface defects like cracks, corrosion pits,
topographic irregularities, etc., is critical for the potential development of ultrasonic nondestructive
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evaluation (NDE). However, the wave scattering problem remains a challenging area of research
due to the complexity of the scattering phenomenon. For this reason, most of the works in the
literature are performed with the use of numerical methods, such as the finite element (FE) method [1],
the boundary element (BE) method [2], or the finite element boundary integral (FE-BI) approach [3].
For a three-dimensional (3D) scattering problem, investigation with numerical methods is highly
computationally expensive. Computational times remain of the order of several hours for one
particular incident wavefield, even on powerful machines. Analytical or semi-analytical solutions to
such problems are therefore desirable. They provide independent validation of numerical methods and
enable rapid simulations of scattering from large populations of different scatterers. They also enable
the relative contributions of different modes (e.g., propagating or non-propagating) to be examined to
provide insight into the physics of the scattering process.

For the present paper, we studied the general three-dimensional problem of surface wave
scattering by a cavity of arbitrary shape on the surface of a half-space. Two approximate methods
using concentrated loading and distributed loading for the theoretical analysis of the scattered field
are introduced. Examples of calculations include the scattering of surface waves by a spherical,
a circular cylindrical (coin-shaped), and a square cylindrical cavity. Experimental work was carried
out to verify the analytical solutions and it is followed by a discussion on the results of comparison.
The investigation is the very first theoretical approach for obtaining the solutions of the scattering of
surface waves by a three-dimensional cavity of arbitrary shape. Closed-form expressions that represent
the scattered wave field due to the interaction with the cavity are derived. For these explicit solutions,
computation of the scattered amplitudes is extremely simple. The approximation models can offer a
much lower computational cost and time with a reasonable accuracy in comparison with the existing
numerical methods. They are also able to provide insight into the physics of the scattering process that
is important to solving inverse scattering problems.

With respect to earlier work, much of the work in the literature has been concerned with scattering
by two-dimensional surface-breaking cracks. Typical examples of analytical work are References [4–6].
Semi-analytical solutions were obtained, for example, in References [7,8]. Numerical work was carried
out using the finite element method [1] and the boundary element method (see References [9,10]).
The scattering of surface waves by a two-dimensional cavity was theoretically investigated in our
earlier works [11–13]. Defect detection in rails using surface waves was also studied by Hesse and
Cawley [14]. In a related category are papers on scattering by strips and grooves [15–19]. A review
of the scattering of elastic waves by defects was presented in Martin [20] (pp. 141–143). The related
problem of the scattering of Lamb waves by a surface defect in a layer has received considerable
attention (see, for example, References [2,21]).

In three dimensions, the scattering of elastic waves by canyons of arbitrary shape was studied
using an indirect boundary integral equation method [22]. The 3D scattering of guided waves by a
through-thickness cavity with an irregular shape in an isotropic plate is investigated in Moreau et
al. [23] and scattering signal analysis of a cylindrical structure from a torsional wave is presented by
Lee [24]. An analytical solution for the scattering of ultrasonic guided waves by flat-bottomed cavities
with arbitrary shape in a plate was introduced in Moreau et al. [25]. Grahn [26] discussed the scattering
of Lamb waves from a circular partly through-thickness hole.

This paper proceeds through seven sections. Section 2 states the problem as the superposition
of the incident wave and the scattered field. It is shown that the scattered field is equivalent to the
field radiated by surface tractions on the surface of the cavity. These surface tractions were obtained
from the incident wave. Free Rayleigh surface waves propagating in a half-space are presented
in Section 3. A summary of the reciprocity approach to surface wave motion used in this paper
is discussed in Section 4. The analytical approach that uses distributed loading for a scattering of
surface waves by a three-dimensional cavity is introduced in Section 5. Section 6 is devoted to the
derivation of the scattered field by a spherical, a cylindrical (coin-shaped) and a square-shaped cavity.
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Experimental work is conducted, and the experimental measurements are compared with the analytical
findings in Section 7. Major conclusions drawn from this investigation are given in Section 8.

2. Statement of the Problem

Consider a homogeneous, isotropic, linearly elastic half-space z ≥ 0 in the Cartesian coordinate
system (x, y, z). The half-space contains a cavity on the surface as shown in Figure 1a. A two-dimensional
plane surface wave propagating in the x-direction is incident on the cavity. The interaction of the surface
wave with the cavity generates a scattered wavefield usc (Figure 1c), which is of interest and will be
studied theoretically in this paper. Using the decomposition principle, which is demonstrated in Figure 1,
the total wavefield uto (Figure 1a) is equal to the summation of the incident wavefield uin (Figure 1b) and
the scattered field usc. It should be noted that the incident field considered here is a two-dimensional
(2D) surface wave, while the scattered field is a 3D surface wave. The far-field displacements of
3D surface waves radiated from a cavity were determined analytically and experimentally and are
presented in the next sections.
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Figure 1. Linear decomposition technique: (a) the interaction of the incident surface wave with the
three-dimensional cavity, (b) the propagation of the incident wave in the half-space without the cavity,
and (c) the scattered field produced by the incident wave interaction with the cavity.

With the linear decomposition given in Figure 1, the scattered field is equivalent to the field
generated by the application of a distribution of the tractions applied on the surface of the cavity.
These traction components are equal in magnitude but opposite in sign to the corresponding tractions
due to the incident wave on a virtual cavity in the half-space without the cavity. Therefore, they can
be computed from the stress components of the incident Rayleigh wave and the outward normal
vectors of the cavity. It should be noted that for the scattered problem given in Figure 1c, the calculated
tractions will generate both body waves and three-dimensional surface waves. It was discussed in
the literature (see page 55 of Ewing and Zardetzky [27] and page 321 of Achenbach [28] for details)
that for the three-dimensional case, the surface waves attenuate with a distance from the point of
excitation according to r−1/2 while the body waves decay according to r−1, where r is the distance
from the point of application. Therefore, the surface waves dominate at a sufficiently large distance
from the excitation point. The displacements of the scattered surface wave field are of interest and are
determined in this article.

Two analytical approximation approaches will be presented. When the depth and the width
of cavities are both much smaller than the incident wavelength, the tractions acting on the cavity
surface can be replaced by three resultant loads applied at the origin of the coordinate system.
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This approximation is simple in the calculation but is supposed to be less accurate when the size of the
cavity (depth and width) is comparable to the incident wavelength. As an improvement, a distributed
approach is considered in which the application of the distributed tractions acting on the cavity surface
is shifted to the surface of the half-space. The traction components are first computed for every point
of the cavity surface. The reciprocity theorem is then applied to the equivalent loads that are applied
on the surface of the half-space to obtain the displacement amplitudes of the scattered field. The total
displacement amplitude of the scattered field is a superposition of the amplitudes generated by the
loads at every point on the surface.

3. Free Surface Waves in a Half-Space

The possibility of a wave traveling along the free surface of an elastic half-space such that the
displacements decay exponentially with distance from the surface was first considered by Rayleigh [29].
Additional related studies can be found, e.g., in the pages 187–194 of the textbook by Achenbach [28].
A surface wave, also called a Rayleigh wave, is defined by an angular frequency ω and a wavenumber
k = ω/c, where c is the surface wave velocity; other values include the Lame constants λ,µ and the
mass density ρ. For a Cartesian coordinate system (x, y, z), the displacements of the incident surface
waves along the half-space z ≥ 0 in the positive x-direction are of the forms:

ux = iA
(
d1e−kpz + d2e−kqz

)
ei(kx−ωt), uz = A

(
d3e−kpz

− e−kqz
)
ei(kx−ωt), (1)

where A is the complex amplitude; t indicates time; and d1, d2, d3, p, q are dimensionless quantities.
For an elastic half-space with the material properties given, the well-known equation for the phase
velocity of surface waves (see page 32 of Achenbach [28]) has a unique solution independent of the
wavenumber. These dimensionless quantities, therefore, depend only on the material properties of the
half-space. They are not presented here for the purpose of simplicity but curious readers can find their
expressions in, for example, Phan et al. [30]. Note that the stress components can be easily calculated
from the displacements with the help of Hooke’s law.

4. Surface Wave Motion Generated by a Time-Harmonic Point Load

This is a three-dimensional problem. The surface wave motion generated by a time-harmonic
point load can be calculated in a simple manner using the reciprocity theorem, with input being the
actual surface wave with an unknown amplitude and a virtual free surface wave [30,31]. The method
requires expressions for the displacements and the stresses of free surface waves, preferably in an
analytical form, but numerically obtained forms can also be used. Suppose that the half-space is
subjected to a time-harmonic point load at the surface pointing in an arbitrary direction. Without loss
of generality, the coordinate system can be chosen such that the load acts in the xz-plane at the origin
of the system. The surface wave response is then sought as the superposition of the responses due to
the normal component of magnitude P in the z-direction and the horizontal component of magnitude
Q in the x-direction.

For surface wave motions radiated from a point load, it is convenient to also use a cylindrical
coordinate (r,θ, z) defined by x = r cosθ, y = r sinθ, and z = z along with the Cartesian coordinates
(x, y, z). Solutions of surface wave motion by the reciprocity approach are obtained in Phan et al. [30].
Here, we summarize the results, which are later used for solving the three-dimensional scattering
problem. The vertical displacement of surface waves generated by a vertical loading P in the z-direction
may be written as:

uP
z =

k
4i

PW(0)
µE

W(z)H(1)
0 (kr). (2)
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For a horizontal load Q in the x-direction, the generated displacement is of the form:

uQ
z =

k
4i

QU(0)
µE

W(z)H(1)
1 (kr) cosθ. (3)

In Equations (2) and (3), H(i)
j (ξ) represents the jth order Hankel function of the ith kind and E is a

dimensionless quantity determined using:

E =

(
d4d1 − d6d3

2p
+

d4d2 + d5d1 − d7d3 + d6

p + q
+

d2d5 + d7

2q

)
. (4)

5. Scattering of Surface Waves by a Cavity of Arbitrary Shape

A plane surface wave propagating in the x-direction is incident on a three-dimensional cavity of
arbitrary shape at the surface of an isotropic homogeneous elastic half-space. The incidence generates
a scattered field that is of interest in this article. This section introduces two approximations to the
theoretical analysis of the scattered field. Consider a cavity on the surface of a half-space as given
in Figure 2. In the coordinate system (x, y, z), suppose that the surface of the cavity S is defined by
z = h(x, y). Then the outward normal vector n

(
nx, ny, nz

)
of dS can be found using:

n =

(
h′x, h′y,−1

)
√
(h′x)

2 +
(
h′y

)2
+ 1

, (5)

where h′x =
∂h(x,y)
∂x and h′y =

∂h(x,y)
∂y .
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Figure 2. A cavity in a half-space.

From the linear decomposition principle, as stated in Section 2, the scattered field is equivalent
to the field generated by the application of the distribution of tractions on the surface of the cavity,
as shown in Figure 1c. These tractions are equal in magnitude but opposite in sign to the corresponding
tractions due to the incident wave on a virtual cavity in the half-space without the cavity, as shown in
Figure 1b. Thus, they are equal to −t where ti (i = x, y, z) are determined from the stress components
of the incident Rayleigh wave and the outward normal vector as ti = τ jin j. The tractions, in turn,
generate the scattered field, which is of concern in this paper. It should be noted that these tractions
generate body waves, as well as surface waves radiating from the cavity. In the three-dimensional
scattering, the surface waves attenuate with the distance from the points of excitation on the cavity
according to r−1/2 while the body waves decay according to r−1, where r is the distance from the cavity.
Therefore, the surface waves dominate at a sufficiently large distance from the cavity.
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5.1. Concentrated Loading Approximation

As a simple approximation, the tractions on the surface of the cavity are replaced by three
equivalent resultant forces applied at the origin of the coordinate system in the same directions.
These forces then generate a scattered field of surface waves in the half-space. This approximation is
supposed to be valid only when the depth and the width of the cavity are very small in comparison
with the wavelength.

For an incident surface wave propagating in the positive x-direction with amplitude Ain,
the resultant forces F

(
Fx, Fy, Fz

)
are obtained via integration of the tractions over the surface S.

These forces generate a field that approximates the scattered field. The total vertical displacement of
the scattered field in the z-direction is the summation of the displacements generated by the resultant
forces Fx, Fy, Fz and is written as:

uz =
kW(z)
4iµE

[
U(0)

(
Fx cosθ+ Fy sinθ

)
H(1)

1 (kr) + W(0)FzH(1)
0 (kr)

]
. (6)

5.2. Distributed Loading Approximation

An approximation using distributed loading is now considered. The tractions first calculated at
every point on the surface of the cavity are shifted to the surface of the half-space. The reciprocity
theorem is then applied for these equivalent surface loads to obtain the displacement amplitudes of
the scattered field. In the concentrated loading approximation, the loads that generate the scattered
field are all applied at the origin of the coordinate system. For the current approximation, the loads are
applied over an area, which is the projection of the cavity on the surface of the half-space. This method
is believed to be valid for shallow cavities. The obtained theoretical predictions were compared with
the experimental results in order to understand the limitations of the proposed approach.

Suppose that a point source is applied at (x0, y0), or (r0,θ0) using cylindrical coordinates, and the
observation point is located at (r, 0), as illustrated in Figure 3. Here, the observation point is chosen
with θ = 0 for the purpose of simplicity. Note that solutions for other points, i.e., θ , 0 can be easily
gained by using Equations (2) and (3). The following relations are found in Figure 3 for the case of
θ = 0:

r′ =
√

r2
0 + r2 − 2rr0 cosθ0, cosθ′ =

r− r0 cosθ0√
r2

0 + r2 − 2rr0 cosθ0

. (7)

For an incident surface wave propagating in the positive x-direction with amplitude Ain,
the point forces corresponding to the tractions on the surface of the virtual cavity at (x0, y0, z0)

can be calculated using:
fi(x0, y0, z0) = −ti(x0, y0, z0)dS, i = x, y, z. (8)

It is convenient to also represent the expressions of fi(x0, y0, z0) and ti(x0, y0, z0) given by
Equation (8) in the cylindrical coordinate (r,θ, z). For a time-harmonic load at the origin of the
coordinate system, the vertical displacements follow from Equations (2) and (3). In the case of a
time-harmonic load applied at (r0,θ0, 0) as in Figure 3, the total vertical displacement of the scattered
field at the observation point (r, 0, z) is the summation of the surface wave fields generated by
fi (i = x, y, z). Thus:

uz =
−kW(z)

4iµE

x

S

[
U(0)

(
tx cosθ′+ ty sinθ′

)
H(1)

1 (kr′) + W(0)tzH(1)
0 (kr′)

]
dS. (9)

It should be noted that the displacement given in Equation (9) is dependent on frequency since its
expression appears with a frequency term via the wavenumber k.



Appl. Sci. 2019, 9, 5459 7 of 13

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 13 

 
Figure 3. Source and observation point. 

6. Computation of the Scattered Fields from a Spherical, a Circular, and a Square Cylindrical 
Cavity 

6.1. Spherical Cavity 

Consider a three-dimensional spherical cavity on the surface of an elastic half-space, as 
demonstrated in Figure 4. The cavity has a depth ܦ, a width 2ܴ, and a cavity radius ܴ. The area ܵ 
of the surface trace is defined as ܵ = ሼݔ, ଶݔ|ݕ + ଶݕ  ܴଶሽ. In the coordinate system (ݔ, ,ݕ we have: ܴଶ ,(ݖ = ଶݔ + ଶݕ + ݖ) + ܼ)ଶ, ܼ = ܴ − ,ܦ ܴଶ = ܴଶ + ܼଶ. (10)

We define the dimensionless quantities ̄ݎ = ,ݎ݇  ሜܴ = ܴ݇,  ሜܴ  = ܴ݇, ሜܦ  = ,ܦ݇  and ̄ݖ = ݖ݇ , 
which will be used for the expressions of the vertical displacement of scattered wave field. 

 
Figure 4. A spherical cavity in a half-space. 

The cylindrical coordinates are used for the computation of the scattered field. The total vertical 
displacement for ߠ = 0 is computed using: 

Figure 3. Source and observation point.

6. Computation of the Scattered Fields from a Spherical, a Circular, and a Square Cylindrical Cavity

6.1. Spherical Cavity

Consider a three-dimensional spherical cavity on the surface of an elastic half-space,
as demonstrated in Figure 4. The cavity has a depth D, a width 2R0, and a cavity radius R. The area S
of the surface trace is defined as S =

{
x, y

∣∣∣x2 + y2
≤ R2

0

}
. In the coordinate system (x, y, z), we have:

R2 = x2 + y2 + (z + Z)2, Z = R−D, R2 = R2
0 + Z2. (10)

We define the dimensionless quantities r0 = kr0, R = kR, R0 = kR0, D = kD, and z0 = kz0, which
will be used for the expressions of the vertical displacement of scattered wave field.
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The cylindrical coordinates are used for the computation of the scattered field. The total vertical
displacement for θ = 0 is computed using:
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uz = −
Ain
4iE W(z)

{∫ R0

0

∫ 2π
0

[
U(0) f x(r0,θ0, z0)H

(1)
1

(
r′
)

cosθ′+U(0) f y(r0,θ0, z0)H
(1)
1

(
r′
)

sinθ′ + W(0) f z(r0,θ0, z0)H
(1)
0

(
r′
)]

dr0dθ0

}
, (11)

where

f x(r0,θ0, z0) =

 r0 cosθ0√
R

2
− r2

0

(
d4e−pz0 + d5e−qz0

)
+ i

(
d6e−pz0 + d7e−qz0

)eir0 cosθ0r0, (12)

f y(r0,θ0, z0) =

 r0 sinθ0√
R

2
− r2

0

d10e−pz0

eir0 cosθ0r0, (13)

f z(r0,θ0, z0) =

i
r0 cosθ0√

R
2
− r2

0

(
d6e−pz0 + d7e−qz0

)
+

(
d8e−pz0 + d9e−qz0

)eir0 cosθ0r0, (14)

with

r′ =
√

r2
0 + r2

− 2rr0 cosθ0, (15)

cosθ′ =
r− r0 cosθ0√

r2
0 + r2

− 2rr0 cosθ0

, sinθ′ =
r0 sinθ0√

r2
0 + r2

− 2rr0 cosθ0

. (16)

6.2. Circular Cylindrical Cavity

Consider now a cylindrical (coin-shaped) cavity oriented perpendicular to the surface of an
elastic half-space. The cavity has a depth D and the radius of the cylinder is R0. The tractions on the
bottom and lateral surfaces generate the scattered field of the surface waves. Like in the case of a
spherical cavity, it is suitable to use cylindrical coordinates. In a similar procedure, the displacement is
found using:

uz =
Ain
4iE W(z)

{∫ R0

0

∫ 2π
0 [iU(0)

(
d6e−pD + d7e−qD

)
eir0 cosθ0r0H(1)

1

(
r′
)

cosθ′

+W(0)
(
d8e−pD + d9e−qD

)
eir0 cosθ0r0H(1)

0

(
r′
)
]dr0dθ0

+
∫ D

0

∫ 2π
0 [(0)

(
d4e−pz0 + d5e−qz0

)
R0 cosθ0eiR0 cosθ0H(1)

1 (R
′

) cos Φ′

+U(0)d10e−pz0R0eiR0 cosθ0 sinθ0H(1)
1 (R

′

) sin Φ′

iW(0)
(
d6e−pz0 + d7e−qz0

)
R0 cosθ0eiR0 cosθ0H(1)

0 (R
′

)]dz0dθ0

}
,

(17)

where

R
′

=

√
R

2
0 + r2

− 2rR0 cosθ0, (18)

cos Φ′ =
r−R0 cosθ0√

R
2
0 + r2

− 2rR0 cosθ0

, sin Φ′ =
R0 sinθ0√

R
2
0 + r2

− 2rR0 cosθ0

. (19)

6.3. Square Cylindrical Cavity

For a square-shaped cavity on the surface of an elastic space that has a depth D and a side length
of square 2R0, the tractions on the bottom and four lateral surfaces generate the scattered field of the
surface waves. In this case, it is more convenient to use a Cartesian coordinate system for the integral
calculation. Similarly, the vertical displacement is found using:
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uz =
Ain
4iE W(z)

{∫ R0

−R0

∫ R0

−R0
[iU(0)

(
d6e−pD + d7e−qD

)
eix0H(1)

1

(
r′
)

cosθ′

−W(0)
(
d8e−pD + d9e−qD

)
eix0H(1)

0

(
r′
)
]dx0dy0

+
∫ D

0

∫ R0

−R0
[2iU(0) sin R0

(
d4e−pz0 + d5e−qz0

)
H(1)

1

(
r′
)

cosθ′

+2iU(0) sin R0d10e−pz0H(1)
1

(
r′
)

cosθ′

+2W(0) sin R0
(
d6e−pz0 + d7e−qz0

)
H(1)

0

(
r′
)
]dy0dz0

}
,

(20)

where x0 = kx0, y0 = ky0, z0 = kz0.

7. Experimental Confirmation and Discussion

An experimental study was carried out in order to provide practical validation of the findings of
the analytical work in the previous sections. The experimental setup using an ultrasonic pulse-echo
technique is illustrated in Figure 5. The piezoelectric (PZT) transducer (Hagisonic, Daejeon, Republic
of Korea) placed on the critical angle was first used to transmit a surface-wave pulse with a central
frequency of f = 0.5 MHz toward the cavity. It was then used as a receiver to record the echoes of the
scattered surface waves. The distance from the transmitter to the defect was chosen as d = 150 mm,
which was about twenty-five wavelengths. At this distance, the surface waves completely dominated
the scattered wave field since the body waves had almost vanished.
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A 25 mm thickness steel plate, which had a shear modulus of µ = 7.9872× 1010 N/m2, a Lame’s
constant of λ = 11.03× 1010 N/m2, and a density of ρ = 7800 kg/m2, was used for the experimental
program. The thickness, which was more than four wavelengths, guaranteed that no ultrasonic signal
was reflected from the bottom of the plate. The spherical, circular cylindrical, and square cylindrical
cavities were made on the surface of the steel material for the experiments. Each of three shapes
included ten cavities of same width and different depth. This meant that for each shape the width
of cavity 2R0 was fixed while its depth D varied such that dimensionless quantity kD, where k is the
wavenumber, varied.

By recording the echoes from the defects, the displacement amplitudes of the scattered wave fields
were determined. These results were then divided by the referenced amplitude of the incident surface
wave, which was measured using the pitch catch technique, to obtain the normalized amplitude ratios.
For each cavity configuration, this experimental process was repeated five times to calculate the means
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and the standard deviations of the normalized ratios. These experimental results were assumed to
represent the scattered surface wave fields.

For the analytical study, the normalized amplitude ratio was also defined by the proportion of
the displacement amplitude of the scattered field to the one of the incident field. In the following,
the comparisons between the analytical results and experimental data for the absolute values of the
normalized amplitude ratios are shown versus the dimensionless kD for the cases of a spherical,
a circular cylindrical, and a square cylindrical cavity.

The first example was the study for ten spherical cavities with D varying from D = 0.3 mm to
D = 1.2 mm, while R0 = 3.0 mm. The comparison results are exhibited in Figure 6. The theoretical
and experimental amplitude ratios were observed to increase with the increase of the cavity depth.
An excellent agreement was found between the two curves. They had only about a 6–8% difference on
average. The comparisons between the analytical predictions and the experimental measurements of
the normalized amplitude ratios for the case of a circular cylindrical cavity and a square cylindrical
cavity are shown in Figures 7 and 8, respectively. In these studies, D varied between 0.3 mm and
1.2 mm, while R0 = 4.0 mm. A very good agreement of the trend was obtained in both sets of results.
In terms of magnitude, the experimental points and the predicted points were in reasonable agreement.
There were, however, some differences in the details between the two sets of calculations. It is believed
that the differences were due to the analytical approximation rather than the experiment. For the case
of a spherical cavity, which had a smooth surface, an excellent agreement is shown in Figure 6. As the
surfaces of the circular and square cylindrical cavities were not smooth, the comparisons between
the analytical and experimental results show some differences in Figures 7 and 8. It should also be
realized that the analytical calculations and the experimental results increased the differences with an
increase of the size (the volume) of the cavities from the spherical cavity (Figure 6) to the cylindrical
cavity (Figure 7) and to the square cavity (Figure 8). This proposed approach, therefore, has limitations
regarding the degree of smoothness and the size of the cavity.
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frequency f = 0.5 MHz.
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the interaction of the incident surface wave with a square cylindrical cavity: D = 0.3 mm to D =
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8. Conclusions

The application of reciprocity to the scattering of surface waves by a three-dimensional cavity of
arbitrary shape in an elastic half-space has been shown in this article. We have introduced a new and
elegant approach using the distributed loading to compute the far-field scattered waves generated by
the interaction between the incident surface waves and the cavity. The explicit equations of the scattered
fields produced by a spherical, a circular cylindrical (coin-shaped) and a square cylindrical cavity
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have been theoretically derived. In order to validate these theoretical predictions, the experimental
work using the pulse-echo method was performed to measure the reflected echoes after the interaction
of the incident waves with the cavities. We compared the normalized amplitude ratio, which is the
ratio of the amplitude proportion of the scattered to the incident fields, obtained using experimental
and theoretical studies. In terms of trends and magnitudes, the comparisons have been in excellent
agreement for the case of a spherical cavity and good agreement for the cases of a circular and a
cylindrical cavity. The limitations of the proposed analytical approximation regarding the degree of
smoothness and the size of the cavity were also discussed.
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