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Abstract: Considering the heterogeneous nature and non-stationary property of inertinite components,
we propose a texture description method with a set of multifractal descriptors to identify different
macerals with few but effective features. This method is based on the multifractal spectrum
calculated from the method of multifractal detrended fluctuation analysis (MF-DFA). Additionally,
microscopic images of inertinite macerals were analyzed, which were verified to possess the property
of multifractal. Simultaneously, we made an attempt to assess the influences of noise and blur on
multifractal descriptors; the multifractal analysis was proven to be robust and immune to image
quality. Finally, a classification model with a support vector machine (SVM) was built to distinguish
different inertinite macerals from microscopic images of coal. The performance evaluation proves
that the proposed descriptors based on multifractal spectrum can be successfully applied in the
classification of inertinite macerals. The average classification precision can reach 95.33%, higher than
that of description method with gray level co-occurrence matrix (GLCM; about 7.99%).
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1. Introduction

Macerals of coking coal closely relate to its characteristics, such as coke ability, caking ability, and
thermal crushing performance, which directly influence the optical texture component distribution
and quality of the coke [1–3]. Automatic classification and identification of different macerals in coal
are of great significance for the effective evaluation of coal process properties [4]. Inertinite is one of the
main groups in coal, and the classification of its macerals is of theoretical significance and application
value for the efficient cleaning utilization of coal.

In view of the computational complexity, and the heavy workload, along with the subjective
factors of the conventional manual and semi-manual method for maceral analysis, the methods of
image processing and pattern recognition have been employed to analyze the components in coal [5,6].
Besides, based on the advantages of data analysis and processing, the machine learning approach is
widely used in various fields [7]. Edward Lester [8] developed an image analysis technique to separate
the major maceral groups of liptinite, vitrinite, fusinite, and semi-fusinite from the background resin
according to the gray scales of the surface images captured with suitable camera exposure times.
Nonetheless, even though the foregoing technique can work in some situations, it has not been
implemented for a deep identification of macerals. There exists a fact that the characteristics of shape,
color, contour, and texture of the microscopic image are essential for information expression of macerals
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in coal. Some related references have been published. To name a few, the authors of [9] completed the
detection of approximately circular particles in the microscopic image of coal by the contour features,
and the authors of [10] proposed a method to extract the outline of the maceral area by using structural
elements. The texture features of local binary patterns (LBP) and the gray level co-occurrence matrix
(GLCM) were combined to identify three major groups in coal macerals [11]. Grey scale, GLCM,
Tamura, contourlet transform, and supervised locality preserving projections methods were employed
by the authors in the previous work [12–15] to describe features of macerals. However, because the
complex construction of macerals and similar morphological features among some different macerals
exist, these techniques may not characterize them perfectly, especially for the features of texture.

In recent years, the fractal theory, first coined in [16], has been rapidly developed as a powerful
analytical tool, which can reflect the heterogeneity and irregularities of a physical surface. There are
several published techniques for characterizing the surface irregularity of coal with the mono-fractal
method [17–21]. Nevertheless, it can not provide a comprehensive and accurate description of the
details of image changes at different scales owing to the single scale of fractal dimensions. Coal’s
surface is known to be non-stationary and heterogeneous as a consequence of the long-term and
multi-stage effects of geological processes. Some local trends in texture and dramatic changes in gray
value are universal in microscopic images of macerals. Fortunately, a method named multifractal
detrended fluctuation analysis (MF-DFA) can quickly eliminate local trends [22], making itself more
suitable for describing the texture characteristics of the microscopic images of macerals. Given the
superiority in solving non-stationary problems, the MF-DFA method has applications in quite a few
fields [23–26]. Nevertheless, it was the first attempt that the approach was applied for the purpose of
the classification of macerals in coal.

The major goal of our work was to find an artificial intelligence method to distinguish eight
groups of inertinite macerals with few but stable and effective texture features. We analyzed and
verified the multifractal properties of inertinite macerals by the method of MF-DFA. Additionally,
multifractal descriptors of microscopic images were proposed based on the multifractal spectrum.
In order to demonstrate the effectiveness of the multifractal descriptors, a comparison experiment of
stability was implemented. Finally, we built an automatic classification model with support vector
machine (SVM) to identify the inertinite macerals.

2. Materials

According to International Commission for Coal Petrology (ICCP) standard, coal is classified
across three main maceral groups; i.e. vitrinite, liptinite, and inertinite [27]. Macerals of inertinite
mainly come from woody fiber of plant or fungus [28]. The plant cellular structure of fusinite is
relatively complete, and some of them have clear intercellular space and cellular wall. The cells of
the pyrofusinite are crushed and shattered to present the shape of “arc” or “star-like”, while the
oxyfusinite has an unbroken cellular structure that exhibits a sieve shape. Semifusinite, the transitional
maceral between telinite and fusinite, is located in the form of irregular strips. Secretinite is generally
a product of silk carbonization reaction of secretions (tannin, resin, etc.), and few of them are derived
from gelation of humus coal. Besides, the microscopic images are irregularly elliptical. Funginite is
mainly derived from the remains of fungi or the secretions of higher plants, and has a honeycomb-like
or reticulated multicellular structure inside. Additionally, the outer shape is flattened circular or
ring-shaped due to extrusion. The cellular structure of the macrinite has a high protrusion and is
generally an irregular matrix. A fragment of the inertinite group of particles have a particle size
of less than 30 µm, angular or irregular in shape, and has no generally cellular structure. Most of
the micrinites are distributed in asphaltene or mineral asphaltene with minor particle size and often
small, nearly circular particles. Note that for fusinite, the two sub-macerals named pyrofusinite and
oxyfusinite will be analyzed together with other six types of macerals in our work, as the texture
differences are significant and obvious.
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From Figure 1, we can observe that there are some morphological differences among different
macerals of inertinite in coal. However, their textures are fairly clear with singularity and conspicuous
self-similarity. For such non-stationary structures, MF-DFA analysis can characterize them more
effectively and show better processing power. In view of this, this paper performed the method of
MF-DFA on each maceral image. For implementation, we used inertinite image data with 60 grayscale
microscopic images of 227× 227 pixels in size per group. The size was chosen to ensure that each
image contained only one specific component, which is beneficial for subsequent feature extraction
and classification experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Typical microscopic images of inertinite in coal. (a) Pyrofusinite; (b) oxyfusinite; (c) semifusinit;
(d) secretinite; (e) funginite; (f) macrinite; (g) inertodetrinite; (h) micirinite.

3. Methods

3.1. Multifractal Spectrum Based on MF-DFA

The method of MF-DFA is widely applied in scaling analysis due to its high accuracy and easy
implementation. For grayscale images, it is not appropriate to calculate the multifractal spectrum
with a gray series by the approach of one-dimensional MF-DFA. Generalizing the one-dimensional
method to two-dimensional one can better express the information of the surface with self-similar
properties [29]. Specifically, the process of calculating the multifractal spectrum of the grayscale image
by using the two-dimensional MF-DFA method is determined as follows.

Step 1. Regard a microscopic image as a self-similar surface with a size of M × N, which is
represented by a matrix X(i, j), i = 1, 2, ..., M and j = 1, 2, ..., N. Partition the surface into Ms × Ns

(Ms ≡ [M/s], Ns ≡ [N/s]) none-overlapping square subdomains of equal length s. Each subdomain
is denoted by Xm,n = Xm,n(i, j) with Xm,n(i, j) = X(r + i, t + j) for 1 ≤ i, j ≤ s where r = (m− 1)s,
t = (n− 1)s.

Step 2. For each subdomain Xm,n, the cumulative sum is constructed as follows

Gm,n(i, j) =
i

∑
k1=1

j

∑
k2=1

Xm,n(k1, k2), (1)

where 1 ≤ i, j ≤ s, m = 1, 2, ..., Ms, n = 1, 2, ..., Ns. Note that Gm,n = Gm,n(i, j)(i, j = 1, 2, .., s) is
a surface.

Step 3. The local trend G̃m,n for each surface Gm,n can be obtained by fitting it with a pre-chosen
bivariate polynomial function. In this paper, we adopt the trending function as
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G̃m,n(i, j) = ai + bj + c (2)

where a, b, and c are free parameters to be estimated by the least-squares method. We can determine
the residual matrix ym,n(i, j) with

ym,n(i, j) = Gm,n(i, j)− G̃m,n(i, j). (3)

Step 4. The detrended fluctuation F(m, n, s) for each subdomain Xm,n can be defined via the
variance of ym,n(i, j) as follows

F2(m, n, s) =
1
s2

s

∑
i=1

s

∑
j=1

y2
m,n(i, j). (4)

Step 5. The q− th order fluctuation is obtained by averaging over all the subdomain

Fq(s) = exp

{
1

MsNs

Ms

∑
m=1

Ns

∑
n=1

ln[F(m, n, s)]

}
, q = 0 (5)

Fq(s) = [
1

MsNs

Ms

∑
m=1

Ns

∑
n=1

[F(m, n, s)]q]1/q, q 6= 0. (6)

Step 6. The scaling relation of the fluctuation can be determined by analyzing the log-log Fq(s)
versus the s for different values of s ranging from 6 to (M, N) /4, which reads

Fq(s) ∝ sh(q). (7)

The scaling exponent h(q) can be obtained by the linear regression of ln Fq(s) to ln s, which is also
called the generalized Hurst index. For each q, the corresponding traditional scaling exponent as τ(q)

τ(q) = qh(q)− D f . (8)

Note that, D f represents the fractal dimension of the geometric support. For the two-dimensional
microscopic image of this paper, we take the value of D f = 2.

Step 7. The multifractal surface can be characterized by Hölder exponent α(q) and singularity
spectrum f (α), which are given by the Legendre transform [30].

α(q) = τ′(q) = h(q) + qh′(q) (9)

f (α) = qα(q)− τ(q) = q[α− h(q)]+2. (10)

Here, the multifractal singularity spectrum f (α) is a continuous exponential spectrum used to
characterize multiple fractal sets, which provides a complete statistical description of the internal
inconsistencies of fractals.

3.2. Multifractal Analysis and Feature Extraction

We express grayscale images of inertinite macerals as two-dimensional matrices and analyze
them in accordance with the multifractal detrended fluctuation analysis introduced previously. It is
worth mentioning that in the partitioning process, the upper-right and bottom areas are ignored since
the image sizes of M and N are not particular multiples of the small square s. Hence, we can repeat
the partitioning process in the other three directions. Taking the typical microscopic images in Figure 1
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as examples, we calculate the scaling exponent h(q) with different values of q in the range from −6 to
6; then, the corresponding function τ(q) can be obtained according to Equation (8). The result τ(q) is
given in Figure 2, and the inset displays the scaling exponent h(q). We can find that the function τ(q)
is nonlinear with respect to q, which indicates that the exponent τ(q) is dependent on q. Nonlinearity
also confirms that the microscopic images of inertinite do possess multifractal nature.

-6 -4 -2 0 2 4 6

q

-40

-30

-20

-10

0

10

20

30

(q
)

-5 0 5

q

3.8

4

4.2

4.4

4.6

h
q

(a)

-6 -4 -2 0 2 4 6

q

-30

-20

-10

0

10

20

30

(q
)

-5 0 5

q

4

4.5

h
q

(b)

-6 -4 -2 0 2 4 6

q

-40

-30

-20

-10

0

10

20

30

(q
)

-5 0 5

q

3.8

4

4.2

4.4

4.6

4.8

h
q

(c)

-6 -4 -2 0 2 4 6

q

-40

-30

-20

-10

0

10

20

30

(q
)

-5 0 5

q

4

4.5

5

h
q

(d)

-6 -4 -2 0 2 4 6

q

-30

-20

-10

0

10

20

30

(q
)

-5 0 5

q

4

4.2

4.4

h
q

(e)

-6 -4 -2 0 2 4 6

q

-40

-30

-20

-10

0

10

20

30

(q
)

-5 0 5

q

4

4.5

5

h
q

(f)

-6 -4 -2 0 2 4 6

q

-40

-30

-20

-10

0

10

20

30

(q
)

-5 0 5

q

4

4.5

h
q

(g)

-6 -4 -2 0 2 4 6

q

-30

-20

-10

0

10

20

30

(q
)

-5 0 5

q

3.8

4

4.2

4.4

h
q

(h)

Figure 2. Dependence of τ(q) and h(q) on q for the typical microscopic images of inertinite
macerals. (a) Pyrofusinite; (b) oxyfusinite; (c) semifusinit; (d) secretinite; (e) funginite; (f) macrinite;
(g) inertodetrinite; (h) micirinite.

According to Equations (9) and (10), we calculate the multifractal spectra of the macerals of
inertinite, which are displayed in Figure 3. Their graphs are typically barbed, indicating that different
parts with different singularities have different fractal dimensions, confirming the multifractal properties
of our microscopic images. The multifractal singularity spectrum is a single-peak map normally, and
several important multifractal feature parameters can be extracted as the texture descriptors of the
corresponding image, such as the minimum value of the local singularity αmin, the maximum value of
the local singularity αmax, and the maximum value of the spectrum fmax.
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Figure 3. Multifractal spectra of microscopic images of the typical inertinite macerals. (a) Pyrofusinite;
(b) oxyfusinite; (c) semifusinite; (d) secretinite; (e) funginite; (f) macrinite; (g) inertodetrinite;
(h) micirinite.
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Additionally, the multifractal descriptors of αmin, αmax, and fmax are used to build a three-
dimensional space to test the distinguishing ability of each of the two groups. We calculated the multifractal
spectra of 480 grayscale images in the inertinite data set, and their corresponding multifractal
descriptors are plotted in Figure 4, respectively. We can find that it is not difficult to distinguish
different groups due to the fact that the same components are clustered together and different macerals
are separated in the space. It is worth mentioning that a small number of combinations of macerals
have a certain degree of overlap due to a high similarity between their textures. However, the majority
of combinations are separable in our three-dimensional space.
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Figure 4. The three-dimensional space with multifractal descriptors for every pair of groups of
intertinite macerals. (a) inertodetrinite Vs pyrofusinite; (b) oxyfusinite Vs funginite; (c) semifusinite Vs
macrinite; (d) micrinite Vs secretinite.

4. Stability Analysis of Multifractal Feature Descriptors

The feature descriptors (αmin, αmax, fmax) extracted from the multifractal spectrum should be able
to characterize the significant textural information of the inertinite macerals. As is well known, effective
texture features for image recognition are supposed to be robust and not subject to image quality. In
this section, we consider the stability of our multifractal descriptors in terms of noise immunity and
anti-blurring ability, and then illustrate the superiority of multifractal descriptors compared to the
traditional feature descriptors.

4.1. Stability to Image Noise

Textural features of images can be disturbed by noise to a great extent. In this paper, Gaussian
noise, speckle noise, and salt and pepper noise are added to the inertinite microscopic images to
investigate the influence of noise on the multifractal spectrum. Figure 5 gives the images of pyrofusinite
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with the addition of Gaussian noise (0-mean and variance of 0.05), speckle noise (variance of 0.05), and
salt and pepper noise (density of 2%), respectively.

(a) (b) (c)

Figure 5. Typical images of pyrofusinite with different noises. (a) Gaussian noise; (b) speckle noise;
(c) salt and pepper noise.

The multifractal spectra f (α) of the pyrofusinite images with various noises were calculated
and the comparisons with the original image were done. As shown in Figure 6, the spectrum of
pyrofusinite image with speckle noise is almost identical to the original one, which illustrates that
the speckle noise has a slight influence on pyrofusinite image. In addition, we extract and report the
values of multifractal descriptors of eight groups of inertinite macerals with different noises in Table 1.
For comparisons, the statistical features, such as angular second moment (ASM), entropy, moment
of inertia (IM), and correlation based on GLCM, were calculated and listed in Table 2. From Tables 1
and 2, we can find that the multifractal descriptors are relatively stable, while the GLCM-based texture
descriptors are sensitive to noise, and the value of IM fluctuates significantly with different noises.
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Figure 6. Multifractal spectra of the microscopic images of pyrofusinite with different noises.
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Table 1. Multifractal descriptors of typical microscopic images of inertinite with different noises.
Sample labels (a)–(h) are consistent with the labels of typical images in Figure 1.

Sample
Label

Original Image Gaussian Noise Speckle Noise Salt & Pepper Noise

αmin αmax fmax αmin αmax fmax αmin αmax fmax αmin αmax fmax

(a) 1.8717 2.4682 1.9974 1.8776 2.3777 1.9978 1.8731 2.4640 1.9975 1.8760 2.4406 1.9976
(b) 1.9019 2.3411 1.9982 1.9066 2.3093 1.9985 1.9101 2.3239 1.9984 1.9060 2.3163 1.9984
(c) 1.8987 2.5650 1.9985 1.8986 2.2927 1.9987 1.8970 2.5879 1.9985 1.9018 2.3932 1.9987
(d) 1.8810 2.7293 1.9946 1.8879 2.4767 1.9959 1.8869 2.7477 1.9948 1.8825 2.5918 1.9953
(e) 1.9213 2.2807 1.9985 1.9221 2.2545 1.9987 1.9211 2.2808 1.9986 1.9240 2.2550 1.9987
(f) 1.8868 2.7113 1.9948 1.8959 2.4883 1.9961 1.8926 2.7285 1.9952 1.8881 2.6409 1.9954
(g) 1.9615 2.4384 1.9992 1.9607 2.2565 1.9993 1.9635 2.4191 1.9992 1.9608 2.3784 1.9993
(h) 1.8924 2.2427 1.9986 1.9075 2.2099 1.9989 1.9003 2.2446 1.9986 1.9023 2.2149 1.9988

To further clarify that our multifractal descriptors of αmin, αmax and fmax possess better anti-noise
stability than that of GLCM-based texture parameters, the average relative errors of feature descriptors
from typical microscopic images with different noises are calculated and displayed in Figure 7. We can
see that three types of noises all have a great influence on GLCM-based texture parameters, especially
for the moment of inertia, whose relative error is much higher than 100% for each maceral of inertinite.
The parameter of IM of secretinite is highly sensitive to different noise with a relative error close to
400%. Furthermore, the relative errors of the three multifractal texture descriptors are particularly
low among the seven parameters, none of which exceeds 15%, and that of fmax even closes in on zero.
From the results of noise immunity experiment, it is clear that our descriptors of αmin, αmax, and fmax

possess great stability to various noises.
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Figure 7. Relative errors of texture descriptors of typical inertinite microscopic images with different
noises. (a) Gaussian noise; (b) speckle noise; (c) salt and pepper noise.
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Table 2. GLCM-based descriptors of typical microscopic images of inertinite with different noises. Sample labels (a)–(h) are consistent with the labels of typical images
in Figure 1.

Sample
Label

Original Image Gaussian Noise Speckle Noise Salt & Pepper Noise

ASM Entropy IM Correlation ASM Entropy IM Correlation ASM Entropy IM Correlation ASM Entropy IM Correlation

(a) 0.0311 4.1129 3.8208 0.0583 0.0057 5.3468 22.6266 0.0221 0.0103 4.8912 10.8139 0.0393 0.0257 4.4021 10.3217 0.0410
(b) 0.0275 4.1562 3.6523 0.0577 0.0086 5.2229 21.4380 0.0233 0.0115 4.8042 11.0043 0.0399 0.0228 4.4171 10.7620 0.0396
(c) 0.0196 4.3374 4.0526 0.0813 0.0051 5.3947 24.1092 0.0187 0.0160 4.6026 10.3152 0.0474 0.0080 5.0158 10.4514 0.0462
(d) 0.0280 4.0889 1.8521 0.0467 0.0082 5.2103 19.4783 0.0245 0.0121 4.7789 8.0808 0.0382 0.0231 4.3789 9.2544 0.0356
(e) 0.0212 4.1389 2.6026 0.0895 0.0050 5.3962 23.1238 0.0203 0.0097 4.8445 9.6475 0.0490 0.0175 4.4307 8.9111 0.0523
(f) 0.0239 4.3333 3.2983 0.0395 0.0105 5.1325 19.5031 0.0240 0.0135 4.7792 9.1217 0.0348 0.0209 4.5520 10.7023 0.0313
(g) 0.0212 4.2299 2.7384 0.1043 0.0059 5.3177 23.1227 0.0186 0.0082 4.9513 11.1185 0.0449 0.0175 4.4992 9.1495 0.0538
(h) 0.0327 3.8546 2.4882 0.1421 0.0066 5.2311 23.1091 0.0153 0.0181 4.3865 6.2596 0.0786 0.0267 4.1566 9.0840 0.5460
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4.2. Stability to Image Blurring

Due to the limitations of objective conditions and the interference from human factors, some
inevitable phenomena may occur in the process of microscopic image acquisition, such as motion
blur caused by lens jitter and defocusing blur caused by inaccurate focusing, while stable texture
parameters should have good immunity to these kinds of fuzzy degradation [31].

Taking the image of pyrofusinite as an example, motion blur and defocusing blur degradation are
processed as shown in Figure 8. We plot their multifractal spectra in Figure 9 and compare the spectra
with the original one. As can be seen from the multifractal spectra, after image blurring, the value
of fmax fluctuates slightly between 2 and 2.05, indicating the extracted texture parameter fmax is not
sensitive to blurring.

(a) (b)

Figure 8. Typical images of pyrofusinite with different blurred processing methods. (a) Motion blurred
image; (b) defocus blurred image.
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Figure 9. Multifractal spectra of the microscopic images of pyrofusinite with different blurring.

In order to demonstrate the robustness of the multifractal descriptors to image blurring more
convincingly, we perform motion blur and defocus blur on all microscopic images labeled (a)–(h)
form Figure 1. Then the parameters of αmin, αmax, and fmax are calculated; besides, the GLCM-based
texture features are also calculated for comparison. Figure 10 shows the average error of these texture
features. For eight types of inertinite macerals, the relative error of fmax is close to 0, αmin and αmax are
between 0% and 15%, which indicates that the multifractal features have excellent robustness and are
insensitive to blurring. However, GlCM-based features are susceptible to image blurring. For example,
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the relative error of the second-order moment of the semifusinite with defocus blurring is even higher
than 300%; the parameter of energy is relatively stable in the microscopic images of inertinite macerals,
all of which are less than 40%. The above analysis depicts that the three multifractal descriptors possess
great stability to different kinds of blurring.
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Figure 10. The relative errors of textural descriptors of typical inertinite microscopic images with
different blurring types. (a) Motion blurred image; (b) defocus blurred image.

5. Classification Experiment

5.1. Experiment Design

Considering small samples, SVM is employed to build a classifier for the classification of inertinite
macerals [32]. To address the non-linear and the multi-classes problem in this paper, the input data
are mapped into high-dimensional space with a non-linear mapping, and the relevant classification
function can be expressed as

F(x) = sgn[
n

∑
i=1

aiyiK (xi, x)+b0], (11)

where ai, i = 1, ..., n are Lagrange multipliers, the class to which a sample is assigned is labeled yi, and
K (xi, x) represents a kernel function, which is the radial basis function (RBF) kernel function here.

The classification model for inertinite macerals with the SVM-based classifiers is illustrated in
Figure 11. To implement the multi-classification, we construct a classifier group with 28 RBF-SVM
classifiers to distinguish eight groups of inertinite macerals based on the one-against-one (1A1)
technique and optimize the error parameter (usually designated c) and parameter γ in RBF kernel
function by a grid search [33,34]. Besides, 40 of the microscopic samples per group are used for training,
and the remaining 20 samples for testing and each classifier is used to distinguish two different classes
of inertinite macerals. Then, the remaining testing samples per group are input into the trained
classifiers. The specific testing process is as follows.

Step 1. Calculate the texture descriptors of αmin, αmax and fmax for each image in the testing set.
Step 2. Input the texture data obtained in the previous step into the classifier group in turn.
Step 3. Count the votes in eight groups; the testing image is classified into the group with the best

poll numbers.
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Step 4. Repeat the above steps for the remaining images, and finally, get the category for each
training images.
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Figure 11. Classification model for inertinite macerals with the SVM-based classifiers.

5.2. Evaluation Measures

The results of the automatic classification method are quantitatively evaluated by ensemble of
popular measures. The measures used in our work comprise precision, recall, and F-measure.

The class agreement of the predicted labels with the positive labels given by the classifier is estimated
by precision, and the validity of the positive label recognition is measured by recall. The F-measure is
defined as a scaled harmonic mean of precision and recall.

precisioni =
tpi

tpi + f pi
(12)

recalli =
tpi

tpi + f ni
(13)

F-measurei =
2 ∗ precisioni ∗ recalli

precisioni + recalli
, (14)

where tpi, f pi, tni, and f ni denote the values of true positives, false positives, true negatives, and
false negatives for class i, respectively. Using the above measurements, the performance of proposed
classification model can be conducted for comparison purposes. Additionally, for the purpose of
comprehensively evaluating the average performance of eight groups of inertinite macerals, we
consider the average values of precision (macro-precision), the average values of recall (macro-recall),
and macro-F, which is a scaled harmonic mean of macro-precision and macro-recall.

5.3. Experimental Results

Based on the classification model, each RBF-SVM classifier is trained with the training samples
to get specific values of parameters c and γ, as summarized in Table 3. For the testing samples, the
previous evaluation performance of classifying inertinite macerals using multifractal descriptors is
reported in Table 4. For each maceral, the classification result has achieved satisfactory performance in
terms of precision, recall, and F-measure. We notice that the precision performances of oxyfusinite,
secretinite, and funginite are slightly lower than those of the best performances of about 0.1304,
0.9520, and 0.1000, which may be due to their fractal similarity corresponding to the distribution of
multifractal spectra, as shown in Figure 3. Remarkably, the result for macrinite presents the most
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appealing performance with three full marks. This may be attributed to the fact that the MF-DFA
method can effectively eliminate the local trends of non-stationary images and detect their multifractal
features more accurately. These data from the evaluation matrices indicate that our multifractal features
are effective in representing texture information of microscopic images of inertinite macerals.

Table 3. Objects and parameters of different classifiers. (a) Pyrofusinite; (b) oxyfusinite; (c) semifusinite;
(d) secretinite; (e) funginite; (f) macrinitee; (g) inertodetrinite; (h) micirinite.

Classifier Objects c γ Classifier Objects c γ

RBF-SVM1 (a) Vs (b) 0.5000 2.0000 RBF-SVM15 (c) Vs (e) 0.0313 0.0313
RBF-SVM2 (a) Vs (c) 0.0313 0.0313 RBF-SVM16 (c) Vs (f) 0.0313 0.0313
RBF-SVM3 (a) Vs (d) 0.2500 32.0000 RBF-SVM17 (c) Vs (g) 0.0313 0.0313
RBF-SVM4 (a) Vs (e) 4.0000 32.0000 RBF-SVM18 (c) Vs (h) 0.0313 0.0313
RBF-SVM5 (a) Vs (f) 16.0000 32.0000 RBF-SVM19 (d) Vs (e) 2.0000 16.0000
RBF-SVM6 (a) Vs (g) 0.0313 2.0000 RBF-SVM20 (d) Vs (f) 0.0313 0.0313
RBF-SVM7 (a) Vs (h) 1.0000 32.0000 RBF-SVM21 (d) Vs (g) 0.0313 0.5000
RBF-SVM8 (b) Vs (c) 0.0313 0.0313 RBF-SVM22 (d) Vs (h) 0.0313 8.0000
RBF-SVM9 (b) Vs (d) 0.0313 0.0313 RBF-SVM23 (e) Vs (f) 0.0313 32.0000

RBF-SVM10 (b) Vs (e) 0.0625 8.0000 RBF-SVM24 (e) Vs (g) 0.0313 0.0313
RBF-SVM11 (b) Vs (f) 0.0313 0.0313 RBF-SVM25 (e) Vs (h) 16.0000 2.0000
RBF-SVM12 (b) Vs (g) 0.0313 1.0000 RBF-SVM26 (f) Vs (g) 0.0313 0.5000
RBF-SVM13 (b) Vs (h) 0.0313 0.2500 RBF-SVM27 (f) Vs (h) 0.0313 32.0000
RBF-SVM14 (c) Vs (d) 0.0313 0.2500 RBF-SVM28 (g) Vs (h) 0.0313 0.0313

As a comparison, the performance evaluation of the classification of GLCM-based descriptors
is reported in Table 5. It is not surprising to find that the GLCM-based descriptors always lead to
unsatisfactory performance when compared to multifractal descriptors. This may be explained by
the fact that the statistical features based on GLCM are not applicable for describing texture images
with complex and heterogeneous naturals. Especially for the maceral of inertodetrinite, the three
evaluation values are as low as 0.667, 0.5000, and 0.667, nearly half of the corresponding evaluation
values of our method, which are far from satisfying our classification purpose. Overall, we give the
average performance evaluation in Figure 12. The macro-precision of the GLCM-based descriptors
can be improved by means of the proposed multifractal descriptors up to 7.99%. This holds in both
micro-recall and macro-F with improvements of 10.00% and 9.02%, respectively. These data present
report the effectiveness and feasibleness of our proposed method.
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85.00%
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95.33% 95.00% 95.17%

78.00%
80.00%
82.00%
84.00%
86.00%
88.00%
90.00%
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96.00%
98.00%

macro-precision macro-recall macro-F

GLCM-based descriptors Multifractal descriptors

Figure 12. Average performance evaluation of different texture descriptors.
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Table 4. Performance of inertinite macerals’ classification with multifractal descriptors.

Pyrofusinite Oxyfusinite Semifusinite Secretinite Funginite Macrinite Inertodetrinite Micinite

precision 1.0000 0.8696 1.0000 0.9048 0.9000 1.0000 0.9524 1.0000
recall 0.8500 1.0000 0.9500 0.9500 0.9000 1.0000 1.0000 0.9500

F-measure 0.9189 0.9302 0.9744 0.9268 0.9000 1.0000 0.9756 0.9744

Table 5. Performance of inertinite macerals’ classification with GLCM-based descriptors.

Pyrofusinite Oxyfusinite Semifusinite Secretinite Funginite Macrinite Inertodetrinite Micinite

precision 0.8182 0.9756 0.9231 0.7368 0.7083 0.9756 0.6667 0.9744
recall 0.9000 1.0000 0.9000 0.7000 0.8500 1.0000 0.5000 0.9500

F-measure 0.8182 0.9756 0.9231 0.7368 0.7083 0.9756 0.6667 0.9744

6. Conclusions

Considering the fact that the petrological properties of coal are complex and widely distributed,
in this paper, the microscopic images with heterogeneous natural have been analyzed by the MF-DFA
method. We verified the multifractal properties of the microscopic image by the function of τ(q)
and h(q). In addition, with the multifractal spectrum, we have proposed three important texture
descriptors for characterizing image information, such as αmin, αmax, and fmax. It is well known that
the texture descriptor of an image should be robust and immune to image quality; thus, the stability
experiments have been implemented and the results have verified the anti-noise ability and anti-blur
capability of the multifractal descriptors.

A classification model with RBF-SVM classifier has been built to distinguish the 160 microscopic
images of inertinite macerals in coal. Our multifractal descriptors have represented the most appealing
results in terms of performance metrics of precision, recall, and F-measure, providing excellent
performance compared with GLCM-based texture descriptors. The successful implementation of our
proposed method in the identification of inertinite materials can assist petrologists to make correct
decisions and reduce the influences of subjective factors in practical scenarios, which is particularly
beneficial to geologists with less experience. In view of the fact that there are some similarities of
structural complicacy and non-linear multi-classification, we will investigate the classification of other
maceral groups with a reference to our proposed method in the future. Simultaneously, in order to be
more suitable for industrial applications, we will also develop a cross platform software for maceral
image recognition and classification in the future work.
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