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Featured Application: Image based manufacturing process diagnosis and clinical image data
analysis for malignancy detection.

Abstract: Since machine vision systems (MVS) lead to a wide usage of monitoring systems for
industrial applications, the research on the statistical process control (SPC) of image data has been
promoted as an automated method for early detection and prevention of unusual conditions in
manufacturing processes. In this paper, we propose a non-parametric SPC approach based on
the 2D wavelet spectrum (WS-SPC) to extract the feature that contains the spatial and directional
information of each subspace in an image. Using the 2D discrete wavelet transform and spectrum
analysis, the representative statistic, the Hurst index, is calculated, and a single matrix space that
consists of estimated statistics is reconstructed into a spatial control area for SPC. When a control
limit is determined by the density of statistics, real-time monitoring based on WS-SPC is available for
time releasing images. In the application, an analysis of wafer bin maps (WBMs) is conducted at a
semiconductor company in Korea in order to evaluate the performance of the suggested approach.
The results show that the proposed method is effective in terms of its fast computation speed and
spectral monitoring.

Keywords: image processing; condition based maintenance; statistical process control; wavelet
spectrum; wafer bin map

1. Introduction

Statistical process control (SPC) is one of the monitoring schemes that can be applied to fault
detection in manufacturing processes. The basic SPC procedure consists of two phases: the calculation
of the statistics to represent the objects’ status from multivariate variables and the determination of the
control limits that define an abnormal status of the objects.

There has been a variety of research with respect to the monitoring of manufacturing processes.
Borionetti [1] introduced multiple indices for process monitoring such as the surface parameters,
bulk, and epitaxial layer, which were applicable to the monitoring of the process quality of wafers.
Besides, a model for multistage processes from binary data was proposed by Shang et al. [2] by using
the hierarchical likelihood approach to illustrate the cumulative effects. Nguyen et al. [3] suggested
a three-stage prognosis for batch manufacturing composed of the extraction of the health index,
the variation of representative values using the percentile measure, and the modeling of profiles as
gamma processes.

As an advanced process monitoring methodology, the machine vision system (MVS) is actively
used in the manufacturing area. MVS is an automated two-dimensional inspection system that
monitors whether the objects of interest (e.g., products, processes) are in the normal status or not.
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This system has an advantage over manual investigation in that the inspection can be performed with
less time and at a lower cost. Currently, the need for further research on automated two-dimensional
(2D) monitoring algorithms is becoming greater to reduce the high inspection costs. MVS is repeatedly
operated in the given sequence; obtaining images, analyzing raw data using an appropriate model,
and training and updating the constructed model. In the general manufacturing area, MVS is applied
to SPC to maintain productivity, diagnose manufacturing processes in real time, and detect faults
early [4]. For instance, MVS is utilized in the quality control of wafers, which are the basis of electronic
integrated circuits (ICs) as components of semiconductors. As shown in Figure 1, silicon crystal, called
ingot, is melted by heat and sliced after hardening. The wafer is then fabricated in the manufacturing
process through a series of masking, etching, and polishing to generate the IC. In the process, MVS can
be introduced to each processing lot in order to monitor the status of wafers or detect any defective
region, which leads to the increase in the yield of the manufacturing process.
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Though image based multivariate SPC approaches are widely applied to distinguish if the process
will have a defective status or not, using a representative value, there are few literature works providing
the spatial information of faulty regions; e.g., the defect clustering area in the wafer bin map (WBM)
resulting from the semiconductor manufacturing process. Tong et al. [6] applied the traditional
Hotelling’s T2 chart to WBM data based on the number of defects and defect clustering indices.
However, they failed to provide the spatial information of the clustered defects in WBM.

Lin [7] used a wavelet transform based multivariate process approach for an automated visual
inspection of ripple defects. Therein, he showed that wavelet-based methods had better performance
than traditional approaches, which use raw images directly. Liu and Macgregor [8] proposed the
wavelet texture based T2 control chart, where principal component analysis (PCA) was added in order
to extract the feature vector in an efficient manner. To provide spatial information on image data,
Tunák et al. [9] introduced the spatial X chart to illustrate the density of woven images based on 2D
discrete Fourier transform (DFT), which localized wavelet coefficients in the frequency domain. Later,
by segmenting a single image matrix into 1D signals, Koosha et al. [10] extracted wavelet basis functions
from textile image data to detect out-of-control conditions using a generalized likelihood ratio chart,
which was proposed by Reynolds and Liu [11]. Existing approaches employ signal processing methods
in SPC to improve the detection accuracy of abnormal status from (spatial) image data. The majority of
studies assume normality or a pre-specified distribution a priori to calculate the statistics designating
the control limits of a control chart. In reality, the process variables from (spatial) image data hardly
follow a normal distribution. Moreover, almost entirely abnormal (or defective) regions in an image
present relatively irregular patterns for each faulty area.

In this research, we propose a wavelet spectrum based 2D SPC (WS-2DSPC) to provide a
robust output by considering the energy of wavelets, mainly under a nonparametric framework.
A hierarchical structure decomposed by 2D discrete wavelet transform (DWT), which was proposed
by Nicolis et al. [12], is introduced to obtain the directional and spectral information of the faulty area.
Then, the Hurst index as the representative statistic is estimated to reflect the nonstationary property
of wavelet coefficients in fractional Gaussian fields. Finally, WS-2DSPC is constructed by setting the
control limits based on the density of Hurst indices from image windows. The proposed method is
applied to real WBM image data to prove its potential in fault detection or process monitoring.
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The rest of this study is organized as follows. In Section 2, we briefly review 2D DWT and wavelet
spectrum analysis. The conceptual procedure of the proposed idea is presented in Section 3. Section 4
provides an application of the proposed idea to WBM image data for SPC purposes. This study is
concluded in Section 5, along with possible future research.

2. Theoretical Background

2.1. 2D Discrete Wavelet Transform

2D discrete wavelet transform (DWT) is a transform method for constructing blocks with discretely
sampled wavelets. 2D DWT is well known as a powerful tool for real-time image analysis due to
its computational efficiency. It converts the data of a single image into multi-resolution sub-band
areas, which help self-similarity analysis. The decomposed output contains a set of basis functions
called wavelets, which can be localized in the time and frequency domains and reconstructed through
inverse DWT. The converted function consists of translations and dilations of univariate scale function
φ j,k(t) = 22 jφ

(
2 jt− k

)
and wavelet functions ψi

j,k(t) = 22 jψi
(
2 jt− k

)
, for two-dimensional timelines

t = (t1, t2) ∈ R and location factors k = (k1, k2) ∈ Z. Here, i has three directions: diagonal (HH;
High-High sub band), horizontal (HL; High-Low sub band), vertical (LH; Low-High sub band), and j
denotes the resolution level. Based on scale and wavelet functions, the two-dimensional image is
transformed as:

f (t) =
∑

k

cL,kφL,k(t) +
∑
j≥L

∑
k

∑
i

di
j,kψ

i
j,k(t), (1)

where j = L, . . . , J − 1, k ≡ (k1, k2) = 0, . . . , 2 j
− 1. L and J are the lowest number of the resolution level

and the highest number of the resolution level, respectively. Through the hierarchical calculation,
the coarser coefficients c j,k (also called approximation coefficients) and the detailed coefficients d j,k can
be obtained. Each of them is defined as:

c j,k =

∫
R

f (t)φ j,k(t) dt, and di
j,k =

∫
R

f (t)ψi
j,k(t) dt. (2)

Approximation coefficients capture the smooth and general information in the low frequency area,
while the detailed coefficients characterize the detailed and oscillatory pattern in the high frequency
region. Detail coefficients provide the vibrating behaviors of original image signals; thus, all the
de-noising and feature extraction techniques are conducted based on the detailed coefficients.

2.2. Spectrum Analysis

As mentioned before, wavelets at each resolution level are an effective tool for detecting
self-similarity. 2D fractional Brownian (fBm) motion is a representative model to explain a self-similar
continuous-time Gaussian process in two dimensions. For self-similar images to be non-stationary
with zero mean, let us define a scaling function as BH(u) and BH(v), where u and v are the row position
and the column position of the selected area, respectively. An autocorrelation function between the
two scale functions is derived by a combination of the Euclidean norm ‖·‖ as:

RBH (u, v)= E[BH(u)BH(v)] =
σ2

H
2

(
‖u‖2H + ‖v‖2H

− ‖u− v‖2H
)

=
2−(1+2H)Γ(1−H)

πHΓ(1 + H)

(
‖u‖2H + ‖v‖2H

− ‖u− v‖2H
)
,

(3)
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where H ∈ [0, 1] denotes the Hurst exponent, which is a measure of the long range dependence of time
series data. Here, Γ(·) denotes the gamma function. The application of 2D fBm enables the increment
of images to be stationary. The formula with respect to the increment h is given as:

E[BH(u + h) − BH(u)]
2 = σ2

H‖h‖
2H. (4)

Equation (4) shows that the oscillating patterns of BH(u) are dependent on the distance of
increments ‖h‖. Derived from this relationship, the power spectrum of scaling functions can be
simplified as [13]:

SBH (ω) = ‖ω‖
−2H−2. (5)

Based on Equation (5), we can estimate the appropriate Hurst exponent from the given image.
According to the values of H, the original signal images can be characterized; for example, with the
Hurst exponent close to 0.5, the image has a random property, without any correlation or trend; whereas
a large H value means that the image is manifested differently, indicating a long range persistent time
series, while a small H value represents anti-persistent time series having a short length of the mean
reverting property.

3. Wavelet Spectrum Based 2D Statistical Process Control

In this section, we propose a wavelet spectrum based two-dimensional statistical process control
(WS-2DSPC). WS-2DSPC is a procedure to detect localized faulty regions, as well as overall defective
regions without any distributional assumption. First, image features are selected from 2D DWT, and
wavelet spectrum analysis is performed by calculating the fault strengths of divided windows. In order
to obtain the spatial characteristics from a single image, the image should be divided into multiple
windows to apply 2D DWT to each window. After dividing the image, 2D DWT is conducted for each
window in order to capture the potential variability of signals, where the hierarchical structure of the
detailed coefficients can be constructed, where the energy of the detailed coefficients is calculated for
each resolution level. Once energies are calculated for each resolution level, a linear regression model
can be constructed so that Hurst exponents of the divided windows are estimated as representative
values. Based on the indices, a matrix of control statistics and control limits is computed, then the
spatial control chart for the image is constructed. A detailed description of the WS-2DSPC procedure
is listed below.

• Step 1: Remove noise regions from raw images by applying the universal thresholding suggested by
Donoho and Johnstone [14], and transform the images into gray-scale. Thresholding is a de-noising
method to remove the converted wavelet coefficients smaller than a specific threshold value.
This step could be omitted if the images do not include any noise. In this step, we decomposed
the applied images into the maximum resolution level to minimize the loss of useful information
and preserve the local defects as much as possible.

• Step 2: Split a d× d matrix of image X into multiple sub-matrices as windows, W1, W2, . . . , Wn×n,
which are given as:

X =


x1,1 · · · x1,d

...
. . .

...
xd,1 · · · xd,d

 =


W1 · · · Wn×(n−1)+1
...

. . .
...

Wn · · · Wn×n

, (6)

with the total number of windows n2. Each window is divided into a d
n ×

d
n square matrix. To apply

2D DWT, it is recommended that both the image and divided windows have a 2l
× 2l size format

for a positive integer l. The larger width and height the windows have, the more possible is the
precision of the monitoring; thus, the trade-off between accuracy and computation time must be
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considered. In order to obtain sufficient information from the wavelet hierarchy, it is desirable for
the height and width of windows to be more than 25.

• Step 3: Conduct window-wise 2D DWT to extract the representations of divided images generated
by wavelets. The number of resolution levels is dependent on the dimension of the sub-matrices.
If the size of windows is 2l, 2D DWT provides l resolution levels containing wavelet coefficients.
From this, three wavelet matrices per each window are generated, where the results come from
three directions: horizontal, vertical, and diagonal. Conducting 2D DWT for every window using
Equation (1), the lth window matrix is decomposed as:

Wl(t) =
∑

k

cl
1,kφ

l
1,k(t) +

∑
j≥1

∑
k

∑
i

di,l
j,kψ

i,l
j,k(t). (7)

• Step 4: Estimate the Hurst exponents of each window in three directions using wavelet spectrum
analysis, which is used for calculating the control statistics of WS-SPC. As mentioned in Section 2.1,
the detailed coefficients actually work as the key for capturing the vibrating pattern and energy of
objects. The wavelet function of the original image (2) can be re-written with a self-similar model
in the fractional Brownian field, BHi

l
(u), and the detailed coefficients of a single window di,l

j,k can
be defined as:

di,l
j,k = 2 j

∫
R

BHi
l
(u) ψi,l

(
2 ju− k

)
du, (8)

where the detailed coefficients have zero mean and variance:

E
[∣∣∣∣di,l

j,k

∣∣∣∣2] = 22 j
x

ψi,l
(
2 ju− k

)
ψi,l

(
2 jv− k

)
E
[
BHi

l
(u)BHi

l
(v)

]
dudv. (9)

If there is some replacement p = 2 j(u− v), q = 2 jv− k for a simplification, Equation (8) is modified as:

E
[∣∣∣∣di,l

j,k

∣∣∣∣2] = −σ2
Hi

l

2
22 j

x
ψi,l(p + q)ψi,l(q)

∣∣∣p∣∣∣2Hi
l 2−(2Hi

l+2) j dpdq. (10)

Taking the natural logarithm of the variance of Equation (9), we can obtain the regression form of
wavelet energy:

log2 E
[∣∣∣∣di,l

j,k

∣∣∣∣2] ≈ −(2Hi
l + 2

)
j + Ci

l, (11)

where Ci
l denotes a constant composed of the integrals of wavelet functions. Using the generalized power

spectrum and linear relationship, the Hurst exponents and constants of the windows are estimated.

• Step 5: Define the control statistics and control limits using the density of statistics to monitor the
image process. In order to distinguish the irregular pattern from a normal region, the distance
between each Hurst exponent and mode of windows is calculated. Since there are three features
generated from each direction of 2D DWT, the distance matrix (denoted as D ) for all features to
the background are considered as:

D =


dist1 · · · distn×(n−1)+1

...
. . .

...
distn · · · distn×n

 =
∑

i

∣∣∣∣Hi
− Bg

[
Hi

]∣∣∣∣ (12)
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where Bg
[
Hi

]
is the background values or matrix of features and Hi is the Hurst matrix of a whole

image containing individual (scalar) Hurst exponents from each window in direction i as:

Hi =


Hi

1 · · · Hi
n×(n−1)+1

...
. . .

...
Hi

n · · · Hi
n×n

. (13)

For the distance measurements, the L1 norm is selected due to its appropriacy for the sparse model,
where the distance matrix with a large normal region should be treated as the sparse matrix. From the
above equation, the distance matrix D is generated as the features of control statistics, which represent
the degree of faults and energies with spectral information. Then, the control limits for the distance
matrix are determined by the distribution of D. In addition to the spectral information, we can calculate
the control limit by estimating the kernel density of {dist1, dist2 . . . , distn×n}. Density estimation results
show that the normal region N and suspicious regions S are divided into two parts based on the points of
the valley in the distribution. If a probability of a suspicious region is more than the pre-determined rates,
the maximizer of the suspicious density, argmax

dist∈S
f (dist), is considered as the upper control limit (UCL).

In WS-2DSPC, pre-processing of the image and division of a single image into multiple windows is
conducted. After wavelet coefficients are obtained by 2D DWT, the Hurst matrices from three directions
are generated from spectrum analysis, where the distance matrix is calculated from the Hurst features
to represent the status of processes as control statistics. Hereafter, the calculation of the control limit
is conducted based on the density of the distance matrices, which enables us to detect the abnormal
status containing a high amount of energy distance from the original background. The suggested
method gives robust results in a nonparametric framework with computational efficiency, regardless of
the hyperparameters or pre-specified distribution. Using this procedure, a spatial monitoring scheme
for 2D image data, as well as the calculation of fault strengths in the divided region can be provided.

4. Application and Discussion

In this section, we applied the suggested algorithm to wafer bin map (WBM) data provided by a
semiconductor company in Korea. This data contained the defective information of WBMs during the
manufacturing processes, which provided the X-Y coordinate of defects in each WBM. As shown in
Table 1, the identification code of the lot, timestamp, and relative position of defects from the center
(0, 0) could be obtained from the data. In order to monitor the continuous status in a single lot, the data
generated from a specified lot were considered.

Table 1. Format of the original data for a single wafer bin map.

Lot ID Timestamp Defect ID X Y

15 10:00:50 1 7.293e+03 1.267e+01
15 10:00:50 2 2.695e+02 −2.502e+04
15 10:00:50 3 −5.369e+00 0.012e+02
. . . . . . . . . . . . . . .

Since the suggested procedure aims to control and detect the spatial defects of time series
processing based on image analysis, we selected four main types of defective WBM images, as shown
in Figure 2. These images consisted of a faulty condition caused by multiple patterns of local defects
including scratch, circle, and semicircle (half). Each of these images was separately applied to each
step in the suggested algorithm to illustrate the effectiveness of the proposed procedure clearly.
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“la8” wavelet, the Daubechies least asymmetry length eight, was used. Since random defects in the
overall area can be produced during semiconductor manufacturing, global defects were eliminated for
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Figure 3. (a) Construction of wafer bin map image; (b) preprocessed image from (a).

After the pre-processing step, the image was divided into square-sized sub-images as windows.
As mentioned in Step 3 in Section 3, the hierarchy of wavelet coefficients was obtained by 2D DWT per
each window. In Step 4, the energy of the detailed coefficients for resolution levels was calculated so
that the linear regression based on wavelet spectrum analysis could be conducted. Figure 4 presents
the energy profiles of all windows derived from WBMs, where a single line describes the trend of single
windows and the color of lines (red, blue, and black) represents the direction of wavelet transforms:
diagonal (HH), horizontal (HL), and vertical (LH) coefficients, respectively. From the comparison of
WBMs between the normal condition and abnormal condition with a circle defect, we can observe that
the WBM with more faults had greater variation of energies, where the Hurst exponents (slopes of the
linear equation derived from each window) were more distributed than the normal status.
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Figure 4. Energy profiles of windows from wafer bin maps: (a) normal; (b) defective.

Using the Hurst exponents from every window, a distance matrix D was calculated from Step 4 in
Section 3, where the derivation of distances from the background enabled us to quantify the strength of
faults. Based on the matrix, the density of the distance elements, distl for l = 1, 2, . . . , n2, was estimated.
The distribution was split into normal and suspicious parts by the valley, that is the defective region
belonged to the distribution that had a greater distance from the local minimal value, because the suspicious
area had a further distance from the background than the other. The probability of faults was calculated by
the cumulative distribution function (CDF), which was more than the valley. If the probability was more
than the pre-specified standard for fault detection, the wafer was determined to have failed.

The visualization of the distance matrix and density estimation from the given images having
circle and vertical defects and half defects is shown in Figure 5. If the degree of defects in a specific
window was serious, the window had a greater distance from the background. The kernel density
function was separated by each valley, which lied at 0.5564 and 0.6219 in the WBM with circle and
vertical defects and half defects, respectively. The probabilities of failure from two images were
estimated as 0.2928 and 0.3394. Since we set the threshold for failure to 0.3 in this application, the half
defective WBM would be classified as the faulty state, and the UCL for the spectral control chart was
defined as the maximizer of a suspicious distribution. In this example, UCL was set to 1.7461 to detect
the failure parts exceeding the control limits.Appl. Sci. 2019, 11, x FOR PEER REVIEW 8 of 10 
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Figure 5. (a) Circle and vertical defective WBM; (b) spectral reconstruction of the distance matrix of (a);
(c) density estimation of the distance matrix of (a); (d) half defective WBM; (e) spectral reconstruction
of the distance matrix of (d); (f) density estimation of the distance matrix of (d).
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Based on the matrix composed of the statistics and upper control limit, a spectrum-based 3D
spatial control chart was constructed. The spatial SPC implemented from the WBM image given in
Figure 5 is provided in Figure 6, where three axes, X, Y, and Z, stand for the column, the row index
of windows, and the control statistics. Because the defective region had a greater distance from the
background, it would have higher values of the control statistics, and the statistics exceeding UCL
were detected as faulty regions. The plane for UCL could be generated to detect the faulty location
easily with higher values of the control statistics, and the plane was parallel to the XY-plane.
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Figure 6. Wavelet spectrum-based 3D spatial control chart for the half-defective WBM in Figure 5.

The result showed that WS-2DSPC conducted the detection of the faulty region and calculated the
degree and strength of the defects with an efficient computation speed (it took approximately 2.17 s for
a single image with a size of 210

× 210 on an Intel® Core™ i-5 6400 CPU @ 2.70 GHz and 8.00 GB of RAM,
including the feature exportation and visualization). If the application of WS-2DSPC can be extended
to multiple online images in a timed sequence, a system for stereotaxic and spatial monitoring, as well
as the diagnosis of defects can be implemented without a bottleneck in the manufacturing process.

5. Conclusions

In this article, a novel approach for spatial SPC based on wavelet spectrum analysis was proposed.
With a brief review of existing approaches, we suggested an automated and quantified control method
using an image processing method to detect spatial fault images in the manufacturing process without
any assumptions about pre-determined values. In this procedure, 2D DWT and wavelet spectrums
were utilized to calculate the degree of defects via Hurst exponents for divided windows. After the
construction of the distance matrix derived from Hurst exponents was completed, the statistics and
control limits were defined by the values and densities of matrix elements. The construction of the
spatial control chart provided computational efficiency in diagnosing the status of images from both
the spatial and real-time perspective. Through the applications of the proposed method to real-world
WBMs in the semiconductor industry, the quantitative evaluation criteria for fault detection were
provided in order to represent the degree of faults in WBM. Moreover, the spatial monitoring for
detailed fault types led to real-time diagnosis and detection during the operation, where the cost for
damage delays could be reduced and the most frequent fault type could be investigated.

For future research, classification based SPC would be possible since the defective patterns of
images have typical shapes or positions, where the eventual cause of specific defects is prevented.
In addition, faults in hidden layers that consist of the WBMs could be detected; while the modeling of
defects in hidden layers is a valuable topic for additional research, this paper only covered the faults of
image-type data that could be observed from the WBMs. It is also necessary to determine an effective
control limit for automated detection, instead of the pre-specified threshold. Another approach applied
to other signal processing methods could be also an interesting topic for study.

Author Contributions: Conceptualization, M.L. and S.J.B.; methodology, M.L. and S.J.B.; software, M.L.; validation,
M.L. and S.J.B.; formal analysis, M.L. and S.J.B.; investigation, M.L.; resources, S.J.B.; data curation, M.L.; writing,



Appl. Sci. 2019, 9, 5518 10 of 10

original draft preparation, M.L.; writing, review and editing, M.L. and S.J.B.; visualization, M.L.; supervision,
S.J.B.; project administration, S.J.B.; funding acquisition, S.J.B. This paper was prepared with the contributions of
all authors.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education(2018R1D1A1A09083149). This work was
supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology
Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy,
Republic of Korea. (No. 20174030201750).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borionetti, G. A review of in-line/off-line defect characterization techniques applied to control and improve
electronic grade silicon wafer manufacturing processes. Mater. Sci. Eng. 2002, 91, 128–135. [CrossRef]

2. Shang, Y.; Tsung, F.; Zou. C. Statistical process control for multistage processes with binary outputs. IIE Trans.
2013, 45, 1008–1023. [CrossRef]

3. Nguyen, T.B.L.; Djeziri, M.; Ananou, B.; Ouladsine, M.; Pinaton, J. Fault prognosis for batch production based
on percentile measure and gamma process: Application to semiconductor manufacturing. J. Process Control
2016, 48, 72–80. [CrossRef]

4. Megahed, F.M.; Wells, L.J.; Camelio, J.A.; Woodall, W.H. A spatiotemporal method for the monitoring of
image data. Qual. Reliab. Eng. Int. 2012, 28, 967–980. [CrossRef]

5. Franklin, G.F.; Powell, J.D.; Emami-Naeini, A. Feedback Control of Dynamic Systems, 5th ed.; Prentice Hall:
Upper Saddle River, NJ, USA, 2006.

6. Tong, L.I.; Wang, C.H.; Huang, C.L. Monitoring defects in IC fabrication using a Hotelling T2 control chart.
IEEE Trans. Semicond. Manuf. 2005, 18, 140–147. [CrossRef]

7. Lin, H.D. Automated visual inspection of ripple defects using wavelet characteristic based multivariate
statistical approach. Image Vis. Comput. 2007, 25, 1785–1801. [CrossRef]

8. Liu, J.; Macgregor, J.F. Estimation and monitoring of product aesthetics: Application to manufacturing of
engineered stone countertops. Mach. Vis. Appl. 2006, 16, 374–383. [CrossRef]

9. Koosha, M.; Linka, A.; Volf, P. Automatic assessing and monitoring of weaving. Fibers Polym. 2009, 10,
830–836. [CrossRef]

10. Koosha, M.; Noorossana, R.; Megahed, F. Statistical process monitoring via image data using wavelets.
Qual. Reliab. Eng. International. 2017, 33, 2059–2073. [CrossRef]

11. Reynords, M.R., Jr.; Lou, J. An evaluation of a GLR control chart for monitoring the process mean.
J. Qual. Technol. 2010, 42, 287–310. [CrossRef]

12. Nicolis, O.; Ramírez-Cobo, P.; Vidakovic, B. 2D wavelet-based spectra with applications. Comput. Stat.
Data Anal. 2011, 55, 738–751. [CrossRef]

13. Reed, L.S.; Lee, P.C.; Truong, T.K. Spectral representation of fractional Brownian motion in n dimensions and
its properties. IEEE Trans. Inf. Theory 1995, 41, 1439–1451. [CrossRef]

14. Donoho, D.L.; Johnstone, I.M. Ideal spatial adaption by wavelet shrinkage. Biometrika 1994, 81, 425–455.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0921-5107(01)00970-9
http://dx.doi.org/10.1080/0740817X.2012.723839
http://dx.doi.org/10.1016/j.jprocont.2016.10.003
http://dx.doi.org/10.1002/qre.1287
http://dx.doi.org/10.1109/TSM.2004.836659
http://dx.doi.org/10.1016/j.imavis.2007.02.002
http://dx.doi.org/10.1007/s00138-005-0009-8
http://dx.doi.org/10.1007/s12221-009-0830-1
http://dx.doi.org/10.1002/qre.2167
http://dx.doi.org/10.1080/00224065.2010.11917825
http://dx.doi.org/10.1016/j.csda.2010.06.020
http://dx.doi.org/10.1109/18.412687
http://dx.doi.org/10.1093/biomet/81.3.425
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theoretical Background 
	2D Discrete Wavelet Transform 
	Spectrum Analysis 

	Wavelet Spectrum Based 2D Statistical Process Control 
	Application and Discussion 
	Conclusions 
	References

