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Abstract: Algorithms and programming are some of the most challenging topics faced by students
during undergraduate programs. Dropout and failure rates in courses involving such topics are
usually high, which has raised attention towards the development of strategies to attenuate this
situation. Machine learning techniques can help in this direction by providing models able to detect
at-risk students earlier. Therefore, lecturers, tutors or staff can pedagogically try to mitigate this
problem. To early predict at-risk students in introductory programming courses, we present a
comparative study aiming to find the best combination of datasets (set of variables) and classification
algorithms. The data collected from Moodle was used to generate 13 distinct datasets based on
different aspects of student interactions (cognitive presence, social presence and teaching presence)
inside the virtual environment. Results show there are no statistically significant difference among
models generated from the different datasets and that the counts of interactions together with derived
attributes are sufficient for the task. The performances of the models varied for each semester, with the
best of them able to detect students at-risk in the first week of the course with AUC ROC from 0.7
to 0.9. Moreover, the use of SMOTE to balance the datasets did not improve the performance of
the models.

Keywords: at-risk students; machine learning; learning management system; blended learning;
introduction to programming

1. Introduction

Student dropout and failure are two major problems faced during the teaching-learning process
of computer programming at any education level [1]. These disciplines have high failure rates around
the world, sometimes achieving over 50% [1–5]. According to the literature, many factors may
contribute to this low approval rate, such as difficulties related to the required abstraction for the
proper development of algorithms, difficulties in problem-solving, and also the early stage, in which
the programming courses are placed inside the curricula [6–8].

In Brazil, for example, there is a huge demand for Information Technology (IT) professionals but
the formal teaching-learning environments (schools, courses, universities, etc.) do not account for this
demand. The prediction of the IT professionals demand is around 70,000 between 2020 and 2024 [9]
but the Brazilian universities are graduating 46 thousand, which leaves a deficit of 24,000 per year.
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In other parts of the world, the scenario is heavier. It estimates that the deficit of IT professionals in
Europe from 2015 until 2020 is roughly 800,000 [10,11].

Beside that market demand, international institutes and organisms consider the computational
thinking a knowledge for future generation [12,13]. Resnik [14] says that the consumption of technology
by the actual generation do not convert them, automatically, in technology producers or developers.
The author state that this generation must understand how technology works to create, update and
innovate in hardware, software and so on.

In this context, the early identification of at-risk students can help the educational staff to take
some action to mitigate the students’ failure. One of the biggest challenges is to develop algorithms
and tools to predict the students’ behavior, aiming to facilitate the intervention of professors, tutors and
educators [15,16].

Educational Data Mining (EDM) is an interdisciplinary research area that deals with the
development of methods and techniques to explore data from educational contexts and which has
been exploring different techniques to detect at-risk students [17].

Interactions within the learning management systems are used in several works to extract
knowledge and discover patterns [18]. For example, Murray et al. [19] shows that the students
with the highest rates of access to the study materials within the Learning Management Systems (LMS)
received highest grades, and Dickson [20] presents that the number of clicks made by a student is
strongly correlated to its final grade in the course.

At the same time that there is an overwhelming amount of studies about the detection of at-risk
students, most of the results reported in the literature do not show solutions able of detecting at-risk
students until the middle of the course [21]. In this work, the collected data belongs to the whole
course (15 weeks) but the prediction is based only on the first 8 weeks of the course.

Nevertheless, in this paper we also compare different types of interactions that took
place within the LMS and it is based according to a conceptual framework proposed by
Garrison et al. [22]. The authors proposed a framework to identify the critical elements required
for a successful computer-mediated educational experience [22]. The critical elements identified
are: (1) cognitive presence—representing the extent to which one is able to construct meaning;
(2) social presence—representing the ability that the student has to project himself to the others
participants of the virtual community as a real person and (3) teaching presence—being the design of
an educational experience, facilitating and enhancing cognitive and social presence for the achievement
of learning outcomes.

According to Swan [23], each of the critical elements proposed by Garrison et al. [22]
represents different types of students’ interaction in the LMS. These interactions can affect learning
efficiency, that is, with the course (cognitive presence), among peers (social presence) and with
teachers/instructors (teaching presence).

In this context, the main goal of this paper is to evaluate whether the use of these three different
types of presences significantly influences in the performance of predictive models to early detect
at-risk students. To achieve this goal, we evaluate whether a given type of presence in the LMS is more
suitable to early predict at-risk students or the data collected through a survey may help to improve
the performance of the models.

Since the number of samples is small and unbalanced, we needed to find a solution to
overcome this problem. Previous studies have shown that the use of the SMOTE (Synthetic Minority
Over-sampling Technique)technique to balance datasets helps on improving the performance of the
models [24]. As we are dealing with highly unbalanced datasets, we also applied SMOTE balancing
technique to check if its use interferes in the models’ performance.

Before initiating the courses, social and demographic data were collected from the students.
Since we get only the interaction count from Moodle logs, we included this information in the study
to evaluate to which extent this information could help to improve the performances of the models.
We base our studies on previous work that use solely the count of interactions to predict students
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at-risk, with the justification of using information that is not restricted to a given type of learning
management system [25]. The idea here is to test the sole use of the interaction count to see if it
achieves a satisfactory result.

In this work, we do not distinguish our analysis between students’ failure and dropout. Therefore,
if it is not explicitly said the difference, the term “at-risk students” means students that got a final
grade lower than 6.0 (on a scale from 1.0 to 10.0). In this context, students who dropped out got zero in
their final grade and, consequently, are included in this definition.

For those reasons, the present work come up with the following research questions:

RQ1. Which are the most appropriate datasets to early predict at-risk students?
RQ2. Is the sole use of the count of students interactions sufficient to early predict students’ failure in

the course?
RQ3. Does the use of oversampling techniques (SMOTE) help the models to achieve better

performances?
RQ4. Does the use of data from questionnaires applied at the beginning of the course help to improve

model performance?

The remainder of this paper is divided into 4 sections—Section 2 presents related works. Section 3
presents the methodology, the process of data collection, its description, the dataset generation and the
model evaluation. Section 4 reports the results obtained in this study and Section 5 shows the works’
conclusion and discussion.

2. Related Work

Predicting at-risk students on higher education is a relatively well-established task in the literature,
as well as the notion of interactions within the LMS. Some works show that students’ performance has
often been associated with different measures of LMS interactions and usually has a high correlation
with their success in the course. This section presents a non-exhaustive review of the literature that
used user interaction data to predict at-risk students.

2.1. Programming Courses

In introductory programming course context, Costa et al. [24] presented a comparative study
aiming to measure the effectiveness of educational data mining techniques aiming on predicting at-risk
students. The results have shown that the techniques used in the study can identify students with the
risk of failing, where the best results were achieved using the Support Vector Machine (SVM) algorithm.
Azcona et al. [26] present a research methodology to detect at-risk students in computer programming
courses too. The authors provide adaptive feedback to students based on weekly generated predictions.
The models used students’ offline data and information about the activity logs. Results show that the
students who followed the personalized guidance and recommendations performed better in exams.
The usage of online learning material (in an introductory programming course) was used to predict
academic success [27]. The results obtained have shown that the time spent with the material is a
moderate predictor of student success. The performances of the models depend on the amount of data
used to train them (where the predictions become more accurate during the progress of the course).

2.2. Computer Science/IT Courses

In a computer science course, Tillmann et al. [28] used exam results data from the LMS to indicators
of academic success. Results show that the use of data of domain-specific skills could help to improve
the accuracy and student interaction data almost does not interfere in the results. Using interaction
logs from three computer science courses, Sheshadri et al. [29] tried to predict students’ performance in
a blended course. Results show that the performance can be predicted using data from LMS and also
from a forum, version control and homework system. Using a plug-in to capture data from Moodle,
Jokhan et al. [30] tried to predict the student’s performance in the first year of an IT literacy course.



Appl. Sci. 2019, 9, 5523 4 of 23

A regression model was used to determine if there is any correlation between students’ online behavior
and performance. Results show that the performance in this course could be predicted based on their
average logins per week and the average completion rates of activities.

2.3. University

On an university context, a model to early predict students who are at-risk of failing was presented
by Sandoval et al. [31]. The data comes from the university’s LMS, that is, activity logs for each user
and the administrative information system called DARA, that is, past and current academic status
and demographic data. The results outperform other approaches in terms of accuracy, cost and
generalization. In Mwalumbwe and Mtebe [32], the authors designed a Learning Analytics tool to
determine the causation between LMS usage and students’ performance at Mbeya University of Science
and Technology. Results show that discussion posts, peer interaction, and exercises are significant
factors for students’ academic achievement in blended learning at the university.

2.4. Fully Online

On a fully online course, Hung et al. [33] used time-series clustering to early identify at-risk
online students. Data were collected from an online graduate program in the United States, and results
show that the proposed approach could generate models with higher accuracy if it is compared to
traditional frequency aggregation approaches. In Soffer and Cohen [34], the authors used learning
analytics methods on engagement data from online courses aiming to find their impact on academic
achievements. Results showed that there are significant differences between who completes the
course and who does not. An example is that the students who complete the course are twice more
active than those who do not complete (except for forum activities). In Kostopoulos et al. [35] it was
combined classification and regression algorithms for predicting students’ performance in a distance
web-based course. When the results are compared with some machine learning methods, they show
that the proposed model is accurate and remains comprehensive. Baneres et al. [36] propose to identify
at-risk students using an adaptive predictive model based on students’ grades, trained for each course.
They also present an early warning system using dashboards visualization for stakeholders. The results
show the effectiveness of the approach on data coming from a fully online university’s LMS.

2.5. Blended Courses

In a blended course context, Conijn et al. [37] processed data from LMS on 17 courses. Results show
that the performance of predictive models strongly varies across courses, even when they are generated
with data collected from a single institution. In Sukhbaatar et al. [38], the authors used a decision
tree analysis on LMS data with the goal of predict (until the middle of the semester) students that are
at-risk of failing or dropout in a blended course. Results showed that this approach worked well to
predict the dropouts. However, to predict students that are at risk of failing, the method presented a
lousy performance.

2.6. Multiple Data Sources

In Adejo & Connolly [39], the authors compared the use of multiple data sources (student record
system, LMS and survey) and different classification algorithms aiming to predict student’s academic
performance. The main result is that using multiple data sources combined with an ensemble of
classifierhigh accuracy in the s brought a high accuracy in the prediction of student performance.
Umer et al. [40] used machine learning algorithms and the LMS data to predict students at-risk of
failing. Results show that those data can be used to predict students’ outcomes. However, the count of
activities alone is not enough. In other words, the combination of LMS data and assessment scores can
improve the accuracy of prediction models. Olivé et al. [41] tried to find which students would likely
submit their assignments on time based on LMS data until two days before the deadline. The main
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goal was to perform an early prediction of at-risk students. The authors added contextual information
to improve their predictions using neural networks, achieving satisfactory results.

2.7. Only Interaction Data/Log Files

Using only course log files, in Cohen [42], the author used data accumulated in three academic
course to check if student activity on course websites may assist in providing early identification of
learner dropout. Results show that identifying the changes in student activity during the course period
could help in detecting at-risk students. In Kondo et al. [43] was proposed an automatic method to
detect at-risk students by using log data of the LMS. Experimental results indicated that using this
log data, some characteristics of behavior about learning which affect the student outcomes can be
detected. Also, by using interaction data from the LMS, Usman et al. [44] used EDM and pre-processing
techniques to predict students’ performance. Results show that the Decision Tree achieved the best
performance, followed by Naive Bayes and kNN. In Detoni et al. [25], the authors presented a
methodology to classify students using only the interaction count in the LMS. Three machine learning
methods were tested and results showed that the patterns in the data could provide useful information
to classify at-risk students, allowing personalized activities, trying to avoid the student dropout.
In Zhou et al. [45], the authors created a feature selection framework to pre-processing the data coming
from internet access logs and generate models to predict the students’ performance. Results have
shown that this approach can identify most of the high-risk students. Some online characteristics were
also discovered and can help educational professionals to understand the relation between students’
internet use and academic performance.

2.8. Early Prediction

Aiming to find the optimal time in a course to apply an early warning system, the authors of
Howard et al. [46] examined eight prediction methods to identify at-risk students. The course has a
weekly continuous assessment and a large proportion of resources on the LMS. The results show that
the optimal time to implement an early warning system is in weeks 5-6 (halfway through the semester).
This way, the students can make changes in their study patterns. One of the objectives in Lu et al. [47]
was to find the moment that the at-risk students could be predicted. For that, the authors used learning
analytics and big educational data approach to predict the students’ performance on a blended calculus
course. Results show that the performance can be predicted when one-third of the semester is complete.
With a similar idea, the authors of Gray and Perkins [48] proposed a new descriptive statistic for
student attendance and applied machine learning methods to create a predictive model. Results show
how at-risk students can be identified as early as week three in the fall semester. Appendix A presents
an overview of the main characteristics of the works discussed in this section.

2.9. Approach Novelty

The novelty of our approach is based on the extensive comparison of datasets and classification
algorithms, resulting in 65 combinations (13 datasets and 5 classification algorithms). We also
used pre-processing techniques (SMOTE) aiming to tackle the lack of samples to train and test the
algorithms. Some questionnaire data were used to aggregate more information on the discussion,
adding information like social and demographic variables on the analysis. We also used three types
of presence (cognitive, teaching and social) aiming to generate more data to predict student at-risk
of failing and according to an existing theory about how interactions work inside Virtual Learning
Environments.

The idea of making early predictions is to find out as early as possible whether the student is
at risk of failing. For that, from the data available, we used just those related to the weeks up to the
half of the semester (week 8). In this way, we are testing models that can be used in time to provide
information that can help professors to intervene in order to avoid students failure.
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3. Methodology

This section describes the methods used to achieve the goal of this paper. This research paper
investigates thirteen different datasets (set of attributes), for each of the 4 (four) distinct semesters:
2016-1, 2016-2, 2017-1 and 2017-2, of an Introductory Programming Course to evaluate whether the
types of presence, presented by Garrison et al. [22], influences in the performance of predictive models
to early detect at-risk students. The overview of the adopted methodology is shown in Figure 1 and
the four steps of the methodology are shown in Figure 2.

Figure 1. Overview of the adopted methodology.

Figure 2. Steps of the adopted methodology. The “Pre-Processing” step was showed in dotted lines
because it is optional, i.e., applied only in some experiments.

The first step consists of gathering data from Moodle logs, considering that the platform records
the interactions that the students make in the VLE. The next step consists of generating the datasets
containing different attributes to compare them and verify those which achieve the best results.
Next, we employ some pre-processing techniques, such as oversampling, intending to increase
the performance of the models. The fourth step consists of the generation and evaluation of the
classification models. In the final step, we compare the obtained results to answer the research
questions. The next subsections describe, in more detail, the steps followed.

3.1. Data Collection and Description

Data was collected from the Moodle logs of Introductory Programming courses of the Information
and Communication Technologies (ICT) undergraduate program at the Federal University of Santa
Catarina (UFSC). The introductory course is offered at ICT at night and it has 108 hours, in total,
over 18 weeks. There are three classes per week, where one of them is an online activity. Every type of
activity is computed as an “interaction”. In other words, independently of the type the activity (log in,
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click on a given link, send a file, etc.), the interaction count is incremented by one. Table 1 shows the
summary of the data.

Table 1. Summary of data.

Semester Interaction
Count

Average of
Interaction Students Approved Students Reproved Total of Students

2016-1 10,395 547.10 6 13 19
2016-2 11,512 605.89 6 13 19
2017-1 23,457 902.19 9 17 26
2017-2 33,727 1,349.08 12 13 25

The Average of Interaction is calculated by the Interaction Count divided by the Total of
Students. The lecturer was the same for all four semesters. It is important to note that in 2016,
the C programming language was used but in 2017 we started teaching the Python programming
language. The activities were gradually developed by the lecturer for each semester and he also instead
content from previous semester.

For example, every semester, the old exams are posted in the course. In 2017-1 (first semester of
2017), the lecturer posted new programming exercises, video classes and a bunch of links to other video
classes and content. The LMS course became more abundant in the material than before. At the end of
the course, in 2017-1, the lecturer created a new LMS course environment, reorganizing the topics and
content, describing the environment to assist the student in following instructions and making the
course very attractive to the student. In addition to the video classes and content, most of the activities
cited here are related to programming exercises that can be developed, executed and evaluated in
Moodle by the Virtual Programming Laboratory plugin (VPL) [49].

For all the courses, throughout the semester students had three assessments. In 2016-1 students
had two tests—week 10 and 17 and a final assignment in week 18. The tests were handwriting, that is,
students did not make it in VPL because the modified Moodle environment for tests (Moodle’s Test)
that prohibits students access to the internet, was not available at the campus. In 2016-2 the Moodle’s
test was installed and students had two VPL tests in weeks 8 and 16 and a final assignment in week
15. In 2017-1 students had two VPL tests in week 10 and week 16 and a final assignment in week 17.
In 2017-2, it was a bit different, students had three VPL tests in weeks 9, 15 and 17.

It is important to note that in both semesters of 2016, the final assignment was made by a group
of maximum 3 students, it was implemented at home, in 4 weeks and posted in Moodle. In 2017-1,
the assignment was made by two students per group in two classes (the same double in both days).
In 2017-2, all the tests were made within VPL in classes. The final score is calculated as follows:
FS = (T1 ∗ 0.35 + T2 ∗ 0.35 + ASGMT ∗ 0.3), where FS is the final score, T1 and T2 are tests and
ASGMT is the final assignment or the final test in 2017-2.

Every student interaction in the LMS is saved in the logs together with the description of the
activity performed. From that, we calculated the interaction counting for each week during the course
for every student. Figure 3 shows a frequency distribution of interactions on each week of the four
semesters considered for this work. Regarding the weeks when the first test was applied, it is important
to note that one or two weeks before the test, there was a peak of interactions, as seen in 2016-2, 2017-1
and 2017-2. It is also interesting that the students did not use the Moodle in 2016-1, even though there
were 53 not-mandatory VPL activities there.

In 2016-1, there is not a peak per se. But the highest number of interaction happens on Week 1.
For 2016-2 and 2017-1, most of the interaction happens on Week 7. The 2017-2 semester has the highest
number of interactions, where the peak is found on Week 8. From the interactions, we generated
thirteen datasets with different sets of derived attributes to compare the performances of the models.
Table 2 shows the description of the attributes generated.



Appl. Sci. 2019, 9, 5523 8 of 23

Figure 3. Interaction frequency distribution in each week for every semester.

Table 2. Description of the attributes.

Attribute Description

Count Interaction count for each week

Average
Average of interactions

on the week

Median Median of interactions on the week

Zeroed weeks [50]
Number of weeks with zero

interactions until the moment

Average of the difference [50]
Average of the difference between

interactions on week i and week i + 1

Commitment factor [50]
Ratio between the student’s week
interactions and the average class

interaction for that week

Cognitive count [23]
Number of cognitive interaction

on the week

Teaching count [23]
Number of teaching interaction

on the week

Social count [23]
Number of social interaction

on the week

Other count
Number of other types of
interaction on the week

It is important to point out that each attribute in Table 2 is gathered at student level, that is, every
calculation in based on data collected for each student. Cognitive Count, Teaching Count and Social Count
are the counting of the Cognitive, Teaching and Social Presences presented in Swan [23]. “Other count”
is a category created by us for all the other interactions that do not fit the three previously mentioned
categories. In other words, the sum of these four types of interactions result in Counti (Equation (1)).
Table 3 presents how different interactions inside Moodle fall into the three types of presence evaluated
in our work.
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Table 3. Example of interactions classification.

Attribute Description

Cognitive count
Interactions involving content access and visualization:

File upload/download, VPL exercise, URL access

Teaching count Interactions with the professor: comments to the files sent

Social count Interactions with other students: forum participation

Students interactions are normally highly correlated to engagement in distance learning settings,
reflecting the behaviour students have in relation the their course. According to Moore [51],
the interaction with content (cognitive presence), interaction with instructors (teaching presence)
and interaction among peers (social presence) are the three kinds of interactivity that affect the learning
process. Each of these interaction types supports learning and in practice, none of them works
independently [23]. The idea of using these types of interaction is to better discriminate each type of
interaction aiming to help on the generation of better predictive models, that better capture students
behaviour in those learning settings. The implicit idea is that students who fail present different
interactions in the different types of presence than students who succeed and that difference helps to
generate better models.

Following, we formalize every attribute contained in the datasets.

Counti =
7

∑
j=1

xj. (1)

Equation (1) represents the sum of interactions on every day j in each week i.

Averagei =
∑7

j=1 xj

7
. (2)

Equation (2) represents the average number of interactions in week i, summing up the interactions
on each day j, divided by the seven days on the week (to calculate the average, we used the .mean()
method contained in Pandas library [52] (https://pandas.pydata.org/pandas-docs/stable/reference/
api/pandas.DataFrame.mean.html)).

Mediani =

Samplen/2, if n is odd
Samplen/2 + Sample(n/2)+1

2 , if n is even.
(3)

Equation (3) represents the Median, where n represents the number of samples in the vector. It is
the value in the middle of the crescent ordered vector. If the number of samples is even, the median
is the mean of the two middle values of the vector (To calculate the median, we used the .median()
method contained in Pandas library (http://pandas.pydata.org/pandas-docs/stable/reference/api/
pandas.DataFrame.median.html)).

ZeroedWeeki =

{
ZeroedWeeki−1 + 1, if Counti = 0

ZeroedWeeki−1 + 0, otherwise.
(4)

Equation (4) represents the number of weeks that the students had zero interactions, until week i.
For example, if he had zero interactions on week i, the result is incremented in one. If the student had
at least one interaction on week i, the result stays the same.

AODi =
Counti − Counti−1

2
. (5)

The Average of the Difference represents the average of the difference of interactions between week
i − 1 and week i.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.median.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.median.html
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CFi =
Counti

∑n
j=1 Counti,j

n

. (6)

The Commitment Factor represents the ratio between the interaction count of a student on week i
divided by the average interaction count of the class, where j represents a student and n the number of
students in the class.

Table 4 shows the set of attributes/variables included in each dataset.

Table 4. Attributes of each dataset.

Dataset Variables

DB1 Count

DB2 Count, Average, Median

DB3
Count, Cognitive Count, Teaching Count,

Social Count, Other Count

DB4
Count, Average, Median, Cognitive Count,
Teaching Count, Social Count, Other Count

DB5
Count, Average, Median, Zeroed Week,

Commitment factor, Average of the difference

DB6
Cognitive Count, Teaching Count,

Social Count

DB7 Cognitive Count, Teaching Count

DB8 Cognitive Count, Social Count

DB9 Teaching Count, Social Count

DB10 Cognitive Count

DB11 Teaching Count

DB12 Social Count

DB13 All variables

The idea when creating the datasets was to “separate” the derived attributes from each work.
For example, in DB3 (dataset 3), we only use the attributes from Swan [23] (together with the interaction
count). In DB5, we used attributes similar to Detoni el al. [50]. In DB4, the idea is similar, but with
the addition of the average and median. In DB1, there is only the interaction counting, and in DB2,
the attributes are derived from the interaction counting only (not using the type of interaction).
DB6 contains strictly variables from Swan [23]. In DB7, DB8 and DB9, we created combinations of two
variables from the same work [23]. In DB10, DB11 and DB12, the counting of each type of presence
were used. DB13 is the datasets that contains all variables shown in Table 2 together.

Information from the logs was used together with a socio-demographic-motivational
questionnaire that was applied to the students in the first week of the course. Questions were created
to outline students’ profiles, such as their usage of computer/smartphone (if, how, and how much
they use), the reasons they choose the ICT program, previous skills on computing and computer
programming languages, among others. The idea of using data from the questionnaire was to test to
which extent the inclusion of socio-demographic-motivational data about/from the students would
improve the performances of the models in comparison with using only data coming from students’
interactions within the LMS. The motivational part is only one question and it is related to the main
reason students choose the ICT program, that is for personal satisfaction, to get a better job/position,
for family satisfaction (pressure), to apply for a PhD in the future or to get any degree.
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3.2. Dataset Generation

The interaction counting was made week by week. It begins on Week 0 (last week before the
beginning of the semester) to Week 17 (last week of the semester). However, in this work, we have
used only data from Week 0 to Week 8 (middle of the semester) since the objective was to early predict
the students that were at-risk of failing. It is important to note that in this work we do not distinguish
between fail and dropout. We consider an at-risk student that student that gets a final grade below 6.0,
the necessary grade to be approved on this course. So, independently if the student drops the course
out in the first weeks, he is considered a failing student.

3.3. Data Pre-Processing

Table 1 shows the number of students in each semester and it is clear that there are not a lot of
samples. Therefore, we applied the over-sampling technique called Synthetic Minority Over-sampling
Technique (SMOTE) [53] to generate synthetic data. This allowed us to compare the performances of the
models when using the original datasets and balanced datasets. The script was developed in Python
using the method in the Imbalanced-learn library [54].

3.4. Generation and Evaluation of the Models

For classification, we used Naive Bayes, Random Forest, AdaBoost, Multilayer Perceptron
(MLP), k-Nearest Neighbor (kNN) and Decision Tree algorithms. However, during the experiments,
we removed the last one due to its over-fitting. All these algorithms were implemented using the
Scikit-learn [55] library in Python.

Since the number of samples to train, validate and test the classifiers is small, we used the
Leave-One-Out Cross-Validation. The performance was measured using the Area Under Curve
(AUC)—ROC Curve [56]. It is a measure of performance for classification tasks at various threshold
settings and represents how much a model can distinguish between classes. Consequently, the higher
AUC, the better the model is at predicting. AUC has been used as a reference metric by related
literature such as Gašević et al. [57].

3.5. Comparison between Cases

To compare the results and check if there are differences between performances we applied the
Mann-Whitney U test [58]. This test is suitable for situations where the requisites for the application of
Student T-test have not been met. The Mann-Whitney U test is a non-parametric test applied on two
independent samples with the same size, checking for the null hypothesis. If the p-value is below a
threshold (0.05 in this work), the difference between the two samples did not occur by chance.

To answer the research questions, we performed comparisons presented in Section 4.
The difference between performances (and the improvement of one configuration versus the other)
is considered existent when there is a statistic difference between them (i.e., the p-value of the test
between the two samples is lower than 0.05).

4. Results

As previously mentioned, the ROC curve was calculated for each model generated for each DB.
Sixty-five models for each semester were generated. Models were trained with the counting of the
weeks. For example, to get the results in the first week, we fed the classifier with interaction data from
week 0 only. For the second week, we used the counting of week 0 and week 1 and so on.

We calculated the mean and median of the ROC values until week 8 (middle of the semester) and
sorted the results descending by the median, obtaining our Top-5 combinations for each semester. It is
essential to say that the interaction count is made individually for each week and are not cumulative.
Table 5 shows the Top-5 performances for each semester, considering the combination of the DB and
the classifier used. To do this, we need to compute the ROC value for each week. So, we get the
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predictions on test set for each week using leave-one-out validation, followed by the calculation of the
ROC value and computation of the AUC for the week. The median is calculated using the AUC values
from Week 0 to Week 8, that is, we get the median of these nine values.

Table 5. Five best DB-Classifier combinations for each semester ordered (descending) by median.

Semester DB Classifier Median

2016-1

DB12 AdaBoost 0.62820

DB2 AdaBoost 0.55128

DB5 AdaBoost 0.55128

DB9 AdaBoost 0.55128

DB12 MLP 0.55128

2016-2

DB2 AdaBoost 0.71795

DB5 AdaBoost 0.71795

DB9 kNN 0.71795

DB12 kNN 0.71795

DB1 Random Forest 0.71154

2017-1

DB2 AdaBoost 0.66013

DB5 AdaBoost 0.63072

DB6 kNN 0.60784

DB8 kNN 0.60784

DB10 Random Forest 0.60784

2017-2

DB2 AdaBoost 0.83974

DB5 AdaBoost 0.83654

DB13 AdaBoost 0.75641

DB2 Random Forest 0.67949

DB4 Random Forest 0.67628

The results show that the AdaBoost classifier appears in 11 of 20 cases, being the most present
algorithm. Next, we have the Random Forest and kNN, both appearing four times each. Last, we have
the MLP, which appears only one time, in the fifth position at 2016-1. Next section will answer the
proposed Research Questions focused on the five best results.

4.1. Research Questions

4.1.1. RQ1. Which Are the Most Appropriate Datasets to Early Predict at-Risk Students?

To answer this question, Table 5 provides information about the Top-5 DB-classifier combination
for each week, ordered by the median. The combination that presents better results is the DB2
with AdaBoost classifier, followed by the DB5 with the same classifier in almost every semester.
The exception is 2016-1, where the DB12 with AdaBoost (again) achieved the best results. However,
the two previously cited combinations (DB2 and DB5) are in the second and third positions, respectively.
To confirm to what extent the differences between the best performances and the others were significant,
we applied the Mann-Whitney test. Table 6 shows the results of the tests for each combination.

According to the results of the Mann-Whitney test, there is no significant statistical difference
between the best five results. This means that one could use any of the combinations (model + DB)
without loose or gain significant performances in the predictions. From now on, we will use
“DB2—AdaBoost” as the best combination, since there was no significant difference between this
one and “DB12—AdaBoost”. We choose the former because it appears as the best combination also in
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the other semesters (2016-2, 2017-1 and 2017-2). It is important to highlight though that from these
findings, there is no better dataset configuration that one should use to train the models.

We considered the best combination as DB2 with AdaBoost since it brought the best result on
almost every semester. However, it is necessary to say that there is no significant statistical difference
between this combination the other four on Top-5 (Table 6). So, we may say that this combination is
enough to predict at-risk students. The dataset consists of interaction count, with average and median,
both derived variables from the first. This dataset may have brought the best results since it has the
information on interaction count and, with the other two variables, gives a notion on the behavior of
the students in the past weeks, until the moment of the prediction. It can also bring some insights into
student’s engagement during the weeks.

Table 6. Application of the Mann-Whitney test on the five best results, comparing the best with the
other four combinations.

Semester Combination 1 Combination 2 p-Value

2016-1

DB12—AdaBoost DB2—AdaBoost 0.13032

DB12—AdaBoost DB5—AdaBoost 0.19794

DB12—AdaBoost DB9—AdaBoost 0.48212

DB12—AdaBoost DB12—MLP 0.48224

2016-2

DB2—AdaBoost DB5—AdaBoost 0.32775

DB2—AdaBoost DB9—kNN 0.50000

DB2—AdaBoost DB12—kNN 0.50000

DB2—AdaBoost DB1—Random Forest 0.42911

2017-1

DB2—AdaBoost DB5—AdaBoost 0.34448

DB2—AdaBoost DB6—kNN 0.14441

DB2—AdaBoost DB8—kNN 0.14441

DB2—AdaBoost DB10—Random Forest 0.34525

2017-2

DB2—AdaBoost DB5—AdaBoost 0.41160

DB2—AdaBoost DB13—AdaBoost 0.18712

DB2—AdaBoost DB2—Random Forest 0.32884

DB2—AdaBoost DB4—Random Forest 0.26740

4.1.2. RQ2. The Sole Use of the Count of Student Interactions Is Sufficient to Early Predict Students’
Failure in the Course?

Considering that there is no statistical difference between the models generated using DB1 and
other datasets, one could say that the counting of student interactions could be sufficient to early
predict student’s failure. In other words, the inclusion of several different derived attributes was not
sufficient to improve the performance of the models at a statistically significant level. At the same time,
it is essential to point out that the best results were obtained from DB2 and DB5, which are variations
of DB1 that do not consider the different types of presence (cognitive, social and teaching).

4.1.3. RQ3. Does the Use of Oversampling Techniques (SMOTE) Help the Models to Achieve
Better Performances?

To answer this question, we calculated the median of the performances of the models generated
with original DBs (without the application of SMOTE). We compared them with the performances of
the models generated with oversampled DBs. SMOTE was applied on the training set after splitting
the data in training/testing sets. To check if there is any statistical difference between them, we apply
the Mann-Whitney test again. Table 7 summarizes the results.
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Table 7. Comparison between the ROC values of the normal and oversampled data.

Semester Combination p-Value Median (Normal) Median (Oversample)

2016-1

DB2—AdaBoost 0.03123 0.55128 0.59615

DB5—AdaBoost 0.07874 0.55128 0.63461

DB2—Random Forest 0.00603 0.42308 0.50641

DB5—Random Forest 0.01344 0.42949 0.47436

2016-2

DB2—AdaBoost 0.00280 0.71795 0.51282

DB5—AdaBoost 0.00038 0.71795 0.42949

DB2—Random Forest 0.02070 0.62820 0.67949

DB5—Random Forest 0.36134 0.67308 0.63461

2017-1

DB2—AdaBoost 0.06606 0.66013 0.54575

DB5—AdaBoost 0.01047 0.63072 0.51961

DB2—Random Forest 0.16419 0.54902 0.57516

DB5—Random Forest 0.00067 0.52287 0.63399

2017-2

DB2—AdaBoost 0.35254 0.83974 0.75641

DB5—AdaBoost 0.35279 0.83654 0.75320

DB2—Random Forest 0.00016 0.67949 0.91987

DB5—Random Forest 0.00011 0.67628 0.91987

Results show that there is an improvement on the median of ROC values in 9 out of the 16 cases
(only for DB5 - AdaBoost on 2016-2 semester the results got worse) but these differences are statistically
significant in only 7 out of the 16 cases (p-value is smaller than 0.05).

Figures 4–7 help to better visualize the results for the first 8 weeks of the four evaluated semesters
(2016-1, 2016-2, 2017-1 and 2017-2 respectively).

Figures 4 and 5 show similar results for the semesters 2016-1 and 2016-2, respectively, which are
when SMOTE is not applied, the results are better. It happens for the two cases, in both figures. It can
be seen in Figures 4 and 5 that the AdaBoost achieved the best prediction result with DB5.

In 2017-1 (Figure 6), it can be seen that the use of SMOTE improved the prediction results since
the AdaBoost—DB5 combination with SMOTE presented the best results for the eight week. However,
in Week 8, we can see that the Random Forest—DB5 combination presented similar results.

In Figure 7 we can see that the application of SMOTE brought the biggest difference if compared
to the data without SMOTE. The Random Forest classifier (with DB2 and DB5) presented the best
results and the application of SMOTE improved the results. However, in Week 8, results of Random
Forest (without the SMOTE application) and AdaBoost—DB2/DB5 were pretty similar.

From the results, one can say that the use of SMOTE helps on improving the performances of
the models in only 43.75% of the cases considering all four semesters. Moreover, the use of SMOTE
showed the best improvement on 2017-2, where the ROC value for Random Forest with DB2 and DB5
stayed above all the other combinations on all the weeks.
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Figure 4. ROC Curve: 2016-1.

Figure 5. ROC Curve: 2016-2.

Figure 6. ROC Curve: 2017-1.
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Figure 7. ROC Curve: 2017-2.

4.1.4. RQ4. Does the Use of Data from Questionnaires Applied at the Beginning of the Course Help to
Improve Models Performance?

To answer this question, we used the same methodology of the previous question, initially not
including the use of SMOTE and then applying the SMOTE. Table 8 presents the results.

On the one hand, in Table 8 it is possible to see the improvement of the performances (median of
ROC values) in only 3 out of 16 cases, where only 2 cases are statistically significant. Both in 2016-1,
with DB2 and DB5 with AdaBoost. On the other hand, there are some cases where the inclusion of
data from the questionnaire decreases the performances of the models, in which two of them have
a statistically significant level. According to these results, we can say that using questionnaire data,
without performing feature selection, does not help with the prediction of failing of the students.

Table 8. Comparison between the ROC values for the normal data and including questionnaire answers.

Semester Combination p-Value Median (Normal) Median
(Questionnaire)

2016-1

DB2—AdaBoost 0.02081 0.55128 0.67308

DB5—AdaBoost 0.03846 0.55128 0.62820

DB2—Random Forest 0.48202 0.42308 0.42308

DB5—Random Forest 0.19819 0.42949 0.38461

2016-2

DB2—AdaBoost 0.44679 0.71795 0.67949

DB5—AdaBoost 0.05542 0.71795 0.64103

DB2—Random Forest 0.26698 0.62820 0.62820

DB5—Random Forest 0.16124 0.67308 0.66667

2017-1

DB2—AdaBoost 0.00302 0.66013 0.49020

DB5—AdaBoost 0.01466 0.63072 0.49346

DB2—Random Forest 0.08310 0.54902 0.44118

DB5—Random Forest 0.41219 0.52287 0.49673

2017-2

DB2—AdaBoost 0.39453 0.83974 0.79808

DB5—AdaBoost 0.29755 0.83654 0.75641

DB2—Random Forest 0.48230 0.67949 0.71154

DB5—Random Forest 0.50000 0.67628 0.67628
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We also analyzed the case where over-sampled data was compared with the DBs plus
questionnaire data (also over-sampled). Table 9 shows the results.

In Table 9, it is important to point out that the results got better in 8 out of 16 cases. However,
in these 8 cases better results, there are statistical differences in six of them. Based on these results,
we can reinforce our previous statement that data from the questionnaire does not help to improve the
performance of the models (even when the datasets are balanced).

Table 9. Comparison between the ROC values on the normal data with oversample and data with
oversampled plus questionnaire.

Semester Combination p-Value Median
(Oversample)

Median
(Questionnaire Data

with Oversample)

2016-1

DB2—AdaBoost 0.06890 0.59615 0.58974

DB5—AdaBoost 0.21254 0.63461 0.58974

DB2—Random Forest 0.00376 0.50641 0.50641

DB5—Random Forest 0.13058 0.47436 0.46795

2016-2

DB2—AdaBoost 0.00506 0.51282 0.34615

DB5—AdaBoost 0.1488 0.42949 0.39102

DB2—Random Forest 0.0087 0.67949 0.71795

DB5—Random Forest 0.03328 0.63461 0.71795

2017-1

DB2—AdaBoost 0.28199 0.54575 0.57189

DB5—AdaBoost 0.2510 0.51961 0.49346

DB2—Random Forest 0.0015 0.57516 0.66013

DB5—Random Forest 0.0533 0.63399 0.60457

2017-2

DB2—AdaBoost 0.0000 0.75641 0.79487

DB5—AdaBoost 0.0000 0.75320 0.79487

DB2—Random Forest 0.2260 0.91987 0.95833

DB5—Random Forest 0.02940 0.91987 0.96154

5. Conclusions

This work presented a comparative study aiming to find the best combination between dataset
and classification algorithm (using and not using pre-processing algorithms) to early predict at-risk
students in introductory programming courses. Thirteen dataset combinations together with five
classification algorithms (k-Nearest Neighbor, Multilayer Perceptron, Naive Bayes, AdaBoost and
Random Forest) were used in the experiments.

The literature has works that also analyze log data from Moodle for generating predictive models
for early identification of at-risk students, though the present work differs from them by providing
a categorization of the counting of the logs according to the three elements required for a successful
computer-mediated learning experience proposed by Garrison et al. [22], that is, cognitive, social and
teaching presences.

We tested to which extent the classification of the counting of the logs into these three dimensions
would serve as better datasets for the generation of more accurate predictive models. The main idea
was that the different classes of students (Approved versus Reproved) would interact differently in
those dimensions of presence and that could help the models to better capture students behavior in
the learning settings. However, results have shown that there is no improvement in the performance
of the models using those three dimensions: cognitive, social and teaching presences. Because of
that, one can assume that the simple counting of interactions can be used to generate predictive
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models, corroborating with previous work [59]. This contradicts the findings of other authors, such as
Conijn et al. [37] that say that predictive models cannot be generalized only by the LMS data logs and
additional data sources are needed.

Considering that our interest is to early predict at-risk students, we measured the performances
of the models until the middle of the semester (8 weeks). It is possible to say that the models
achieved performances that can be considered satisfactory (with AUC ROC values of 90% already in
the first week) and it is similar to the results found in the literature, for example, Detoni et al. [25],
Howard et al. [46], Sandoval et al. [31], and Lu et al. [47]. These results were found considering
the pre-processing of the datasets using SMOTE to balance the classes. Even with datasets being
highly unbalanced, the use of SMOTE did not helped on increasing the performance of the models,
improving on only 43.75% of the cases. Improvements in the performances of the models to predict
at-risk students by applying SMOTE were reported in the literature in Costa et al. [24].

At last, we tested whether the inclusion of general, demographic and motivational information
about the students would help to increase the performances of the models. The results show that data
coming from the questionnaire did not help to improve the performance, contradicting results of other
experiments reported by Tillmann et al. [28] and Adejo and Connolly [39], but corroborating previous
findings of Brooks et al. [60].

The performance of the models varied according to the semester and the machine learning
algorithm in use. The decision of which model apply and the the best moment for that would depend
on the specifics of the semester. For instance, in some cases, it is possible to observe a drop in the
performance of the models for some algorithms as the semester approaches to the middle. This is the
case, for instance, of Adaboost-DB2 and Adaboost-DB5 at week 5 of semester 2017.2 (e.g., see Figure 7.
In this scenario, it is recommended to use models generated by Random Forest with the use of SMOTE).
From the figures, one could say that the best moment for predicting with good performances and
before any significant loss, would be week 3. Again, for each semester, a given set of configuration
should be picked accordingly.

One of the main contributions of our work is the investigation of the effectiveness of EDM
techniques to early detect at-risk students and the extensive comparison of different combinations of
classifiers and dataset (five classification algorithms with 13 DBs, generating 65 combinations for each
semester). We also investigated the effect of pre-processing algorithms, such as SMOTE and the use of
questionnaire data.

Regarding the courses’ context, activities, tests and assignment, an important discussion that
we can provide are about the activities and materials the lecturer provided during the 4 semesters
presented in this work. The lecturer gradually improved the quality and the quantity of the resources of
the course. It includes VPL exercises, which increased from 53 in 2016-1 to 86 in 2017-2. It also increased
the number of other resources (slides, websites, examples, tutorials and so on) from 23 to 60 at the end
of 2017-2. A deep analysis of these aspects shows that after the 4th week, students are autonomous to
interact with the course’s resources, more specifically, they can start programming using VPL. There are
a lot of interactions in Moodle within VPL exercises. It seems that the course structure of the 2017-2
version is more intuitive to the students and it let them interact more precisely with the resources.
We are able to conclude that a more structured course, with dozens of materials, best fits the students’
needs, because they can have good interactions with the course and, consequently, succeed. It also
seems that student interaction means engagement, and more engagement leads students to succeed.

The limitation of the work lies on the small number of cases included in each dataset (semester),
although this limitation was softened with the use of leave-one-out validation during the training and
testing of the models and with the use of SMOTE (that generates and includes new synthetic cases in
the samples).

Future works include the test of more pre-processing techniques, aiming to improve the quality
of the data, since the number of samples used in this work was small. Also, we intend to use other
classification algorithms or even a combination of them. Deep Learning techniques can be also used
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for classification. When available, we intend to process data from 2018 and 2019 to check if there are
any differences in the results.
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Abbreviations

The following abbreviations are used in this manuscript:

APA Average prediction Accuracy
BART Bayesian Additive Regressive Trees
DT Decision Tree
e-SVR e-insensitive Support Vector Regressors
EDM Educational Data Mining
IT Information Technology
kNN k-Nearest Neighbor
LA Learning Analytics
LMS Learning Management Systems
MAE Mean Absolute Error
MLP Multilayer Perceptron
NN Neural Networks
PAP Percentage Accurate Predictions
PCR Principal Components Regression
RF Random Forest
RMSE Root Mean Square Error
SVM Support Vector Machine
VLE Virtual Learning Environment
VPL Virtual Programming Laboratory plugin

Appendix A. Related Literature—Overview of Context and Main Characteristics

Article Number of
Participants

Data-Mining/Machine Learning
Techniques

Statistics
Packages

Corpus Measure

[24] 423 Naive Bayes, DT, NN, SVM Pentaho Data
Integration

tool, WEKA,
SMOTE

Distance education, On
campus

F-measure, Precision, Recall

[26] 950 kNN, DT, RF, Logistic regression,
Linear SVM, Gaussian SVM

Scikit-learn Custom VLE AUC, F-measure, precision,
recall

[27] 271 Support Vector Classifiers, e-SVR Not informed Interaction with HTML
elements

F-measure, R-squared

[28] 145 Multiple backwards stepwise
regression, multiple squared

correlation, binary logistic
regressions

SPSS LMS and Academic
performance

Z-scores

[29] 527 Logistic regression, DT, and kNN Not informed Moodle, Piazza, Github
Enterprise, WebAssign.

Kendall rank correlation
coefficient, F-Measure

[30] 1403 Multiple linear regression SPSS home-grown EWS (early
warning system) plug-in for

Moodle

R-squared, ANOVA analysis
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Article Number of
Participants

Data-Mining/Machine Learning
Techniques

Statistics
Packages

Corpus Measure

[31] 21,314 Linear regression, Robust linear
regression, RF

Not informed Student administrative
information system, LMS

R2, MAE, RMSE, APA, PAP,
Precision, Recall, F-score

[32] 171 Linear Regression, RF Developed
Analytics Tool

and SPSS

VLE Interaction R-squared

[34] 646 Logistic Regression, Hierarchical
linear regression

SPSS VLE Interaction and
assignment score

ANOVA analysis

[35] 3882 C4.5 DT, Radial Basis Function,
kNN, Naive Bayes, Reduced Error

Pruning Tree, SVM (SMO),
AdaBoost, LogitBoost, Rotation
Forest, Linear Regression, M5’

Algorithm, M5’ Rules Algorithm,
RBF Networks, kNN

Free
Implementation

pre-university and
performance data (17

attributes)

Accuracy, MAE

[36] 608 courses.
Not mention

the number of
students.

CART DT, kNN, Naive Bayes, SVM Weka, Python
and

Scikit-learn

Universitat Oberta de
Calanunya Data Mart

precision, recall, F-measure,
classification error and RMS

[37] 4989 multi-level and standard regressions STATA 14 VLE Interaction and
assignment score

Accuracy, F-measure,
R-Squared

[38] 717 DT Not informed VLE Interaction Accuracy, F-measure

[39] 141 DT, NN, SVM, Stacking Ensemble
(combining the other three)

SPSS, Rapid
Miner Studio

student record system, LMS,
and survey

Precision, Recall, F-measures,
classification error and RMS

[40] 99 RF, Naive Bayes, kNN, LDA scikit-learn VLE Interaction and
assignment score

Accuracy, kappa coefficient,
F-meassure, AUC

[41] 78,722 NN Not informed VLE Interaction Accuracy, F-measure

[42] 362 Not informed Not informed VLE Interaction Accuracy

[43] 202 Logistic Regression, RF, SVM Not informed VLE Interaction Precision, recall, and
F-measure

[44] 515 kNN, Naive Bayes, DT (Adaboost) Weka VLE Interaction Accuracy

[25] 578 SVM, Naive Bayes, DT (Adaboost) Not informed VLE Interaction False-Positive,
False-Negative, AUC

[46] 136 BART, RF, PCR, Multivariate
Adaptive Regression Splines, kNN,

NN, and SVM, XGBoost

R Students’ background
information, continuous

assessment, and VLE
interaction

MAE

[47] 59 Principal Component Regression Not informed student learning profiles,
out-of-class practice

behaviors, homework and
quiz scores, and after-school

tutoring

MSE, R2, Q-Q, predictive
MSE, predictive mean
absolute, percentage

correction

[48] 9847 Floating search, Sequential Forward
Selection, C4.5, RF, RF Regression,

Random Tree, Random Tree
Regression, MLP, SOM, Naive

Bayes, Decision Table, C4.5, kNN

Weka 32 features F-measure, accuracy,
Precision, AUC, Recall
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