Large-Scale Grid Integration of Renewable Energy Resources with a Double Synchronous Controller
Abstract
:1. Introduction
2. The Problem Statement
3. The Proposed Control Techniques
3.1. The Non-Synchronous Controller (NSC)
3.2. The Double-Synchronous Controller (DSC)
4. The Comparison of the NSC and DSC Active and Reactive Power Error Curves
5. The Power Sharing Capability
6. Angular Frequency Error Evaluation
7. Results and Discussion
7.1. Dynamic Analysis of the DSC vs. the NSC
7.2. Impacts of Virtual Mechanical Power Error (VMPE) on Operation of the DSC
7.3. Impacts of Parameter Variations on Operation of the DSC and NSC
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclatures
Abbreviation | |
RERs | Renewable Energy Resources |
VMP | Virtual Mechanical Power |
DSC | Double Synchronous Controller |
SG | Synchronous Generator |
DESS | Distributed Energy Storage System |
VSM | Virtual Synchronous Machine |
PV | Photovoltaic |
PCC | Point of Common Coupling |
LPF | Low Pass Filter |
Variables | |
idq | Currents of Converter in dq reference frame |
vdq | Voltages at PCC in dq reference frame |
vdc | dc-Link Voltage |
udq | Switching Functions |
idc | dc-Link Current |
P | The Active Power of an interfaced converter |
Q | The Reactive Power of interfaced converter |
Pc2 | dc-Link Current Based Power |
Pd | d-Component Power |
Pdq | Combined Power |
Pm | Mechanical Power |
ω | Angular Frequency |
ΔP | Active Power Error |
ΔPm | VMP Error |
Δω | Angular Frequency Error |
ΔQ | Reactive Power Error |
P* | Reference Active Power |
Pm* | Reference VMP |
ω* | Reference Angular Frequency |
Parameters | |
L | The Inductance of an interfaced converter |
R | The Resistance of interfaced converter |
C | DC-Link Capacitor |
J | Virtual Inertia |
ω1, ω2 | LPF Coefficients |
kpp, kip | The Controller Coefficients of Active Power Component |
kpq, kiq | The Controller Coefficients of Reactive Power Component |
α1(2), β1(2) | Decoupled Factors of Closed- Loop Descriptions |
References
- Lund, H.; Mathiesen, B.V. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050. Energy 2009, 34, 524–531. [Google Scholar] [CrossRef]
- Miller, N.; Loutan, C.; Shao, M.; Clark, K. Emergency response: US system frequency with high wind penetration. IEEE Power Energy Mag. 2013, 11, 63–71. [Google Scholar] [CrossRef]
- Mehrasa, M.; Pouresmaeil, E.; Mehrjerdi, H.; Jørgensen, B.N.; Catalão, J.P.S. Control technique for enhancing the stable operation of distributed generation units within a microgrid. Energy Convers. Manag. 2015, 97, 362–373. [Google Scholar] [CrossRef]
- Mehrasa, M.; Pouresmaeil, E.; Jørgensen, B.N.; Catalão, J.P.S. A control plan for the stable operation of microgrids during grid-connected and islanded modes. Electr. Power Syst. Res. 2015, 129, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J.M.; Chandorkar, M.; Lee, T.; Loh, P.C. Advanced control architectures for intelligent microgrids—Part I: Decentralized and hierarchical control. IEEE Trans. Ind. Electr. 2013, 60, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Holari, Y.T.; Taher, S.A.; Mehrasa, M. Distributed energy storage system-based nonlinear control strategy for hybrid microgrid power management included wind/PV units in grid-connected operation. Electr. Energy Syst. 2019. [Google Scholar] [CrossRef]
- Mehrasa, M.; Sharifzadeh, M.; Al-Haddad, K. A droop based-control strategy of stand-alone single-phase converters for microgrid applications. In Proceedings of the IECON 2018-44th Annual IEEE Conference, Washington, DC, USA, 21–23 October 2018; pp. 5261–5266. [Google Scholar]
- Hosseini, S.M.; Carli, R.; Dotoli, M. Robust day-ahead energy scheduling of a smart residential user under uncertainty. In Proceedings of the 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019. [Google Scholar]
- Carli, R.; Dotoli, M. Decentralized control for residential energy management of a smart users microgrid with renewable energy exchange. IEEE/CAA J. Autom. Sin. 2019, 6, 641–656. [Google Scholar] [CrossRef]
- Geidl, M.; Koeppel, G.; Favre-Perrod, P.; Klockl, B.; Andersson, G.; Frohlich, K. Energy hubs for the future. IEEE Power Energy Mag. 2007, 5, 24–30. [Google Scholar] [CrossRef]
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodrıguez, P. Control of power converters in ac microgrids. IEEE Trans. Power Electr. 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
- Majumder, R. Reactive power compensation in single-phase operation of microgrid. IEEE Trans. Ind. Electr. 2013, 60, 1403–1416. [Google Scholar] [CrossRef]
- Pathak, A.K.; Sharma, M.P.; Gupta, M. Modeling and simulation of SVC for reactive power control in high penetration wind power system. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015; pp. 1–6. [Google Scholar]
- Miranda, I.; Silva, N.; Leite, H. A holistic approach to the integration of battery energy storage systems in island electric grids with high wind penetration. IEEE Trans. Sustain. Energy 2016, 7, 775–785. [Google Scholar] [CrossRef]
- Fang, J.; Tang, Y.; Li, H.; Li, X. A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators. IEEE Trans. Power Electr. 2018, 33, 2820–2824. [Google Scholar] [CrossRef]
- Sperstad, I.B.; Korpås, M. Energy storage scheduling in distribution systems considering wind and photovoltaic generation uncertainties. Energies 2019, 12, 1231. [Google Scholar] [CrossRef] [Green Version]
- Zeraati, M.; Golshan, M.E.H.; Guerrero, J.M. Distributed control of battery energy storage systems for voltage regulation in distribution networks with high PV penetration. IEEE Trans. Smart Grid 2016, 9, 3582–3593. [Google Scholar] [CrossRef] [Green Version]
- Rubino, S.; Mazza, A.; Chicco, G.; Pastorelli, M. Advanced control of inverter-interfaced generation behaving as a virtual synchronous generator. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, North Brabant, The Netherlands, 29 June–2 July 2015; pp. 1–6. [Google Scholar]
- Lu, S.; Xu, Z. A novel control strategy of VSC-HVDC for offshore platforms. In Proceedings of the 12th IET International Conference, ACDC2016, Beijing, China, 28–29 May 2016; pp. 1–6. [Google Scholar]
- Wang, Y.; Xu, Y.; Tang, Y. Distributed aggregation control of grid-interactive smart buildings for power system frequency support. Appl. Energy. 2019, 251, 113371. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Xu, Y.; Xu, Y.L. A distributed control scheme of thermostatically controlled loads for the building-microgrid community. IEEE Trans. Sustain. Energy. Early Access 2019. [Google Scholar] [CrossRef]
- Zhong, Q.C.; Weiss, G. Synchronverters: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electr. 2011, 58, 1259–1267. [Google Scholar] [CrossRef]
- Alipoor, J.; Miura, Y.; Ise, T. Stability assessment and optimization methods for microgrid with multiple VSG units. IEEE Trans. Smart Grid 2016, 9, 1462–1471. [Google Scholar] [CrossRef]
- Torres, M.A.; Lopes, L.A.; Moran, L.A.; Espinoza, J.R. Self-tuning virtual synchronous machine: A control strategy for energy storage systems to support dynamic frequency control. IEEE Trans. Energy Convers. 2014, 29, 833–840. [Google Scholar] [CrossRef]
- Guan, M.; Pan, W.; Zhang, J.; Hao, Q.; Cheng, J.; Zheng, X. Synchronous generator emulation control strategy for voltage source converter (VSC) stations. IEEE Trans. Power Syst. 2015, 30, 3093–3101. [Google Scholar] [CrossRef]
- Ma, Y.; Cao, W.; Yang, L.; Wang, F.; Tolbert, L.M. Virtual synchronous generator control of full converter wind turbines with short term energy storage. IEEE Trans. Ind. Electr. 2017, 64, 8821–8831. [Google Scholar] [CrossRef]
- Pulendran, S.; Tate, J.E. Hysteresis control of voltage source converters for synchronous machine emulation. In Proceedings of the PEMC 2012, Novi Sad, Vojvodina, Serbia, 4–6 September 2012; pp. LS3b.2-1–LS3b.2-8. [Google Scholar]
- Yang, L.; Wang, J.; Ma, Y.; Wang, J.; Zhang, X.; Tolbert, L.M.; Wang, F.; Tomsovic, K. Three-phase power converter-based real-time synchronous generator emulation. IEEE Trans. Power Electr. 2017, 32, 1651–1665. [Google Scholar] [CrossRef]
- Liu, J.; Miura, Y.; Ise, T. Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generator. IEEE Trans. Power Electr. 2016, 31, 3600–3611. [Google Scholar] [CrossRef]
- Pouresmaeil, E.; Mehrasa, M.; Godina, R.; Vechiu, I.; Rodríguez, R.L.; Catalão, J.P.S. Double synchronous controller for integration of large-scale renewable energy sources into a low-inertia power grid. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Politecnico di Torino, Torino, Italy, 26–29 September 2017. [Google Scholar]
- Mehrasa, M.; Pouresmaeil, E.; Marzband, M.; andCatalão, J.P.S. A single synchronous controller for high penetration of renewable energy resources into the power grid. In Proceedings of the IEEE International Conference (EEEIC/I&CPS Europe), Palermo, di Palermo, Italy, 12–15 June 2018. [Google Scholar]
- Mehrasa, M.; Pouresmaeil, E.; Soltani, H.; Blaabjerg, F.; Calado, M.R.A.; Catalão, J.P.S. Virtual inertia and mechanical power-based control strategy to provide stable grid operation under high renewables penetration. Appl. Sci. 2019, 9, 1043. [Google Scholar] [CrossRef] [Green Version]
- Mehrasa, M.; Sepehr, A.; Pouresmaeil, E.; Marzband, M.; Catalão, J.P.S.; Kyyrä, J. Stability analysis of a synchronous generator-based control technique used in large-scale grid integration of renewable energy. In Proceedings of the International Conference on Smart Energy Systems and Technologies (SEST), Sevilla, Spain, 10–12 September 2018; pp. 1–5. [Google Scholar]
- Mehrasa, M.; Sepehr, A.; Pouresmaeil, E.; Kyyrä, J.; Marzband, M.; Catalão, J.P.S. Angular frequency dynamic-based control technique of a grid-interfaced converter emulated by a synchronous generator. In Proceedings of the International Conference on Smart Energy Systems and Technologies (SEST), Sevilla, Spain, 10–12 September 2018; pp. 1–5. [Google Scholar]
- Mehrasa, M.; Pouresmaeil, E.; Sepehr, A.; Pournazarian, B.; Catalão, J.P.S. Control of power electronics-based synchronous generator for the integration of renewable energies into the power grid. Int. J. Electr. Power Energy Syst. 2019, 111, 300–314. [Google Scholar] [CrossRef]
- Mehrasa, M.; Pouresmaeil, E.; Sepehr, A.; Pournazarian, B.; Marzband, M.; Catalão, J.P.S. Control technique for the operation of grid-tied converters with high penetration of renewable energy resources. Electr. Power Syst. Res. 2019, 166, 18–28. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
dc-link Voltage (vdc) | 850 V | J1 | 1e3 s |
Phase ac voltage | 220 V | Pm | 3.3 kW |
Fundamental frequency | 50 Hz | P | 3 kW |
Switching frequency | 10 kHz | Q | 2 kVAr |
Interfaced converter resistance (R1) | 0.1 Ohm | Interfaced converter inductance (L1) | 45 mH |
Interfaced converter resistance (R2) | 1 Ohm | Interfaced converter inductance (L2) | 15 mH |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehrasa, M.; Pouresmaeil, E.; Soltani, H.; Blaabjerg, F.; Calado, M.R.A.; Catalão, J.P.S. Large-Scale Grid Integration of Renewable Energy Resources with a Double Synchronous Controller. Appl. Sci. 2019, 9, 5548. https://doi.org/10.3390/app9245548
Mehrasa M, Pouresmaeil E, Soltani H, Blaabjerg F, Calado MRA, Catalão JPS. Large-Scale Grid Integration of Renewable Energy Resources with a Double Synchronous Controller. Applied Sciences. 2019; 9(24):5548. https://doi.org/10.3390/app9245548
Chicago/Turabian StyleMehrasa, Majid, Edris Pouresmaeil, Hamid Soltani, Frede Blaabjerg, Maria R. A. Calado, and João P. S. Catalão. 2019. "Large-Scale Grid Integration of Renewable Energy Resources with a Double Synchronous Controller" Applied Sciences 9, no. 24: 5548. https://doi.org/10.3390/app9245548
APA StyleMehrasa, M., Pouresmaeil, E., Soltani, H., Blaabjerg, F., Calado, M. R. A., & Catalão, J. P. S. (2019). Large-Scale Grid Integration of Renewable Energy Resources with a Double Synchronous Controller. Applied Sciences, 9(24), 5548. https://doi.org/10.3390/app9245548