Influence of Phosphogypsum Dump on the Soil Ecosystem in the Sumy region (Ukraine)
Abstract
:1. Introduction
- -
- high fluoride concentration (in the range of 0.5%–1.5%), which can be leached and contaminate groundwater;
- -
- presence of radionuclides;
- -
- occurrence of heavy metals (Cd, Cr, Pb, etc.) that may enter into the food chain through potable water and agriculture products [2].
- -
- study of the soil from different horizons in the area of the phosphogypsum dump;
- -
- study of the terraces of the dump and their biochemical transformations under the plant succession process.
2. Materials and Methods
2.1. Study Area
2.2. Sampling Stations
- -
- S1 is the litter layer (capacity up to 2 cm). This horizon is also called a surface organogenic horizon, consisting of the remains of plants from recent years. It contains at least 70% by volume of organic matter of varying degrees of decomposition;
- -
- H is humus cumulative with dark gray turf with silicates (7–11 cm);
- -
- E1 is eluvial grayish-white color, with a structural composition of powdered-lime with carbonate inclusions, and contains many plants roots (18–20 cm);
- -
- E2 is transient, eluvial/illuvial-plated nougat with carbonate inclusions, with a compacted, gradual transition (6–10 cm);
- -
- I is illuvial brown color, lobed prismatic (32–35 cm);
- -
- P is soil-forming rock, with a depth of 60–80 cm.
2.3. Methods of Investigation
- -
- composition;
- -
- quantitative participation and the ratio of elements with different properties;
- -
- spatial structure;
- -
- mutual arrangement of plants in space;
- -
- functional structure;
- -
- a set of links between the elements, as well as between the system and the environment.
3. Results and Discussion
3.1. Phosphogypsum Characterization
3.2. The Study of the Soil from Different Horizons in the Territory Near the Phosphogypsum Dump
3.3. The Study of Biochemical Transformations of the Technogenic Array of Phosphogypsum
- -
- the features of the technogenic relief of the dump;
- -
- the high concentration of certain chemical elements (calcium);
- -
- the inconstant availability of water;
- -
- a small length along the depth of the recultivating substrate.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gennari, R.F.; Garcia, I.; Medina, N.H.; Silveria, M.A.G. Phosphogypsum analysis total content and extractable element concentrations. In International Nuclear Atlantic Conference—INAC 2011; MG: Belo Horizonte, Brazil, 2011; Volume 43, pp. 1–9. [Google Scholar]
- Guidelines for Management and Handling of Phosphogypsum Generated from Phosphoric Acid Plants (Final Draft) Hazardous Waste Management Series (Ministry of Environment & Forests) Parivesh Bhawan. Available online: http://www.cpcb.nic.in (accessed on 25 June 2014).
- Nemecek, T.; Elie, O.H.; Dubois, D.; Gaillard, G.; Schaller, B.; Chervet, A. Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric. Syst. 2011, 104, 233–245. [Google Scholar] [CrossRef]
- Muravyov, Y.I.; Belyuchenko, I.S. Impact of chemical production wastes on pollution of surrounding landscapes. North Cauc. Ecol. Her. 2007, 3, 77–86. [Google Scholar]
- Muravyov, Y.I. Prospects for the use of phosphogypsum in agriculture. North Cauc. Ecol. Her. 2010, 6, 85–89. [Google Scholar]
- Savoyskaya, E.V. Prospect for the development and economic efficiency of raw material resources. Bull. Russ. Acad. Sci. 2017, 2, 122–127. [Google Scholar]
- Degirmenci, N.; Okucu, A.; Turabi, A. Application of phosphogypsum in soil stabilization. Build. Environ. 2007, 42, 3393–3398. [Google Scholar] [CrossRef]
- Villa, M.; Mosqueda, F.; Hurtado, S.; Mantero, J.; Manjón, G.; Periañez, R.; Vaca, F.; García-Tenorio, R. Contamination and restoration of an estuary affected by phosphogypsum releases. Sci. Total Environ. 2009, 408, 69–77. [Google Scholar] [CrossRef]
- Guidelines for Environmental, Health and Labour Protection. General Guidelines: Environmental Protection. Phosphate Fertilizer Production. Available online: http://www.ifc.org/ifcext/sustainability.nsf/Content/EnvironmentalGuidelines (accessed on 25 November 2007).
- Medina, N.H.; Silveira, M.A.G. Sequential chemical extraction for a phosphogypsum environmental impact. AIP Conf. Proc. 2013, 1529, 52–55. [Google Scholar]
- World Health Organization. Waste and human health: Evidence and needs. In WHO Meeting Report: 5–6 November 2015, Bonn, Germany; WHO Regional Office for Europe: Copenhagen, Denmark, 2016. [Google Scholar]
- Pérez-López, R.; Nieto, J.M.; López-Coto, I.; Aguado, J.L.; Bolívar, J.P.; Santisteban, M. Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment. Appl. Geochem. 2010, 25, 705–715. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Gago, C.; Romar, A.; Fernández-Marcos, M.L.; Álvarez, E. Fluorine sorption by soils developed from various parent materials in Galicia (NW Spain). J. Colloid Interface Sci. 2012, 374, 232–236. [Google Scholar] [CrossRef]
- Sudhanshu, K.; Bharat, S.; Sanjay, K.S.; World Health Organization. Environmental Health Criteria 227: Fluorides; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Luther, S.M.; Poulsen, L.; Dudas, M.J.; Rutherford, P.M. Fluoride sorption and mineral stability in an Alberta soil interacting with phosphogypsum leachate. Can. J. Soil Sci. 1996, 76, 83–91. [Google Scholar] [CrossRef]
- Calcara, M.; Borgia, A.; Cattaneo, L.; Bartolo, S.; Clemente, G.; Amoroso, C.G.; Lo Re, F.; Tozzano, E. Modelling reactive transport in a phosphogypsum dump. In EGU General Assembly Conference Abstracts; EGU General Assembly: Vienna, Austria, 2013; Volume 15, p. 13125. [Google Scholar]
- Samira, M.; Gueddari, M. Impact Assessment of Phosphogypsum Leachat Groundwater of Sfax-Agareb (Southeast of Tun Using): Geochemical and Isotopic Investigation. Hindawi J. Chem. 2018, 2018, 2721752. [Google Scholar]
- Pohrebennyk, V.; Mitryasova, О.; Klos-Witkowska, A.; Dzhumelia, E. The role of monitoring the territory of industrial mining and chemical complexes at the stage of liquidation. In Proceedings of the International Multidisciplinary Scientific GeoConference SGEM 2017, Albena, Romania, 27–29 November 2017; Volume 17, pp. 383–390. [Google Scholar]
- Korobanova, T.N. Dangerous geodynamic processes accompanying dump’s formation. In Proceedings of the 8th International Academic Conference, St. Louis, MO, USA, 29–30 April 2015; pp. 84–90. [Google Scholar]
- Chernysh, Y.; Balintova, M.; Plyatsuk, L.; Holub, M.; Demcak, S. The influence of phosphogypsum addition on phosphorus release in biochemical treatment of sewage sludge. Int. J. Environ. Res. Public Health. 2018, 15, 1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J.; López-Delgado, A. Environmental impact and management of phosphogypsum. J. Environ. Manage. 2009, 90, 2377–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaziliunas, A.; Leskeviciene, V.; Vektaris, B.; Valancius, Z. The study of neutralization of the dihydrate phosphogypsum impurities. Ceram. Silik. 2006, 50, 178–184. [Google Scholar]
- Dartan, G.; Taspinar, F.; Toroz, I. Analysis of fluoride pollution from fertilizer industry and phosphogypsum piles in agricultural area. J. Ind. Pollut. Control. 2017, 33, 662–669. [Google Scholar]
- GOST ISO 7626-5-99 Vibration and shock. In Experimental Determination of Mechanical mobility. Part 5. Measurements Using Shock Excitation by a Pathogen Not Attached to a Structure; Interstate Council for Standardization, Metrology and Certification: Minsk, Belarus.
- GOST 5180–2015 Soils. In Methods of Laboratory Determination of Physical Characteristics; Interstate Council for Standardization, Metrology and Certification: Minsk, Belarus.
- Artaev, O.N.; Bashmakov, D.I.; Bazina, O.V. Field Ecological Research Methods, 1st ed.; Ruchin, A.B., Ed.; Publishing House of Mordovia University: Saransk, Russia, 2014; pp. 1–312. [Google Scholar]
- Capo, R.C.; Stewart, B.W.; Chadwick, O.A. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 1998, 82, 197–225. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta. 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Madejova, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Farmer, V.C. Infrared Spectra of Minerals; Mineralogical Society, Great Britain & Ireland: London, UK, 1974; Volume 4, ISBN 9780903056533. [Google Scholar]
- Krol, M.; Minkiewicz, J.; Mozgawa, W. IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. J. Mol. Struct. 2016, 1126, 200–206. [Google Scholar] [CrossRef]
- Plyatsuk, L.D.; Trunova, I.A. Report on the Research Work “Ecological Problems of Chemical Technology, Development of Advanced Technologies and Equipment for Chemical Production” (Final); SSU: Sumy, Ukraine, 2010; p. 34. [Google Scholar]
- Chernysh, Y. Scientific basis of environmental synergetic approach to phosphogypsum recycling to reduce manmade load on environment. In Abstract of the Thesis for the Academic Degree of the Doctor of Engineering Sciences in Specialty 21.06.01—Ecological Safety; Sumy State University: Sumy, Ukraine, 2019; p. 48. [Google Scholar]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Pietrzykowski, M.; Likus-Cieślik, J. Comprehensive Study of Reclaimed Soil, Plant, and Water Chemistry Relationships in Highly S-Contaminated Post Sulfur Mine Site Jeziórko (Southern Poland). Sustainability 2018, 10, 2442. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Wang, C.; Ding, Z.; Zhang, S.; Yang, Y.; Ma, J.; Chen, F.; Li, J. Variation in the Soil Microbial Community of Reclaimed Land over Different Reclamation Periods. Sustainability 2018, 10, 2286. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Pu, L.; Liao, Q.; Zhu, M.; Yu, X.; Mao, T.; Xu, C. Spatial Variation of Soil Organic Carbon and Total Nitrogen in the Coastal Area of Mid-Eastern China. Int. J. Environ. Res. Public Health 2017, 14, 780. [Google Scholar] [CrossRef] [Green Version]
- Yakhnenko, O.M. Environmentally safe utilization of phosphogypsum in air protection technologies. In Abstract of the Thesis for the Academic Degree of the Doctor of Engineering Sciences in Specialty 21.06.01—Ecological Safety; Sumy State University: Sumy, Ukraine, 2017; p. 23. [Google Scholar]
- Shulipa, Y.; Chernysh, Y. Basics for environmental monitoring of heavy metals content in soil. In Proceedings of the International Conference of Young Scientists, GeoTerrace-2018, Lviv, Ukraine, 13–15 December 2018; pp. 52–55. [Google Scholar]
- Philippe, A.; Campos, D.; Guigner, J.M.; Buchmann, C.; Diehl, D.; Schaumann, G. Characterization of the natural colloidal TiO2 background in soil. Separations 2018, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.N.; Finck, A.; Blair, G.J.; Tandon, H.L.S. Plant nutrition for food security. A guide for integrated nutrient management. In FAO Fertilizer and Plant Nutrition Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Volume 16, p. 366. ISBN 9251054908. [Google Scholar]
- Zirnea, S.; Lazar, I.; Foudjo, B.U.S.; Vasilache, T.; Lazar, G. Cluster analysis based of geochemical properties of phosphogypsum dump located near Bacau City in Romania. APCBEE Procedia 2013, 5, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Schwilch, G.; Lemann, T.; Berglund, Ö.; Camarotto, C.; Cerdà, A.; Daliakopoulos, I.N.; Kohnová, S.; Krzeminska, D.; Marañón, T.; Rietra, R.; et al. Assessing Impacts of Soil Management Measures on Ecosystem Services. Sustainability 2018, 10, 4416. [Google Scholar] [CrossRef] [Green Version]
Sampling Point Number | GPS Coordinates |
---|---|
S1 | 50°55′03.3″ N 34°57′33.2″ E |
S2 | 50°55′01.1″ N 34°58′05.0″ E |
S3 | 50°55′14.3″ N 34°58′07.1″ E |
1 | 50°55′07.3″ N 34°57′46.3″ E |
2 | 50°55′06.6″ N 34°57′44.1″ E |
3 | 50°55′06.1″ N 34°57′42.3″ E |
4 | 50°55′05.6″ N 34°57′39.8″ E |
5 | 50°55′08.6″ N 34°57′51.0″ E |
6 | 50°55′05.5″ N 34°58′03.0″ E |
Sample | Al2O3 | SiO2 | P2O5 | SO3 | CaO | Fe2O3 | SrO | F |
---|---|---|---|---|---|---|---|---|
1. Terrace | <0.004 | 1.54 | 0.78 | 60.9 | 34.37 | 0.257 | 1.782 | 0.56 |
2. Terrace | 0.167 | 19.87 | 0.31 | 51.8 | 27.63 | 0.078 | 0.059 | 0.21 |
3. Terrace | <0.004 | 2.68 | 1.19 | 60.5 | 35.46 | <0.0009 | 0.112 | 0.9 |
4. Terrace | <0.004 | 1.23 | 0.72 | 61.7 | 35.99 | 0.183 | 0.123 | 1.33 |
5. Fresh | <0.004 | 2.59 | 1.28 | 60.2 | 35.75 | <0.0009 | 0.112 | 0.66 |
6. Internal | <0.004 | 1.22 | 0.7 | 61.5 | 36.39 | 0.023 | 0.093 | 2.27 |
Sample | MgO | Al2O3 | SiO2 | P2O5 | SO3 | K2O | CaO | Fe2O3 | SrO | F |
---|---|---|---|---|---|---|---|---|---|---|
S1 (S1) | 1.231 | 9.19 | 49.98 | 0.17 | 0.31 | 1.71 | 0.50 | 4.07 | 0.019 | <0.05 |
H1 (S1) | 1.048 | 7.65 | 56.09 | 0.42 | 0.53 | 1.34 | 3.19 | 2.33 | 0.018 | 0.06 |
E1 (S1) | 1.104 | 8.25 | 57.4 | 0.46 | 0.55 | 1.47 | 4.13 | 2.61 | 0.022 | 0.05 |
E2 (S1) | 1.094 | 8.159 | 55.22 | 0.44 | 0.35 | 1.52 | 3.77 | 2.66 | 0.021 | 0.05 |
I1 (S1) | 1.715 | 10.79 | 61.63 | 0.16 | 0.10 | 1.90 | 0.96 | 3.61 | 0.012 | 0.05 |
H2 (S2) | 1.067 | 8.54 | 58.85 | 0.16 | 0.17 | 1.64 | 0.74 | 2.66 | 0.016 | <0.05 |
H3 (S3) | 1.073 | 8.83 | 64.66 | 0.28 | 0.20 | 1.81 | 1.13 | 2.77 | 0.018 | <0.05 |
Named Family of Plants | Representatives |
---|---|
Gramíneae | Calamagróstis epigéios Elytrigia repens Echinochloa crusgalli Setaria viridis Poa annua |
Fabaceae | Lotus corniculatus Trifolium pratense Trifolium repens Trifolium ochroleucum Melilotus officinalis |
Compósitae | Tussilago farfara Erigeron canadensis Achillea millefolium Erigeron annuus Tanacétum vulgare Artemisia vulgaris Sónchus arvénsis Cirsium arvense |
Polygonaceae | Polygonum aviculare |
Onagraceae | Onagra biennis |
Plantaginaceae | Linaria vulgaris |
Salicaceae | Populus tгemula |
Betulaceae | Betula pendula |
Leguminosae | Robinia pseudoacacia |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plyatsuk, L.; Balintova, M.; Chernysh, Y.; Demcak, S.; Holub, M.; Yakhnenko, E. Influence of Phosphogypsum Dump on the Soil Ecosystem in the Sumy region (Ukraine). Appl. Sci. 2019, 9, 5559. https://doi.org/10.3390/app9245559
Plyatsuk L, Balintova M, Chernysh Y, Demcak S, Holub M, Yakhnenko E. Influence of Phosphogypsum Dump on the Soil Ecosystem in the Sumy region (Ukraine). Applied Sciences. 2019; 9(24):5559. https://doi.org/10.3390/app9245559
Chicago/Turabian StylePlyatsuk, Leonid, Magdalena Balintova, Yelizaveta Chernysh, Stefan Demcak, Marian Holub, and Elena Yakhnenko. 2019. "Influence of Phosphogypsum Dump on the Soil Ecosystem in the Sumy region (Ukraine)" Applied Sciences 9, no. 24: 5559. https://doi.org/10.3390/app9245559
APA StylePlyatsuk, L., Balintova, M., Chernysh, Y., Demcak, S., Holub, M., & Yakhnenko, E. (2019). Influence of Phosphogypsum Dump on the Soil Ecosystem in the Sumy region (Ukraine). Applied Sciences, 9(24), 5559. https://doi.org/10.3390/app9245559