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Abstract: With the development of smart home technology, more and more electrical appliances
can participate in demand response, providing support for active power balance of the power grid.
However, the conventional centralized control method faces vast amounts of electrical appliances,
resulting in problems such as communication congestion and dimension curse. This paper proposes
a distributed control strategy for electrical appliances based on a multi-agent consensus algorithm.
Considering the discrete response characteristics of the on/off loads, a priority ranking mechanism
is established, and the customer cost function is established by a fitting method. Based on the
incremental cost consensus (ICC) algorithm, the optimal power allocation of customers is realized
through distributed control. Simulation and analysis of the examples verify the effectiveness of the
proposed strategy.
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1. Introduction

The rapid development of smart electricity utilization techniques has enabled more and more
electrical appliances to participate in demand response. Through electricity price or economic
incentives, electrical appliances are used to respond to grid dispatching and operation needs, and the
stability of power systems is improved [1–3].

Incentive-based demand response encourages and guides customers to participate in demand
response projects by adopting economic compensation or preferential price policies. Direct load control
(DLC) is a common method of demand response that switches on/off the electrical appliances or adjusts
the power consumption of the electrical appliances by remote control [4–6]. The customers participating
in the control will receive economic compensation or electricity price discount. An intelligent
home provides more advanced technology for the interaction between customers and the power
grid. The control of the electrical appliances is according to the types of electrical appliances,
the characteristics of the electrical appliances, and the usage habits of the customers.

The conventional centralized control method requires the control center to operate the entire
system. It not only imposes a heavy burden on the control center, but also is unable to guarantee
the reliability of the systems. When the number of customers changes, the parameters in the system
need to be changed. Compared with the drawbacks of the conventional centralized control method,
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one of the advantages of the distributed control strategy is that the various parts of the system can
be flexibly distributed without centralized management of the control center. Only one or several
controlled nodes in the system need to be taken as the dominant nodes to receive control information.
Global information is shared between two adjacent nodes, which is beneficial to improve the reliability
of the system and avoid communication congestion in the control center. This distributed control
strategy is adopted in DLC, and the objective load power of the DLC is allocated to each customer
according to the incremental cost consensus (ICC) algorithm, so that the optimal power allocation of
the DLC is realized. Therefore, the distributed management and scheduling methods will be able to
replace the conventional centralized scheduling mode to a certain extent.

A distributed optimal resource management based on the consensus algorithm is proposed
in [7,8]. A distributed consensus-based economic dispatch with transmission losses is presented in [9].
The decentralized control of thermostatic loads for flexible demand response is considered in [10].
The conventional power generation units for power allocation according to the ICC algorithm under the
different conditions of centralized control and distributed control is considered in [11]. Other research
works on consensus control of demand-side resources can be found in [12–17]. However, the references
mentioned above do not consider comprehensively the load modeling. The managing of the loads
only considers the continuous response characteristics of the loads, but does not consider the discrete
response characteristics of the on/off loads [18–20]. In view of the above problems, this paper proposes
a distributed control strategy based on a multi-agent consensus algorithm.

The rest of this paper is as follows: Section 2 provides the overall framework of the proposed
method. The objective function and the ICC algorithm formulations are provided in Section 3. Section 4
contains the simulation results and the convergence analysis. Finally, Section 5 concludes this paper.

2. The Overall Framework of the Proposed Method

The customers participating in the DLC will receive economic compensation or electricity discount.
The incremental cost (IC) of each customer can be obtained according to the discrete relationship
between customer costs and power. The priority ranking mechanism of the on/off loads is established
based on the IC. The discrete cost function can be obtained. By the fitting method, the continuous
fitting cost function can be established. Based on the ICC algorithm [11], the optimal aggregate power
can be obtained. According to the priority ranking of the on/off loads of each customer, the objective
load power of the DLC is sent to the on/off loads. Therefore, the economic efficiency is improved.
The overall flowchart of the proposed method is shown in Figure 1.

Smart home loads that can participate in the DLC include air conditioners, refrigerators,
humidifiers and water heaters, most of which can only control the on/off states and cannot
continuously adjust the power. According to the discrete response characteristics of the on/off
loads, the priority order of appliances for each customer is ranked from low to high according to the
incremental cost of each customer. The customer cost function model is established by a fitting method.
According to the relationship between the total objective load power and ICs, the overall customer
cost functions can be derived. The customer cost function presents discrete characteristics due to the
discrete response characteristics of the on/off loads. The on/off loads sequentially perform full load
power accumulation according to the priority order, and the customer costs do not change until the
full power of the next electrical appliance is reached. Therefore, the relationship between the customer
costs and the load power is a ladder diagram, and the customer costs change only when the response
load power reaches the accumulated value of the full load power of the appliances. The continuous
fitting cost function can be obtained by the fitting method.
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Figure 1. The overall flowchart of the proposed method. 
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3. ICC Algorithm Formulations

The relationship between the customer costs and the load power can be obtained by the fitting
method as a quadratic function:

Fi(PRi) = ci + biPRi + aiP2
Ri, (1)

where Fi(PRi) denotes the costs of the customer i and PRi denotes the output power of the customer i.
The total costs of customers participating in the DLC are written as following:

Ftotal =
n

∑
i=1

Fi(PRi), (2)

with the power balance constraint and customer power capacity limit constraint:

PD −
n

∑
i=1

PRi = 0, (3)

PRi,min ≤ PRi ≤ PRi,max, (4)

where PD denotes the objective load power of the DLC. The objective of optimal power allocation is
that the economic efficiency can be improved under the conditions of Equations (3) and (4).
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In the ICC algorithm, the definition of IC for each customer is defined as following:

IF_i =
∂Fi(PRi)

∂PRi
= λi, i = 1, 2, . . . , n. (5)

Selecting IC (also known as λ) as the consensus variable, and according to the first-order
discrete consensus algorithm [21], the updating of λ for the non-dominated nodes can be formulated
as following:

λi[k + 1] =
n

∑
j=1

dijλ[k], i = 1, 2, . . . , n, (6)

where dij is the (i, j) entry of the row-stochastic matrix Dn.
It can be known from Equation (5) that the current power information of each customer can be

obtained by the IC of the customer as following:

PRi =
λi − bi

2ai
. (7)

In order to satisfy the power balance constraint (3), define ∆P to indicate the mismatch between
the objective load power of the DLC and the total output power of the customers as following:

∆P = PD −
n

∑
i=1

PRi. (8)

After introducing the mismatch, the update rule for the customer located at the dominant node is
obtained as following:

λi[k + 1] =
n

∑
j=1

dijλj[k] + ε∆P, i = 1, 2, . . . , n, (9)

where ε is the convergence coefficient, which controls the convergence speed of the dominant node.
The increases or decreases of λ will follow the sign of ∆P. If ∆P > 0 (PD > PR), it means that the DLC
needs to reduce the objective load power, so the current λ should be decreased; and vice versa.

By following the update rules described by Equations (6) and (9), all the customers are able to
converge to a common IC asymptotically.

According to the Equations (4) and (7), the customer power capacity limit constraint also needs to
be considered as following:

λi = λi_lower, when λi−bi
2ai

≤ PRi,min

λi[k + 1] =
n
∑

j=1
dijλj[k], when PRi,min ≤ λi−bi

2ai
≤ PRi,max

λi = λi_upper, when λi−bi
2ai

≥ PRi,max

. (10)

Equations (5)–(9) are mathematical representations of the ICC algorithm, Equation (5) is used
for consensus variable calculation, and Equations (6) and (9) represent consensus algorithm iterative
processes. Figure 2 is a flowchart which represents the procedure of the ICC algorithm. The dominant
node needs to make an adjustment for the power balance constraints as shown in Equation (3).
If the total output power of customers reaches the objective load power of the DLC, the consensus
algorithm is stopped, and each customer outputs power according to the current information.
Otherwise, the consensus algorithm is continued. Thus, the optimal power allocation of customers can
be realized based on the ICC algorithm [11]. According to the priority ranking of the on/off loads of
each customer, the objective load power of the DLC is sent to the on/off loads.
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Figure 2. Flowchart of incremental cost consensus (ICC) algorithm. 

4. Simulation Results and Convergence Analysis 

4.1. Optimal Power Allocation of Smart Home Appliances 

In this section, we take a small system of six customers for case study. The network topology of 

the system is shown in the Figure 3. Each customer is connected with the rest of the customers 

through power lines and communication links. The electrical appliances used by each customer 

include air conditioners, water heaters, refrigerators and so on. In this paper, the on/off loads 

participating in the DLC are used as case studies, and they are sorted according to the priority order 

of different electrical appliances of each customer. According to the priority order of these home 

appliances, the load power of the higher priority is more likely to be activated. 

Customer 

5

Customer 

3

Customer 

1

Customer 

2

Customer 

4

Customer 

6

 

Figure 3. Communication topology of the six-customer system: neighbor interconnection. 

Figure 2. Flowchart of incremental cost consensus (ICC) algorithm.

4. Simulation Results and Convergence Analysis

4.1. Optimal Power Allocation of Smart Home Appliances

In this section, we take a small system of six customers for case study. The network topology of
the system is shown in the Figure 3. Each customer is connected with the rest of the customers through
power lines and communication links. The electrical appliances used by each customer include air
conditioners, water heaters, refrigerators and so on. In this paper, the on/off loads participating in the
DLC are used as case studies, and they are sorted according to the priority order of different electrical
appliances of each customer. According to the priority order of these home appliances, the load power
of the higher priority is more likely to be activated.
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Assume that the power capacity parameters of the home appliances of the customers are as shown
in Table 1. The priority order of appliances is Appliance 1 to Appliance 10.

Table 1. The power capacity parameters of home appliances of six customers.

Appliances No. Customer 1 Customer 2 Customer 3 Customer 4 Customer 5 Customer 6

Appliance 1/kW 2.32 0.11 1.33 3.33 0.08 0.72
Appliance 2/kW 1.94 2.64 2.15 0.29 1.94 0.63
Appliance 3/kW 1.21 2.72 1.14 0.38 1.31 1.88
Appliance 4/kW 1.09 2.37 1.04 0.51 1.25 2.38
Appliance 5/kW 1.11 0.30 1.74 0.59 2.36 0.97
Appliance 6/kW 0.76 0.78 0.49 2.21 2.06 1.72
Appliance 7/kW 0.67 1.00 1.08 1.79 1.14 0.60
Appliance 8/kW 1.87 2.03 1.95 0.44 2.24 3.48
Appliance 9/kW 2.04 0.41 1.25 3.32 2.10 0.02
Appliance 10/kW 1.98 2.15 1.83 2.60 1.51 1.10
Total capacity/kW 15.00 14.50 14.00 15.50 16.00 13.50

Assume that the customer compensation for participating in the DLC is randomly distributed
between 0.1–1.5 ¥/kW according to the types of appliances. Considering the discrete response
characteristics of the on/off loads, the priority ranking is implemented, and the customer cost function
can be established by the fitting method. The parameters of six customer cost functions are shown in
Table 2.

Table 2. Parameters of six customer cost functions.

Customer No. ai(¥/kW2) bi(¥/kW) ci(¥)

1 0.0347 0.2093 0.6321
2 0.0331 0.1773 0.2518
3 0.0372 0.2163 0.3157
4 0.0459 0.1402 0.4869
5 0.0273 0.1938 0.0132
6 0.0256 0.2133 0.0098

Taking Customer 3 as an example, the cost function is drawn by the curve fitting method.
The relationship between the customer costs and the load power is shown in Figure 4, and the fitting
function is obtained as following:

F3(PR3) = 0.0372PR3
2 + 0.2163PR3 + 0.3157. (11)
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In this example, it is assumed that the initial objective load power is 0. When the objective load
power of the DLC is increased to 55 kW, the customers achieve optimal power allocation through
the distributed control method. Customer 3 is selected as the dominant node with a fixed step size
of 0.0002 s and a convergence coefficient of ε = 0.0005. As shown in Figure 5, all the customers
are able to converge to the optimal IC asymptotically under the neighbor interconnection topology.
This also proves that the distributed control strategy is able to make each customer get the global
state information through the local information exchange. As shown in Figure 6, each customer in
the system achieves the optimal power allocation according to the distributed control strategy. As the
simulation result shows in Figure 7, when the objective load power of the DLC increases from 0 to
55 kW, the total output power of the customers reaches the objective load power of the DLC after the
iteration process.
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As shown in Table 1, the power is allocated according to the priority order of appliances of each
customer. When the objective load power is increased to 55 kW, the actual working status of the home
appliances of each customer is shown in Table 3.

Table 3. Actual work status of home appliances of each customer.

Customer No. Normal Working Appliance Serial Numbers Total Output Power/kW

1 1, 2, 3, 4, 5, 6 8.43
2 1, 2, 3, 4, 5, 6 8.92
3 1, 2, 3, 4, 5 7.40
4 1, 2, 3, 4, 5 5.10
5 1, 2, 3, 4, 5, 6, 7 10.14
6 1, 2, 3, 4, 5, 6, 7 10.68

In order to verify the economic efficiency of the proposed strategy, the following three scenarios
are compared.

Scenario 1: The distributed control strategy is used for power allocation of customers based on
the ICC algorithm.

Scenario 2: The objective power of the DLC is allocated proportionally according to the power
capacity of each customer.

Scenario 3: The objective power of the DLC is equally sent to each customer.
Scenario 2 and Scenario 3 can be realized through non-IC-based consensus control. The consensus

variable is the objective power of the DLC.
The total costs of customers in different scenarios are shown in Table 4. It is able to be found that

the total costs to customers is the minimum in Scenario 1. It also proves that the economic efficiency is
improved based on the ICC algorithm through the distributed control strategy.

Table 4. Costs to customers in different scenarios.

Scenario No. Costs/¥

1 25.6717
2 27.1818
3 28.5946

4.2. Convergence Analysis Based on ICC Algorithm

In the following, the ICC-based distributed control method is tested. In this section, we focus
on convergence analysis based on the ICC algorithm. There are several factors that can affect the
convergence rate of the ICC algorithm, such as the relationship between communication topology and
convergence speed. We can use the node centrality measurement to make the dominant node election.
We also discuss the performance of the ICC algorithm under large-scale systems in this section.

In order to verify the location of the dominant node, which can affect the convergence rate,
Customer 1 is selected as the dominant node of the system, and this is compared with the case where
Customer 3 is the dominant node. The simulation results are shown in Figures 8 and 9.

Figures 8 and 9 show that when the Customer 3 is selected as the dominant node, the convergence
rate (0–96%) of the average value of ICs is 190 iterations faster than selecting Customer 1 as the
dominant node, and the convergence rate (0–96%) of output power of customers is 210 iterations
faster. The location of the dominant node is a significant factor influencing the convergence rate of
the ICC algorithm. Table 5 shows the response time of the system when Customers 1–6 are selected
as the dominant node, respectively. It can be found that the more adjacent nodes of the selected
dominant node exist, the faster the convergence rate of the system. It is a typical problem for the type
of algorithm to determine how to select the appropriate node as the dominant node to achieve a faster
convergence rate. We can use the existing node centrality indices for dominant node selection, such
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as degree centrality and closeness centrality. We can use these centrality indices as indicators for the
selecting the dominant node.
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Table 5. System response time when choosing different dominant nodes.

Dominant Node No. Numbers of Adjacent Nodes Iteration Number

Customer 1 3 1455
Customer 2 3 1467
Customer 3 5 876
Customer 4 5 874
Customer 5 3 1481
Customer 6 3 1483

The ICC algorithm can handle a wide range of communication networks, so the topology of
the communication network and the location of the dominant node can affect the convergence rate.
As mentioned in the previous section, the dominant node will increase or decrease the group IC based
on the mismatch ∆P. Thus, the convergence rate can be controlled by adjusting the convergence
coefficient ε.

Figures 10 and 11 show two different convergence rates using different values for ε. Using the same
step size, the system with ε = 0.001 converges faster than the system with ε = 1/6000. Thus, the larger ε

is related to a faster convergence speed. However, we should also consider its influence on system
stability in practical working conditions.
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As the previous section mentioned, the convergence rate is based on the topology of the system’s
communication network. Consider the six-customer system with a chain connection, which is shown
in Figure 12 and a neighbor interconnection, which shown in Figure 3.
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The Laplacian graphs of neighbor interconnection topology and chain connection topology are
obtained as following:

LN =



3 −1 −1 −1 0 0
−1 3 −1 −1 0 0
−1 −1 5 −1 −1 −1
−1 −1 −1 5 −1 −1
0 0 −1 −1 3 −1
0 0 −1 −1 −1 3


(12)

LC =



1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1


(13)

Figures 5, 6, 13 and 14 show the simulation results under different communication topologies
when Customer 3 is selected as the dominant node, and chain connection topology has a faster
convergence rate than neighbor interconnection topology. This result suggests that the topology of the
system’s communication network can affect the convergence rate of the ICC algorithm.
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In general, when the number of nodes increases, the ICC algorithm needs more iterations to reach
a consensus. The convergence rate under a different number of nodes is a very important performance
measure. We will discuss the performance of the ICC algorithm under a larger-scale system. Take a
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community with 32 residential customers, as shown in the Figure 15 as an example. As shown in
Figure 16, when the objective load power of the DLC increases from 0 to 300 kW, all customers are
able to converge to the optimal IC asymptotically based on the ICC algorithm. The optimal power
allocation of customers is realized as shown in Figure 17. The ICC algorithm can handle a larger scale
of communication network. Hence, the ICC algorithm is able to handle a relatively large number of
customers in a reasonable period of time.
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5. Conclusions

This paper focuses on the distributed control strategy of domestic appliances for demand response.
The contributions of this paper can be summarized as following:

Based on the ICC algorithm, this paper proposes a distributed control strategy to realize optimal
power allocation of customers.

The discrete cost function can be obtained through calculating a fitting function according to the
priority ordering, and the ICC algorithm is implemented for the on/off loads.

With the rapid development of the smart grid, the future power system will develop toward
larger scales and wider ranges. Therefore, the distributed control strategy will certainly play a greater
role in the future. Further research will mainly consider the uncertainty of the response of the on/off
loads. At the same time, it is necessary to have a more realistic experiment platform to conduct more
in-depth research and verification, so that the distributed control strategy will be further verified.
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