Smart-Grid-Aware Load Regulation of Multiple Datacenters towards the Variable Generation of Renewable Energy
Abstract
:1. Introduction
2. Background and Related Work
2.1. Datacenters Power Consumption and Renewable Energy Generation
2.2. Power Consumption Adjustment of Datacenters
2.3. Renewable Energy Generation Integrated in the Grid
3. System Model and Problem Statement
3.1. Power Grid System
- Generator model: There are six generators, which are connected to buses 1, 2, 5, 8, 11 and 13 respectively. Specifically, Gen1 is a balancing bus node.
- Branch model: There are 41 branches each connecting two buses in the system. Each branch has its own line capacity limit and the voltage limitation of all branches is 0.95 pu to 1.1 pu. We will check and try to avoid the possible violations based on these limits. Moreover, when power is transmitted along the branches, there will be some losses on the line. We will use the summarized losses as the main metric in the experiments in later sections.
3.2. The Model of Renewable Energy Generation Station
3.3. The Datacenter Model
3.4. Problem Formulation
4. Dynamic Load Management of Datacenters Based on Forecasting
4.1. Dynamic Load Adjustment of Datacenters
- randomly initialize the population
- determine the fitness of the current population
- repeat.
- 4.
- output the best individual of the final population as the result.
4.2. Power Generation Forecasting
5. Experiment Results and Analysis
5.1. Testbed Setup and Parameter Settings
- (1)
- only one datacenter deployed. The datacenter load varied along with the input solar generation power;
- (2)
- multiple datacenters deployed. Here we assume there are multiple distributed datacenters put into the grid and the loads are evenly allocated to them;
- (3)
- multiple datacenters deployed and running with dynamically allocated loads.
5.2. Results of Power Losses under Accurate Responses
5.3. Considering Practical Factors Including Flexibility and Action Delays
5.4. Improvement Based on Forecasting Methods
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Singh, G.K. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 2, 1–13. [Google Scholar] [CrossRef]
- Hill, C.A.; Such, M.C.; Chen, D.; Gonzalez, J.; Grady, W.M. Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans. Smart Grid 2012, 2, 850–857. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 2, 372. [Google Scholar] [CrossRef]
- Lund, H. Electric grid stability and the design of sustainable energy systems. Int. J. Sustain. Energy 2005, 2, 45–54. [Google Scholar] [CrossRef]
- PJM. A Survey of Transmission Cost Allocation Issues, Methods and Practices; Valley Forge: New York, NY, USA, 2010. [Google Scholar]
- Koomey, J. Growth in Data Center Electricity Use 2005 to 2010; Analytics Press: Oakland, CA, USA, 2011. [Google Scholar]
- The Worldbank Data. Available online: https://data.worldbank.org (accessed on 25 January 2018).
- Luo, P.; Wang, X.; Jin, H.; Li, Y.; Yang, X. Load Management for Multiple Datacenters towards Demand Response in the Smart Grid Integrating Renewable Energy. In Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence (CSAI 2018), Shenzhen, China, 8–10 December 2018. [Google Scholar]
- Chec. Available online: http://www.chec.com.cn (accessed on 26 December 2018).
- Alashkar, A.; Gadalla, M. Thermo-economic analysis of an integrated solar power generation system using nanofluids. Appl. Energy 2017, 2, 469–491. [Google Scholar] [CrossRef]
- Wang, Q.; Xia, C.; Tang, Z. Discussion on Feasibility for Distributed Energy in Internet Data Center. Power Syst. Clean Energy 2013, 87–91. (In Chinese) [Google Scholar]
- Gao, P.X.; Curtis, A.P.; Wong, B.; Keshav, S. It’s not easy being green. In Proceedings of the ACM SIGCOM 2012, Helsinki, Finland, 13–17 August 2012; pp. 211–222. [Google Scholar] [CrossRef]
- Ren, C.-G.; Wang, D.; Urgaonkar, B.; Sivasubramaniam, A. Carbon- aware energy capacity planning for datacenters. In Proceedings of the IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Tele-Communication Systems (MASCOTS2012), Washington, DC, USA, 7–9 August 2012; pp. 391–400. [Google Scholar] [CrossRef]
- Greenpeace. Available online: http://www.greenpeace.org (accessed on 26 December 2018).
- Cook, G.; Horn, J.V. How Dirty Is Your Data? A Look at the Energy Choices That Power Cloud Computing; Greenpeace International Technical Report; Greenpeace International: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Ben, K. The country plans to add 6000MW of distributed photovoltaic power generation capacity next year. East China Electric Power 2013, 10. [Google Scholar]
- POWERCHINA. Available online: http://www.powerchina.cn/col/col382/index.html (accessed on 26 December 2018).
- Qureshi, A.; Weber, R.; Balakrishnan, H.; Guttag, J.; Maggs, B. Cutting the electric bill for internet-scale systems. In Proceedings of the ACM SIGCOMM, Barcelona, Spain, 17–21 August 2009. [Google Scholar]
- Liu, Z.; Lin, M.; Wierman, A.; Low, S.H.; Andrew, L.L. Greening geographical load balancing. In Proceedings of the ACM SIGMETRICS, San Jose, CA, USA, 7–11 June 2011. [Google Scholar]
- Lin, M.; Wierman, A.; Andrew, L.L.; Thereska, E. Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Network. (TON) 2013, 21, 1378–1391. [Google Scholar]
- Liu, Z.; Chen, Y.; Bash, C.; Wierman, A.; Gmach, D.; Wang, Z.; Marwah, M.; Hyser, C. Renewable and cooling aware workload management for sustainable data centers. In Proceedings of the ACM SIGMETRICS, London, UK, 11–15 June 2012. [Google Scholar]
- Guo, Y.; Fang, Y. Electricity cost saving strategy in data centers by using energy storage. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1149–1160. [Google Scholar] [CrossRef]
- Guo, Y.; Gong, Y.; Fang, Y.; Khargonekar, P.P.; Geng, X. Energy and network aware workload management for sustainable data centers with thermal storage. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2030–2042. [Google Scholar] [CrossRef]
- Ghatikar, G.; Ganti, V.; Matson, N.; Piette, M.A. Demand Response Opportunities and Enabling Technologies for Data Centers: Findings from Field Studies. 2012. Available online: http:// eetd.lbl.gov/sites/all/files/LBNL-5763E.pdf (accessed on 14 September 2018).
- Urgaonkar, R.; Urgaonkar, B.; Neely, M.; Sivasubramaniam, A. Optimal Power Cost Management Using Stored Energy in Data Centers. In Proceedings of the ACM SIGMETRICS, San Jose, CA, USA, 7–11 June 2011. [Google Scholar]
- Gandhi, A.; Chen, Y.; Gmach, D.; Arlitt, M.; Marwah, M. Minimizing data center sla violations and power consumption via hybrid resource provisioning. In Proceedings of the IGCC, Orlando, FL, USA, 25–28 July 2011. [Google Scholar]
- Chen, Y.; Gmach, D.; Hyser, C.; Wang, Z.; Bash, C.; Hoover, C.; Singhal, S. Integrated management of application performance, power and cooling in data centers. In Proceedings of the NOMS, Osaka, Japan, 19–23 April 2010. [Google Scholar]
- Govindan, S.; Choi, J.; Urgaonkar, B.; Sivasubramaniam, A.; Baldini, A. Statistical profiling-based techniques for effective power provisioning in data centers. In Proceedings of the 4th ACM European Conference on Computer Systems, Nuremberg, Germany, 1–3 April 2009. [Google Scholar]
- Choi, J.; Govindan, S.; Urgaonkar, B.; Sivasubramaniam, A. Profiling, prediction, and capping of power consumption in consolidated environments. In Proceedings of the MASCOTS, Baltimore, MD, USA, 8–10 September 2008. [Google Scholar]
- Heo, J.; Jayachandran, P.; Shin, I.; Wang, D.; Abdelzaher, T.; Liu, X. Optituner: On performance composition and server farm energy minimization application. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 1871–1878. [Google Scholar] [CrossRef]
- Verma, A.; Dasgupta, G.; Nayak, T.; De, P.; Kothari, R. Server workload analysis for power minimization using consolidation. In Proceedings of the USENIX ATC, San Diego, CA, USA, 14–19 June 2009. [Google Scholar]
- Meisner, D.; Sadler, C.; Barroso, L.; Weber, W.; Wenisch, T. Power management of online data-intensive services. In Proceedings of the ISCA, San Jose, CA, USA, 4–8 June 2011. [Google Scholar]
- Zhang, Q.; Zhani, M.; Zhu, Q.; Zhang, S.; Boutaba, R.; Hellerstein, J. Dynamic energy-aware capacity provisioning for cloud computing environments. In Proceedings of the 9th ACM International Conference on Autonomic Computing, San Jose, CA, USA, 18–20 September 2012. [Google Scholar]
- Xu, H.; Li, B. Cost efficient datacenter selection for cloud services. In Proceedings of the IEEE International Conference on Communications, Beijing, China, 15–17 August 2012. [Google Scholar]
- Yao, Y.; Huang, L.; Sharma, A.; Golubchik, L.; Neely, M. Data centers power reduction: A two time scale approach for delay tolerant workloads. In Proceedings of the INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 1431–1439. [Google Scholar]
- Liu, Z.; Wierman, A.; Chen, Y.; Razon, B.; Chen, N. Data center demand response: Avoiding the coincident peak via workload shifting and local generation. In Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems; ACM: New York, NY, USA, 2013; pp. 341–342. [Google Scholar]
- Aksanli, B.; Rosing, T. Providing regulation services and managing data center peak power budgets. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden, Germany, 24–28 March 2014; pp. 1–4. [Google Scholar]
- Xu, D.; Liu, X.; Fan, B. Efficient server provisioning and offloading policies for internet datacenters with dynamic load demand. IEEE Trans. Comput. 2015, 2, 682–697. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Das, A.; Qin, W.; Sivasubramaniam, A.; Wang, Q.; Gautam, N. Managing Server Energy and Operational Costs in Hosting Centers. In Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, Banff, AB, Canada, 6–10 June 2005. [Google Scholar]
- Chen, G.; He, W.; Liu, J.; Nath, S.; Rigas, L.; Xiao, L.; Zhao, F. Energy-Aware Server Provisioning and Load Dispatching for Connection-Intensive Internet Services. In Proceedings of the Fifth USENIX Symposium Networked Systems Design and Implementation (NSDI), San Francisco, CA, USA, 16–18 April 2008. [Google Scholar]
- Weiser, M.; Welch, B.; Demers, A.; Shenker, S. Scheduling for Reduced CPU Energy. In Proceedings of the First USENIX Conference Operating Systems Design and Implementation (OSDI), Monterey, CA, USA, 14–17 November 1994. [Google Scholar]
- Yao, F.F.; Demers, A.; Shenker, S. A Scheduling Model for Reduced CPU Energy. In Proceedings of the 36th Annual Symposium Foundations of Computer Science (FOCS), Milwaukee, WI, USA, 23–25 October 1995. [Google Scholar]
- Lorch, J.R.; Smith, A.J. Improving Dynamic Voltage Scaling Algorithms with PACE. In Proceedings of the ACM SIGMETRICS Int’l Conf. Measurement and Modeling of Computer Systems, Cambridge, MA, USA, 16–20 June 2001. [Google Scholar]
- Wang, X.; Zhang, G.; Yang, M.; Zhang, L.A. Green-aware Virtual Machine Migration Strategy for Sustainable Datacenter Powered by Renewable Energy. Simul. Model. Pract. Theory 2015, 58, 3–14. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. A Survey on Smart Grid Potential Applications and Communication Requirements. IEEE Trans. Ind. Inform. 2013, 2, 28–42. [Google Scholar] [CrossRef]
- Ahamed, M.H.F.; Dissanayake, U.; De Silva, H.M.P.; Pradeep, H.R.C.G.P.; Lidula, N.W.A. Modelling and simulation of a solar PV and battery based DC microgrid system. In Proceedings of the IEEE International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 1706–1711. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, Y.; Xie, Y. Control strategy for hybrid energy storage of photovoltaic generation microgrid system with super capacitor. Power Syst. Technol. 2015, 2, 2739–2745. (In Chinese) [Google Scholar]
- Shang, G.; Xin-Chun, Q.I.; Tao, X.; Zheng, X. Common DC bus based PV-hybrid energy storage power system and optimal control using double filters. Power System Prot. Control 2014, 2, 92–97. (In Chinese) [Google Scholar]
- Zheng, S.C.; Wang, P.Z.; Ge, L.S. Study on Pwm Control Strategy of Photovoltaic Grid-connected Generation System. In Proceedings of the 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference, Shanghai, China, 14–16 August 2006. [Google Scholar]
- Zhang, G.; Zhang, T.; Ding, M.; Su, J.; Wang, H.; Lv, S.; Chen, J. Simulation research on unified power quality conditioner with PV grid connected generation. Proc. CSEE 2007, 2, 82–86. (In Chinese) [Google Scholar]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart Energy and Smart Energy Systems. Energy 2017, 137, 556–565. [Google Scholar] [CrossRef]
- Lund, H. Renewable Energy Systems—A Smart Energy Systems Approach to the Choice and Modeling of 100% Renewable Solutions. Chem. Eng. Trans. 2014, 39, 1–6. [Google Scholar]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Ridjan, I. Energy Storage and Smart Energy Systems. Int. J. Sustain. Energy Plan. Manag. 2016, 11, 3–14. [Google Scholar]
- Short, J.A.; Infield, D.G.; Freris, L.L. Stabilization of Grid Frequency Through Dynamic Demand Control. IEEE Trans. Power Syst. 2007, 2, 1284–1293. [Google Scholar] [CrossRef]
- Kondoh, J.; Aki, H.; Yamaguchi, H.; Murata, A.; Ishii, I. Consumed power control of time deferrable loads for frequency regulation. In Proceedings of the IEEE Power Systems Conference and Exposition, New York, NY, USA, 10–13 October 2004. [Google Scholar]
- Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education. IEEE Trans. Power Syst. 2011, 26, 12–19. [Google Scholar] [CrossRef]
- SmartPV. Available online: http://www.lvsedianli.com (accessed on 26 December 2018).
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Yang, C.; Du, Z.; Shi, T.; Fang, L. Development status and trend of large-scale new energy and renewable energy power friendly access technology. China Acad. J. 2008, 8, 14–17. (In Chinese) [Google Scholar]
- Keras Documentation. Available online: https://keras.io (accessed on 26 December 2018).
- Chow, J.H.; Frederick, D.K.; Chbat, N.W. Discrete-Time Control Problems Using MATLAB and the Control System Toolbox; Thomson-Brooks/Cole: London, UK, 2003; 269p, ISBN 05343847. [Google Scholar]
Scenario | (1) | (2) | (3) |
---|---|---|---|
Average Total loss (MW) | 19.548 | 19.492 | 19.19 |
percentage of loss/generation | 8.52% | 8.39% | 8% |
Scenario | (1) | (2) | (3) |
---|---|---|---|
Average Total loss (MW) | 19.548 | 19.212 | 18.889 |
percentage of loss/generation | 8.52% | 8.02% | 7.49% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, P.; Wang, X.; Jin, H.; Li, Y.; Yang, X. Smart-Grid-Aware Load Regulation of Multiple Datacenters towards the Variable Generation of Renewable Energy. Appl. Sci. 2019, 9, 518. https://doi.org/10.3390/app9030518
Luo P, Wang X, Jin H, Li Y, Yang X. Smart-Grid-Aware Load Regulation of Multiple Datacenters towards the Variable Generation of Renewable Energy. Applied Sciences. 2019; 9(3):518. https://doi.org/10.3390/app9030518
Chicago/Turabian StyleLuo, Peicong, Xiaoying Wang, Hailong Jin, Yuling Li, and Xuejiao Yang. 2019. "Smart-Grid-Aware Load Regulation of Multiple Datacenters towards the Variable Generation of Renewable Energy" Applied Sciences 9, no. 3: 518. https://doi.org/10.3390/app9030518
APA StyleLuo, P., Wang, X., Jin, H., Li, Y., & Yang, X. (2019). Smart-Grid-Aware Load Regulation of Multiple Datacenters towards the Variable Generation of Renewable Energy. Applied Sciences, 9(3), 518. https://doi.org/10.3390/app9030518