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Abstract: Predicting the extreme loads in power production for the preliminary-design of large-scale
wind turbine blade is both important and time consuming. In this paper, a simplified method, called
Particle Swarm Optimization-Extreme Load Prediction Model (PSO-ELPM), is developed to quickly
assess the extreme loads. This method considers the extreme loads solution as an optimal problem.
The rotor speed, wind speed, pitch angle, yaw angle, and azimuth angle are selected as design
variables. The constraint conditions are obtained by considering the influence of the aeroelastic
property and control system of the wind turbine. An improved PSO algorithm is applied. A 1.5 MW
and a 2.0 MW wind turbine are chosen to validate the method. The results show that the extreme
root load errors between PSO-ELPM and FOCUS are less than 10%, while PSO-ELPM needs much
less computational cost than FOCUS. The distribution of flapwise bending moments are close to the
results of FOCUS. By analyzing the loads, we find that the extreme flapwise bending moment of the
blade root in chord coordinate (CMF_ROOT) is largely reduced because of the control system, with
the extreme edgewise bending moment of the blade root in chord coordinate (CME_ROOT) almost
unchanged. Furthermore, higher rotor speed and smaller pitch angle will generate larger extreme
bending moments at the blade root.

Keywords: extreme load prediction; improved PSO algorithm; bending moment; pitch angle;
rotor speed

1. Introduction

With the increased utilization of low wind speed, blade lengths are becoming increasingly longer,
so as to capture more energy at low wind speed. By contrast, in order to control costs, the other parts of
the wind turbine have largely remained the same. In fact, this treatment implies that the extreme loads,
especially the extreme loads at the blade root are constant or increase within the accepted margin of
safety during blade design. Therefore, the extreme load at the blade root is one of the most important
constraints when designing of low wind speed blades and blade bolts, even though the blade can
reliably endure the loads acting on itself. Of course, the extreme load distribution is also critical factor
in the evaluation of the safety of blade. However, in this paper we focus on the extreme load prediction
at the blade root because it can be easily extended to get the extreme load distribution.

As far as we know, calculating the extreme loads according to the IEC [1] or GL [2] standard is
extremely time consuming. Over the last decade, most researchers extrapolated the extreme loads by
means of statistical methods which suppose that the distribution of extreme loads at different wind
speed meet some statistical models [3–15]. Generally, it is reasonable to estimate the extreme loads
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that occur or a long duration based on the measured or simulated data gathered over a short period.
However, these methods are not without their drawbacks. These issues include, which distribution
method should be used for the estimation of the short-term extreme load distribution? What are
the criteria for the selection of the maximum loads used in the extreme load distribution? And how
many time series, simulated or measured, are needed for the proper estimated of the extreme load
distribution? [4] Naturally, more data gives better results, however by increasing the number of
simulated load cases, the time taken to conduct these simulations is drastically increased. During
the design of the blade, the discrete engineering method, has been widely adopted to obtain accurate
results. This method gives the extreme loads by simulating every load case according to the IEC or GL
standard. Most software programs, such as PHATAS in FOCUS [16] and Bladed [17], all employ this
method. This method is more accurate than statistical methods. But the process of this method is also
time-consuming and unsuitable for the preliminary design due to excessive load cases required to be
simulated during the design life of the wind turbine. For simplicity, many research articles about the
design methods regarding blade optimization design select parts of the design load cases (DLCs) to get
the extreme load and finally run all the DLCs to verify the results to reduce the overall computational
time [18–22]. Even though this process has been used to save time, it takes about 65 h running on
a workstation equipped with 40 logical processors [20]. Therefore, this process still represents low
efficiency, and it is therefore necessary to propose a new method that can quickly predict the extreme
loads for the preliminary design of large-scale wind turbine blades.

In this paper, a simplified method is proposed to quickly predict the extreme loads in power
production to facilitate the preliminary design of the blades. The optimal algorithm is used to acquire
the extreme loads. Because the blade loads are affected by a number of factors, the solution of predicting
extreme loads is a combination of multi-variable, multi-constraint, and multi-object optimal problem.
An advanced intelligent optimal algorithm should be found to solve this kind of constraint optimal
problem. Compared with the genetic algorithm (GA), the PSO algorithm has its own advantages,
such as a simpler and less adjusting parameters. Hence, a simplified extreme load prediction model
(PSO-ELPM) by use of an improved PSO algorithm [5] is built and certified by comparing with the
results from FOCUS using the discrete method. The results show that the extreme root load errors
between PSO-ELPM and FOCUS are less than 10%, while PSO-ELPM needs much less computational
cost than FOCUS. The distribution of flapwise bending moments are close to the results of FOCUS.
In addition, PSO-ELPM can directly get the status parameters generating extreme loads. This will be
useful for control rules design of wind turbines.

The paper is organized according to the following plan. Section 2 gives the details of the
PSO-ELPM; Section 3 presents analyses and discusses the corresponding results using the newly
proposed model; Section 4 gives the conclusion and some further plans for this model.

2. Model Building

To establish the optimal model for predicting extreme forces, the free variables, constraints, and
fitness function need be determined. As we know, the blade loads, especially the flapwise loads, are
mainly generated by aerodynamic force. Therefore, the parameters in the equation of aerodynamic
force will be mainly analyzed and selected as free variables. Furthermore, the level of gravity is also
critical for the edgewise force and will be considered in the solution of fitness function.

In reality, the extreme loads always produce a certain status with few features. According to
the IEC and GL standard, the extreme DLCs always selected the rated wind speed Vr, Vr + 2 and
V2 − 2 to do the simulation. This is because the extreme loads are always generated around the rated
wind speed. However, in this case, the rotor speed always reaches the max value, and the pitch angle
usually approximates the minimum value. Therefore, the ability to find the minimum pitch angle
and corresponding rotor speed is very important. However, if we calculate the blade load using the
dynamic aeroelastic simulation, it will increase the amount of unnecessary calculations because many
of the statuses will not generate the extreme value. Therefore, in order to reduce the computational
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time, a quasi-static load computation with a considerstion of the status parameters of the wind turbine
is used in this article. Certainly, storm conditions can be the worst conditions due to large wind speed
and inflow angle. Such conditions are not considered in this model, but will be added in the future.

2.1. Design Variables

The corresponding parameters in the aerodynamic force as the main source of the blade load will
be selected as the design variables. The aerodynamic force acting on a blade section under the wind
speed V1 is shown as Figure 1. The normal force Fn and the tangential force Ft could be expressed
as follows: {

Fn = 1
2 ρV0

2cCn

Ft =
1
2 ρV0

2cCt
(1)

where ρ is the air density, c is chord length, Cn, Ct are respectively the normal coefficient and tangential
coefficient as: {

Cn = Cl cos φ + Cd sin φ

Ct = Cl sin φ− Cd cos φ
(2)

where Cl is the lift coefficient, Cd is the drag coefficient, φ is the inflow angle, from which the attack
angle α will be get by subtracting the twist angle β1 and pitch angle β2, i.e.,

α = φ− θ = φ− (β1 + β2) (3)

φ = arctan
(1− a)V1

(1 + b)Ωr
(4)

The inflow velocity V0 in Equation (1) is

V0 =
√

Vx02 + Vy02 =

√
(1− a)2V1

2 + (1 + b)2(Ωr)2 (5)

where a is the axial induction factor, b is the tangential induction factor, Ω is angular speed of the rotor
shaft, that is rotor speed in this article.
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It can be seen that the load is influenced by lots of variables from Equation (1), such as the wind
speed, the chord length, and the pitch angle. Moreover, the wind turbine parameters such as yaw angle
γ, azimuth angle ψ also affect the angle between the wind direction and chord line, so they are all taken
into account to obtain the extreme loads. However, some of them are prefixed. Therefore, the rotor
speed, wind speed, pitch angle, yaw angle, and azimuth angle will be selected as design variables.

2.2. Design Constraints

After the aerodynamic profile and structure of the blade are fixed, the blade load chiefly depends
on rotor speed, pitch angle, and wind speed. However, the above parameters are not independent
due to the operation of the control system. Their relationships are nonlinear and changing with the
initial condition and time. It is therefore hard to get the specific relationships from them. For the
optimal problem, we only need the bound values of these variables and the constraint conditions of
the bound values.

2.2.1. Constraints on Pitch Angle

In the following analysis, a 1.5 MW variable speed and variable pitch (VSVP) wind turbine is
taken as an example. The constraint conditions will be built by analyzing different load cases, which
are simulated with a consideration of the aeroelastic property and the action of the control system by
using PHATAS model in FOCUS software.

Constraints between Pitch Angle and Wind Speed

The minimum pitch angle for the wind speed is expressed by βv. For VSVP wind turbine, the
blade pitch angle will get larger with the increase of the wind speed so as to reduce the rotor speed.
Various pitch angles may occur while the wind turbine operates at the same wind speed due to the
control system. Hence, obtaining the minimum pitch angle for a wind speed is very difficult, and also
the key point of data that is requires so as to confirm the accuracy of the PSO-ELPM.

A variety of load cases have been computed in compliance with GL standard [20], especially
the load cases that make it easy to generate the extreme loads, such as the DLC 1.6 and DLC 4.2.
Figure 2 gives the different pitch angles for different wind speeds during the simulation of DLC 1.X
(X expressed by the number 3, 4, 5, 6, 7, 8, 9) and DLC 4.2, which are computed by FOCUS.

From Figure 2, we can see that the βv varies with wind speeds. When the wind speed is less than
15 m/s, βv can reach the installation angle. But when the wind speed is above 15 m/s, βv becomes larger
and larger with the increase of wind speed. Practically, βv will also change with the variation of the
aerodynamic profile, blade layers and control strategy at the same wind speed. In this paper, a rough
and versatile method is used to get βv. Because the extreme DLCs simulate the extreme condition
suddenly occurring during the normal operation of wind turbine, the variation of the pitch angle
will be not far away from the steady condition by using control system and safety system. Therefore,
the ∆β2 is set as the maximum offset value away from the pitch angle under the condition of steady
operation. That is to say, if the pitch angle is 10 degrees when the wind turbine normally operates at
15 m/s, the minimum pitch angle is equal to 10 − ∆β2 at 15 m/s for all load cases. Practically, ∆β2

may be different for different wind speeds. In order to simplify it, ∆β2 is set as a constant. The ∆β2

can be obtained from the calculation results of all load cases or part of the load cases. For this 1.5 MW
wind turbine, ∆β2 is 10.86 degree from part of the load cases computed by FOCUS.

Considering the limitation of the installation angle βl , the βv for different wind speeds is shown
with red triangles in Figure 2. Based on Figure 2, the βv versus wind speed V1 is divided into
three sections.

For the first section, βv is equal to βl when the wind speed is less than V′, which is always the
rated wind speed. So, it can be expressed as:

βm = βl (V1 ≤ V′) (6)
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For the second section, βv is deduced by the offset ∆β2 from the steady operation value when V1

is between V′ and Vout. For VSVP wind turbine, the steady curve can be expressed as:

βv = B1(V1)
2 + B2V1 + B3 (7)

where B1, B2, and B3 are constant and can be obtained by quadratic polynomial fitting. Data for fitting,
which are assessed by simulating the steady operation of the wind turbine using FOCUS, are expressed
as green circle in Figure 2.

Therefore, βv can be expressed as:

βv = B1(V1)
2 + B2V1 + B3 − ∆β2 (V′ < V1 ≤ Vo) (8)

Besides, βv cannot be less than βl, so

βv = βl (βv < βl) (9)

For the third section, V1 is larger than Vo. Under this condition, the wind turbine exceeds the
normal operational range. The safety system will work and make the pitch angle change to feather.
It will not stop until the pitch angle reaches the allowed maximum value, which is around 90 degrees.
So the relationship of βv versus V1 is assumed as a straight line, which is through the point (Vo, βo)
with the slope of pitch rate Kp, from Vo to the maximum wind speed. Then, the βv can be expressed as:

βv = βo + Kp(V1 −Vo) (10)

The point (Vo, βo) also matches Equation (8) to guarantee the continuity of the value of βv. That is,

βo = B1(Vo)
2 + B2Vo + B3 − ∆β2 (11)
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Constraints between Pitch Angle and Rotor Speed

The minimum pitch angle for rotor speed is expressed by βr. Figure 3 depicts the different pitch
angles for different rotor speeds during the simulation of DLC 1.X (X expressed by the number 3, 4,
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5, 6, 7, 8, 9) and DLC 4.2. EOG1_Rated means that the data are obtained from the simulation of an
extreme load case, which of the inflow condition is an extreme operational gust in one year (EOG1) at
rated wind speed. From Figure 3, it is clear that the βr has different values for different rotor speeds.
When the rotor speed is less than 1.82 rad/s, βr can reach the installation angle. But when the rotor
speed is above 1.82 rad/s, βr increases with the rotor rise of speed.

However, it is very complicated to accurately attain βr. Based on Figure 3, the βr versus wind
speed V1 is divided into two sections. For the first section, βr equal to βr when the rotor speed is less
than Ω′, which is always the rated rotor speed Ωr. It can be expressed as:

βr = βl
(
Ω < Ω′

)
(12)

For the second section, βr approaches a straight line when the rotor speed is above Ω′ and it can
be expressed as

βr = C1Ω + C2
(
Ω ≥ Ω′

)
(13)

where C1 and C2 are the constant and can be obtained from a linear fitting, based on the data shown in
the red triangle in Figure 3. These data are obtained by simulating load case with inflow conditions
satisfied by EOG1 at rated wind speed, using FOCUS. It also can be experientially given.

Certainly, βr cannot be less than βl, so

βr = βl (βr < βl) (14)
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Brief Summary

According to the above analysis, we can get the minimum pitch angle for a given rotor speed and
wind speed, named as βm, can be defined as

βm = max(βr, βv)(V1 ≤ Vo) (15)

βm = βv (V1 > Vo) (16)
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Therefore, for all the rotor speeds and wind speeds, the corresponding pitch angle should not be
lower than βm, that is

β2 ≥ βm (17)

In addition, the pitch angle should be below the allowed maximum value βu, which is around
90 degrees. Therefore, the pitch angle should satisfy the following inequality constraint.

βu ≥ β2 ≥ βm (18)

2.2.2. Other Constraints

For VSVP wind turbine, there is always a maximum rotor speed Ωb, where the safety system will
work to limit the rotor speed. Certainly, because of the delay of the actuator, the rotor speed still has
a certain incremental value ∆Ω. However, it is difficult to fix. According to the known results from the
simulation of FOCUS, it is no more than 0.2 times the rated rotor speed. Therefore, the rotor speed
may get the maximum value as

Ωu = Ωb + ∆Ω = Ωb + 0.2Ωr (19)

In this article, we used the maximum rotor speed appeared in FOCUS analysis. In Section 3,
we will discuss the effects of parameter ∆Ω on the extreme load.

Moreover, the range of the other variables should be confined in compliance with the wind farm
class and the design requirements of the wind turbine.

Ωl ≤ Ω ≤ Ωu

Vl ≤ V1 ≤ Vu

γl ≤ γ ≤ γu

ψl ≤ ψ ≤ ψu

(20)

2.2.3. Summary of Constraints

According to the above analysis, Equations (18) and (20) are finally used to limit the change of the
design variables. In order to get the βm in Equation (18), Equations (6), (8)–(16) are needed, we can
see that there are many parameters that need to be fixed in these equations. Fortunately, some of the
parameters in the above equations are given before can begin the blade design. They are βu, βl, Kp, Ωl,
Ωb, Vl, Vu, γl, γu, ψl, ψu. How to get the unknown parameters except ∆Ω is given below in detail.

Step 1: We conduct the steady simulation to get the rotor speed, pitch angle, and output power
changing with time.

Step 2: According to the steady simulation, some parameters can be obtained, such as Vr, Ωr, and
Vo. Following this, V′ is obtained from power versus wind speed (see (a) in Figure 4).

Step 3: Based on the pitch angle changing with wind speed, we can get the coefficients in
Equation (7) by quadratic polynomial fitting (see (b) in Figure 4).

Step 4: By computing the extreme load case with the inflow wind condition, which is satisfied
EOG1 at rated wind speed, using FOCUS, we can obtain the data in Figures 2 and 3. Then ∆β2 and Ω′

can be obtained using the following method (see Figure 5).
Step 5: We can get the parameter βo according to Equation (11).
Step 6: From the simulation results in step 4 (see the red triangles in Figure 3), we can access the

coefficients in Equation (13) by linear fitting.

2.3. Design Objects

For the large-scale blade used in the low wind speed area, the extreme load, especially the extreme
bending moment at the blade root plays a key role in the blade design. It not only influences the blade
reliability, but also involves the security of other equipment, such as the pitch motor and connecting
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bolts. Hence, for the single objective optimization, the extreme moment in one direction at a given
section is selected as the design object. For the multi-objective optimization, the design objects can be
defined as the different direction bending moments at the same section, or the same direction bending
moment at different sections, or the different direction bending moments at different sections.
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To compute the bending moments at different sections, the blade element moment (BEM) theory is
chosen to obtain the aerodynamic force Fa, which are Fn and Ft in Equation (1). From Equations (1)–(5),
we can see that the induction factors of a and b are the only unknown numbers, while the other
parameters are known or the design variables. In this article, the traditional iteration algorithm for
BEM is used to obtain them with considering the tip loss correction and root loss correction. It is
as follows.

Step 1: Supposing initial values for a and b, such as a = 0, b = 0;
Step 2: Using Equation (4) to get the inflow angle;
Step 3: Using Equation (3) to get the attack angle;
Step 4: Computing the blade loss factor F = FtipFhub;
Where Ftip is tip loss factor, Fhub is root loss factor. They are shown as

Ftip =
2
π

cos−1 e−(
B(R−r)
2r sin ϕ ) (21)



Appl. Sci. 2019, 9, 521 9 of 19

Fhub =
2
π

cos−1 e
−( B(r−Rhub)

2Rhub sin ϕ ) (22)

where B is the number of the blade, R is the rotating radius of rotor, Rhub is the rotating radius of hub,
r is the rotating radius of blade element.

Step 5: Computing the thrust coefficient of the rotor CT;

CT =
σ(1− a)2Cn

sin2 φ
(23)

where σ is rotor solidity and it is shown as

σ =
Bc

2πr
(24)

Step 6: If CT ≥ 0.96F, the new induction factor a′ will be computed by Equation (25);

a′ =
1− k1 +

√
k1

2 − 4k2(k0 − CT)

2k2
(25)

where k2 = 1/0.18− 4F, k1 = −(0.8/0.18− 4F), k0 = 0.16/0.18 or else, the new induction factor a′

will be computed by Equation (26).

a′ =

[
1 +

4F sin2 φ

σCn

]−1

(26)

Step 7: The new induction factor b′ will be computed by Equation (27);

b′ =
[

4F sin φ cos φ

σCt
− 1
]−1

(27)

Step 8: Computing the error ∆a = |a− a′| and ∆b = |b− b′|;
Step 9: If ∆a ≤ 0.001 and ∆b ≤ 0.001, end the iteration and use a′, b′ and Equations (1)–(5) to get

the Fn and Ft, that is Fa or else, return to step 2 use new induction factor a′ and b′.
Moreover, the gravity Fg and centrifugal force Fc at different section is also taken into account.

They are shown as follows
Fc =

.
mkΩ2r (28)

Fg =
.

mkg (29)

where
.

mk is section mass per length, g is gravity acceleration.
Then, we can obtain the force Fk at a certain section by coordinate transformation.

Fk = Fc + Fg + Fa (30)

Supposing that Fk is not changing along one blade element, the forces and moments at a section
in a certain coordinate can be solved by coordinate transformation and integration.

Finally, the flow chart of the blade load calculation model is given below (see Figure 6).

2.4. Building the PSO-ELPM Model

In this article, an improved PSO algorithm [5] developed by the authors is employed to evaluate
the extreme loads. This optimal algorithm has a better optimization capability than the original
PSO algorithm. It is suitable for multi-variables, discontinuous, and multi-objects problem. Finally,
by combining the blade load calculation model and the improved PSO algorithm, a simplified extreme
load predicting model (PSO-ELPM) is built. The flow chart of PSO-ELPM is given below (see Figure 7).
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3. Results and Discussion

The model proposed in the paper was applied to a 1.5 MW VSVP wind turbine and a 2.0 MW
VSVP wind turbine to predict the bending moments at the blade root. The corresponding results
were compared with those computed by FOCUS [12] to validate the model. The particular constraint
conditions used in the PSO-ELPM is introduced firstly.

(1) For the 1.5 MW VSVP wind turbine, the constraint conditions were{
βm = max(βr, βv) (V1 ≤ Vo)

βm = βv (V1 > Vo)
(31)

where βv satisfies the following expressions.

βv = −1 (V1 ≤ 11 m/s) (32)

βv = 22.674− 10.86 + 5(V1 − 25) (V1 > 25 m/s) (33)

and βr satisfies the following expressions.

βr = −1 (Ω < 1.82 rad/s) (34)

βr = 1.9969Ω− 35.681 (Ω ≥ 1.82 rad/s) (35)

The other variables satisfy the following inequalities.

0.94 rad/s ≤ Ω ≤ 2.84 rad/s
3.00 m/s ≤ V1 ≤ 38.26 m/s

βm ≤ β2 ≤ 90.0
◦

−8.0
◦ ≤ γ ≤ 8.0

◦

0.0
◦ ≤ ψ ≤ 360.0

◦

(36)

(2) For the 2.0 MW VSVP wind turbine, the constraint conditions were{
βm = max(βr, βv) (V1 ≤ Vo)

βm = βv (V1 > Vo)
(37)

where βv can be formulated as:

βv = 0 (V1 ≤ 10.5 m/s) (38){
βv = −0.0476(V1)

2 + 2.9958V1 − 22.756− 8.0
βv = 0 (βv < 0◦)

, (10.5 m/s < V1 ≤ 25 m/s) (39)

βv = 22.389− 8.0 + 5(V1 − 25) (V1 ≥ 25 m/s) (40)

and βr is:
βr = 0 (Ω < 1.81 rad/s) (41)

βr = 3.5594Ω− 60.153 (Ω ≥ 1.81 rad/s) (42)
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The other variables can be defined as:

0.94 rad/s ≤ Ω ≤ 2.45 rad/s
3.00 m/s ≤ V1 ≤ 38.87 m/s

βm ≤ β2 ≤ 90.0
◦

−8.0
◦ ≤ γ ≤ 8.0

◦

0.0
◦ ≤ ψ ≤ 360.0

◦

(43)

Then, in order to compare with the results from FOCUS, the load factor γF will be considered.
According to the GL standard, γF is set to be 1.35.

Moreover, the related parameters in the improved PSO algorithm are prefixed as follows:

(1) Number of individuals: 30;
(2) Maximum number of iterations: 100;
(3) Probability of selection Ps: 0.0333;
(4) Maximum inertial weight: 0.6253;
(5) Minimum inertial weight: 0.0562

3.1. Extreme Loads at the Blade Root

Finally, the maximum flapwise bending moment of blade root in chord coordinate (CMF_ROOT)
and the maximum edgewise bending moment of blade root in chord coordinate (CME_ROOT) was
calculated respectively by the PSO-ELPM model. Each of them was computed ten times independently.
Figures 8 and 9 give the iterative processes, from which the extreme CMF_ROOT and the extreme
CME_ROOT was obtained. The extreme values of CMF_ROOT and CME_ROOT are shown in Table 1.
The status parameters of the wind turbine, while the extreme loads were reached, are given to highlight
in Table 2.

Table 1. The extreme values of CMF_ROOT and CME_ROOT.

1.5 MW 2.0 MW

FOCUS PSO-ELPM Error FOCUS PSO-ELPM Error

CMF_ROOT (kNm) 4176.45 4197.57 0.51% 8084.68 7928.81 −1.93%
CME_ROOT (kNm) 2571.43 2741.36 6.61% 4542.79 4352.48 −4.19%

Table 2. Extreme bending moments and their corresponding status parameters with considering the
constraint conditions about the βm.

Bending Moment (kNm) V1 (m/s) Ω (rad/s) β2 (◦) γ (◦) ψ (◦)

1.5
MW

CMF_ROOT 4197.56 25.00 2.46 11.81 −1.94 44.38
CME_ROOT 2741.36 29.13 2.84 32.48 −8.00 67.83

2.0
MW

CMF_ROOT 7928.81 15.95 1.91 4.92 −8.00 34.77
CME_ROOT 4352.48 38.87 2.45 90.00 −8.00 340.68

From Table 1, it can be seen that the results using PSO-ELPM are well in agreement with
those using FOCUS, with a difference of less than 10%. Especially for the extreme CMF_ROOT,
the error was lower than 5%. It shows that PSO-ELPM can be used for predicting the extreme load.
Moreover, PSO-ELPM needs much less computational cost than FOCUS. That is, PSO-ELPM only
needs about 50 min to get the extreme CMF_ROOT (ten times calculation) while FOCUS needs about
12 h (one-time calculation). Hence, PSO-ELPM is very suitable for preliminary blade design, and even
optimization design.

Furthermore, from Figures 8 and 9, it is clear that the status parameters of the wind turbine
changed with iteration. When the maximum load was obtained, the corresponding values of these
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parameters were immediately determined in PSO-ELPM. This is an advantage of PSO-ELPM while
FOCUS and other statistical models cannot do it. This will be very useful to analyze the conditions
while the extreme loads occur. If we can avoid this condition by control or other methods, the extreme
loads will largely reduce.
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From Table 2, we can see that the values of γ were all negative. This reveals that the negative yaw
angle made it easy to generate the extreme bending moments. For the pitch angle, it is always close
to the βr, which indicates that smaller pitch angle will obtain larger values for the extreme bending
moments. This can also be used to explain why the control rules always increase the pitch angle when
the wind speed exceeds the rated value. For the rotor speed, the extreme CMF_ROOT does not get its
upper bound while the extreme CME_ROOT does. The reason may be the function of the constraints,
which limits the rotor speed corresponded to the pitch angle and the wind speed. To further certify the
above speculation, the constraint conditions about the βm are not considered. In this case, β2 will be
decided by the mechanical property of the wind turbine and meet Equation (44).

βu ≥ β2 ≥ βl (44)

Table 3 gives the extreme bending moments at the root without considering the constraint
conditions about the βm and their corresponding status parameters of the wind turbine calculated by
PSO-ELPM. We can see that Ω gets the upper bound at the extreme loads. These results indicate that
the above speculation is correct.

From Tables 2 and 3, it also shows that larger rotor speed generated larger bending moments.
Therefore, we need to brake the rotor when Ω exceeds the upper bound. In addition, the extreme
CMF_ROOT largely increased without considering the constraint conditions about the βm, while the
extreme CME_ROOT was almost unchanged. This may be because Ω had larger influence on the
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extreme CME_ROOT compared with the other variables. CME_ROOT of 2.0 MW gets the upper bound
of the rotor speed while pitch angle reached the maximum. These results do not seem to represent the
reality of the situation. However, it gives the limit state of the wind turbine, which may happen with
the wind direction changing rapidly.
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Table 3. Extreme bending moments and their corresponding status parameters without considering
the constraint conditions about the βm.

Bending Moment (kNm) V1 (m/s) Ω (rad/s) β2 (◦) γ (◦) ψ (◦)

1.5
MW

CMF_ROOT 8328.10 38.26 2.84 3.50 −8.00 25.90
CME_ROOT 2801.07 38.26 2.84 37.53 −8.00 52.73

2.0
MW

CMF_ROOT 17877.90 38.87 2.45 7.20 −8.00 16.34
CME_ROOT 4352.48 38.87 2.45 90.00 −8.00 339.97

3.2. Extreme Load Distribution of the Blade

Though the extreme loads at the root can be used to evaluate whether the blade is overloading
for the wind turbine, as well as the safety of the blade bolts, it is not enough for the preliminary
blade preliminary. The load distribution along the blade span is also important. Luckily, this model
can obtain the extreme load at any section. To further test it, the extreme load distributions for the
1.5 MW blade and 2.0 MW blade were obtained and compared with FOCUS results respectively in
Figures 10–13. The extreme loads were close at most sections for flapwise bending moments, though
there was little difference in the middle of the blade in Figures 10 and 12. From Figures 11 and 13, we
can see that the edgewise bending moment was also close at the blade tip, while there was obvious
differences near the root. This method needs further improvements for edgewise load prediction.
Overall, the PSO-ELPM model can accurately predict extreme bending moments in flapwise, which
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has the main influence on blade design. Maybe these loads can be used for evaluating the maximum
blade deflection, which is a very important constraint for blade design. Moreover, from Table 2, we can
see the extreme bending moments in edgewise happen at the maximum rotor speed. However, it is not
easily determined due to ∆Ω. Maybe this is the reason why these loads cannot be accurately evaluated.

Appl. Sci. 2019, 9 FOR PEER REVIEW  17 

obtain the extreme load at any section. To further test it, the extreme load distributions for the 1.5 
MW blade and 2.0 MW blade were obtained and compared with FOCUS results respectively in 
Figures 10 to 13. The extreme loads were close at most sections for flapwise bending moments, though 
there was little difference in the middle of the blade in Figure 10 and 12. From Figure 11 and 13, we 
can see that the edgewise bending moment was also close at the blade tip, while there was obvious 
differences near the root. This method needs further improvements for edgewise load prediction. 
Overall, the PSO-ELPM model can accurately predict extreme bending moments in flapwise, which 
has the main influence on blade design. Maybe these loads can be used for evaluating the maximum 
blade deflection, which is a very important constraint for blade design. Moreover, from Table 2, we 
can see the extreme bending moments in edgewise happen at the maximum rotor speed. However, 
it is not easily determined due to  . Maybe this is the reason why these loads cannot be accurately 
evaluated. 

 
Figure 10. Comparison of extreme flapwise bending moment along the blade (1.5 MW). 

 
Figure 11. Comparison of extreme edgewise bending moment along the blade (1.5 MW). 

Figure 10. Comparison of extreme flapwise bending moment along the blade (1.5 MW).

Appl. Sci. 2019, 9 FOR PEER REVIEW  17 

obtain the extreme load at any section. To further test it, the extreme load distributions for the 1.5 
MW blade and 2.0 MW blade were obtained and compared with FOCUS results respectively in 
Figures 10 to 13. The extreme loads were close at most sections for flapwise bending moments, though 
there was little difference in the middle of the blade in Figure 10 and 12. From Figure 11 and 13, we 
can see that the edgewise bending moment was also close at the blade tip, while there was obvious 
differences near the root. This method needs further improvements for edgewise load prediction. 
Overall, the PSO-ELPM model can accurately predict extreme bending moments in flapwise, which 
has the main influence on blade design. Maybe these loads can be used for evaluating the maximum 
blade deflection, which is a very important constraint for blade design. Moreover, from Table 2, we 
can see the extreme bending moments in edgewise happen at the maximum rotor speed. However, 
it is not easily determined due to  . Maybe this is the reason why these loads cannot be accurately 
evaluated. 

 
Figure 10. Comparison of extreme flapwise bending moment along the blade (1.5 MW). 

 
Figure 11. Comparison of extreme edgewise bending moment along the blade (1.5 MW). 
Figure 11. Comparison of extreme edgewise bending moment along the blade (1.5 MW).

3.3. Effects of ∆Ω

Based on the above analysis, ∆Ω might have a significant effect on the extreme load prediction in
this model. In this section, we want to test the results when ∆Ω is equal to 0, that is without delay
in the safety control system. During the calculation, Equations (20) to (33) were still used. However,
the upper value of rotor speed was change to 2.45 rad/s in Equation (26) and 2.17 rad/s in Equation
(33) respectively. Figures 14–17 show the comparison of results from PSO-ELPM with and without
considering ∆Ω (expressed as “no delta omega” in these figures).
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From Figures 14 and 16, we can see the flapwise bending moments are still very close. It means
∆Ω had little influence on them. This is also can certified by Table 2. In Table 2, the extreme flapwise
bending moment did not happen at the maximum rotor speed. Hence, the extreme value was not
changed though the maximum rotor speed reduced. But the edgewise bending moments was very
different, and noticeably changed without ∆Ω, especially near the blade root. Therefore, it needs
further improvement. The ∆Ω should be fixed to make this model more accurate.

4. Conclusions

In this paper, so as to quickly solve the extreme loads and make it easily usable for preliminary
blade design, a new simplified method, called as PSO-ELPM, was developed and validated in this
study. Following this, the effects of the status parameters on the extreme loads were analyzed. Some
conclusions are given below:

1. The extreme root loads computed by PSO-ELPM and FOCUS were very close. The error between
them was less than 10%. The extreme CMF_ROOT was lower than 5%. Moreover, PSO-ELPM
needs much less computation cost than FOCUS. Hence, PSO-ELPM can be used for predicting
the extreme load and is suitable for preliminary blade design.

2. Higher rotor speed and smaller pitch angle will generate larger extreme bending moments at
the root. It is for this reason that we need to pitch the blade to feather at high wind speed and
activate security strategies when the rotor speed is larger than overspeed. In addition, negative
yaw angle easily generates the extreme bending moments.

3. When the control system is inactive, the extreme CMF_ROOT is increased but the extreme
CME_ROOT is almost unchanged. It shows that the control system has significant influence on
reducing the extreme loads, especially the extreme CMF_ROOT.

4. By comparison of the extreme load distribution, flapwise bending moments are close to the
results of FOCUS, while edgewise bending moments need be improved in the future.

5. By the analysis of the effects of ∆Ω, there is little influence on the extreme flapwise bending
moments. However, the edgewise bending moments change a lot while the maximum rotor
speed reduces.

The PSO-ELPM model is a new method, which gives a different way to solve the extreme loads
exerted on wind turbine blades. It has some advantages—it is simple and fast, but there are some
aspects which have not been considered. There are also some defects that need to be further improved.
For example, some parameters that change with the wind turbine model and not easily determined,
and it needs to be fixed to make this model more generic. A further example is that the load calculation
model needs to be improved so as to obtain better results. For example, the ∆β2 should be set as
a variable changing with the wind speed. Storm conditions can be the most challenging conditions
and should be added in the improved model. The load calculation could consider the aeroelastic effect.
The ∆Ω should be fixed to make this model more accurate.
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