Mass Maldistribution Research of Different Internal Flowing Channels in the Cooling Plate Applied to Electric Vehicle Batteries
Abstract
:1. Introduction
2. Model Development and Simulation Method
2.1. Physical Model Establishment
2.2. Evaluation Criterions
2.3. CFD Analyses and Boundary Settings
3. Results and Discussion
3.1. Comparison of the Primary Channels
3.2. Optimization of Serpentine Channel
3.3. Orthogonal Experiment and Range Analysis
3.4. Limitations and Further Work
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | cross section area of the channel (m2) |
cp | specific heat capacity (J·kg−1·K−1) |
dh | equivalent hydraulic diameter (m) |
h | channel height (mm) |
L | plate length (mm) |
mc | flowing mass of n channels (kg·s−1) |
mci | flowing mass of ith channel (kg·s−1) |
P | wet perimeter of the channel (m) |
p | Pressure (Pa) |
inlet coolant pressure of the plate (Pa) | |
outlet coolant pressure of the plate (Pa) | |
coolant pressure drop through channel (Pa) | |
Re | Reynold number |
T | Temperature (K) |
u | velocity vector in Cartesian space (m/s) |
W | plate width (mm) |
w | channel width (mm) |
x | direction vector in Cartesian space |
Greek symbols | |
φm | flowing mass uniformity coefficient |
density (kg·m−3) | |
fluid viscosity (Pa·s) | |
thermal conductivity (W·m−1·K−1) | |
Acronyms | |
CFD | computational fluid dynamics |
EV | electric vehicle |
Li-ion | lithium-ion |
TMS | thermal management system |
References
- Campanari, S.; Manzolini, G.; de la Iglesia, F.G. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. J. Power Sources 2009, 186, 464–477. [Google Scholar] [CrossRef]
- Pesaran, A.A.; Market, T.; Tataria, H. Battery Requirements for Plug-In Hybrid Electric Vehicles—Analysis and Rationale; Office of Scientific & Technical Information Technical Reports; Press of Anaheim: Anaheim, CA, USA, 2009; pp. 2–5. [Google Scholar]
- Mills, A.; Al-Hallaj, S. Simulation of passive thermal management system for lithium-ion battery packs. J. Power Sources 2005, 141, 307–315. [Google Scholar] [CrossRef]
- Chen, Y.; Evans, J.W. Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model—Thermal behavior and design optimization. Electrochim. Acta 1994, 39, 517–526. [Google Scholar] [CrossRef]
- Karimi, G.; Li, X. Thermal management of lithium-ion batteries for electric vehicles. Int. J. Energy Res. 2013, 37, 13–24. [Google Scholar] [CrossRef]
- Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic Lithium-ion battery. Appl. Therm. Eng. 2017, 122, 80–90. [Google Scholar] [CrossRef]
- Panchal, S.; Khasow, R.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Numerical modeling and experimental investigation of a prismatic battery subjected to water cooling. Numer. Heat Transf. Part A Appl. 2017, 71, 626–637. [Google Scholar] [CrossRef]
- Zhu, X. Study in Wind Cooling System for RAV-4 EV Packs. Master’s Dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2007. (In Chinese). [Google Scholar]
- Zhang, T. Investigation on Heat Transfer Enhancement of Packing Battery with Liquid Flow and Vehicle Integrated Thermal Management. Ph.D. Dissertation, Jilin University, Jilin, China, 2016. (In Chinese). [Google Scholar]
- Ling, Z. Performance Investigation of the Power Battery Thermal Management System Using Expanded Graphite Based Composite Phase Change Materials. Ph.D. Dissertation, South China University of Technology, Guangzhou, China, 2016. (In Chinese). [Google Scholar]
- Zhao, C.; Cao, W.; Dong, T.; Jiang, F. Thermal modeling of cylindrical lithium-ion battery module with micro-channel liquid cooling. Ciesc J. 2017, 68, 3232–3241. (In Chinese) [Google Scholar]
- Xu, X.; Zhao, Y. Research on battery module thermal characteristics based on double inlet and outlet flow path liquid-cooled system. Chin. Mech. Eng. 2013, 24, 313–316. (In Chinese) [Google Scholar]
- Yuan, H.; Wang, L.; Wang, L. Battery thermal management system with liquid cooling and heating in electric vehicles. J. Automot. Saf. Energy 2012, 3, 371–380. (In Chinese) [Google Scholar]
- Nam, J.H.; Lee, K.J.; Sohn, S.; Kim, C.J. Multi-pass serpentine flow-fields to enhance under-rib convection in polymer electrolyte membrane fuel cells: Design and geometrical characterization. J. Power Sources 2009, 188, 14–23. [Google Scholar] [CrossRef]
- Chein, R.; Chen, J. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. Int. J. Therm. Sci. 2009, 48, 1627–1638. [Google Scholar] [CrossRef]
- Lu, G.; Duan, Y.; Wang, X. Effects of manifold designs on flow and thermal Performances of microchannel heat sink. J. Basic Sci. Eng. 2013, 21, 345–354. (In Chinese) [Google Scholar]
- Lu, J.; Han, Y. Experimental test for comprehensive performance of heat sink with parallel mini-channel. Cryog. Supercond. 2014, 42, 48–52. (In Chinese) [Google Scholar]
- Zhao, W.; Lv, Y.; Lu, J.; Han, Y.; Gao, Y. Research on the uniformity of flow rate and heat transfer characteristics of heat sink with parallel mini-channels. J. Anhui Univ. Technol. (Nat. Sci.) 2016, 33, 343–348. (In Chinese) [Google Scholar]
- Manoj, S.V.; Arvind, P.; Sarit, K.D. Effect of flow maldistribution on the thermal performance of parallel microchannel cooling systems. Int. J. Heat Mass Transf. 2014, 73, 424–428. [Google Scholar] [CrossRef]
- Javier, A.N.; Hugh, T.; Markus, P.R.; Robert, J.W. Computational modeling of a microchannel cold plate: Pressure, velocity, and temperature profiles. Int. J. Heat Mass Transf. 2014, 78, 90–98. [Google Scholar]
- Trevizoli, P.V.; Peixer, G.F.; Nakashima, A.T.; Capovilla, M.S.; Lozano, J.A.; Barbosa, J.R. Influence of inlet flow maldistribution and carryover losses on the performance of thermal regenerators. Appl. Therm. Eng. 2018, 133, 472–482. [Google Scholar] [CrossRef]
- Yang, S.; Tao, W. Heat Transfer, 4th ed.; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Jarrett, A.; Kim, Y. Design optimization of electric vehicle battery cooling plates for thermal performance. J. Power Sources. 2011, 196, 10359–10368. [Google Scholar] [CrossRef]
- Liao, Y. Design and Performance Study of Surface Air—Oil Heat Exchanger; Xiamen University: Xiamen, China, 2018. (In Chinese) [Google Scholar]
Material Properties | Value |
---|---|
Dimensions | |
Plate width (W in mm) | 102 |
Plate length (L in mm) | 150 |
Plate thickness (mm) | 10 |
Channel thickness (mm) | 8 |
Channel width (w in mm) | 16 |
Coolant fluid | Water |
Coolant viscosity at 360 K (Pa·s) | 0.0008623 |
Coolant conductivity (W·m−1·K−1) | 0.612 |
Coolant specific heat at 360 K (J·kg−1·K−1) | 4177 |
Coolant density (kg·m−3) | 996.5 |
Plate material | Aluminum |
Plate conductivity (W·m−1·K−1) | 202 |
Plate specific heat (J·kg−1·K−1) | 871 |
Plate density (kg·m−3) | 2719 |
Boundary conditions | |
Coolant inlet mass flow (kg·s−1) | 0.1664 |
Coolant inlet temperature (K) | 360 |
Coolant outlet pressure (Pa) | 0 |
Atmosphere temperature (K) | 298 |
Case | w1 | w2 | h1 | h2 | h3 | Re | Remark |
---|---|---|---|---|---|---|---|
1 | 45 | - | - | - | - | 7.28 | without splitter plate |
2 | 22.5 | - | - | 6 | - | 12.65 | one splitter plate |
3 | 6 | 29.5 | - | 6 | - | 27.57 | three splitter plates |
4 | 6 | 29.5 | 2 | 6 | 6 | 27.57 | three splitter plates |
5 | 6 | 29.5 | 10 | 6 | 6 | 27.57 | three splitter plates |
6 | 6 | 29.5 | 15 | 6 | 6 | 27.57 | three splitter plates |
Case | A (w1) (mm) | B (h1) (mm) | C (h2) (mm) | D (h3) (mm) | Mass Uniformity Coefficient φm | Pressure Drop Δp/kPa |
---|---|---|---|---|---|---|
1 | 6 | 10 | 6 | 6 | 0.131 | 25.473 |
2 | 6 | 14 | 8 | 8 | 0.104 | 20.651 |
3 | 6 | 18 | 10 | 10 | 0.108 | 18.151 |
4 | 8 | 10 | 8 | 10 | 0.180 | 18.866 |
5 | 8 | 14 | 10 | 6 | 0.153 | 17.048 |
6 | 8 | 18 | 6 | 8 | 0.156 | 16.758 |
7 | 10 | 10 | 10 | 8 | 0.149 | 14.778 |
8 | 10 | 14 | 6 | 10 | 0.176 | 20.048 |
9 | 10 | 18 | 8 | 6 | 0.162 | 16.309 |
Mass Uniformity Coefficient | Remarks | ||||
---|---|---|---|---|---|
A | B | C | D | ||
K1 | 0.343 | 0.460 | 0.463 | 0.446 | K is sum of mass uniformity coefficient: K = X1 + X2 + X3 (X stands for A, B, C, D) |
K2 | 0.489 | 0.433 | 0.446 | 0.409 | |
K3 | 0.487 | 0.426 | 0.410 | 0.464 | |
k1 | 0.114 | 0.153 | 0.154 | 0.149 | K = K/3 |
k2 | 0.163 | 0.144 | 0.149 | 0.136 | |
k3 | 0.162 | 0.142 | 0.137 | 0.155 | |
R | 0.049 | 0.011 | 0.017 | 0.019 | R = max(kx)−min(kx) |
Key factor | A > D > C > B | ||||
Better level | A1 | B3 | C3 | D2 |
Pressure drop | Remarks | ||||
---|---|---|---|---|---|
A | B | C | D | ||
K1 | 64.275 | 59.117 | 62.279 | 58.830 | K is sum of mass uniformity coefficient: K = X1 + X2 + X3 (X stands for A, B, C, D) |
K2 | 52.672 | 57.747 | 55.826 | 52.187 | |
K3 | 51.135 | 51.218 | 49.977 | 57.065 | |
k1 | 21.425 | 19.706 | 20.760 | 19.610 | K = K/3 |
k2 | 17.557 | 19.249 | 18.609 | 17.396 | |
k3 | 17.045 | 17.073 | 16.659 | 19.022 | |
R | 4.380 | 2.633 | 4.101 | 2.214 | R = max(kx)–min(kx) |
Key factor | A > C > D > B | ||||
Better level | A3 | B2 | C3 | D2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Xu, C.; Liao, Y.; Su, L.; Weng, Z. Mass Maldistribution Research of Different Internal Flowing Channels in the Cooling Plate Applied to Electric Vehicle Batteries. Appl. Sci. 2019, 9, 636. https://doi.org/10.3390/app9040636
Cai H, Xu C, Liao Y, Su L, Weng Z. Mass Maldistribution Research of Different Internal Flowing Channels in the Cooling Plate Applied to Electric Vehicle Batteries. Applied Sciences. 2019; 9(4):636. https://doi.org/10.3390/app9040636
Chicago/Turabian StyleCai, Huikun, Chen Xu, Yidai Liao, Lijun Su, and Zeju Weng. 2019. "Mass Maldistribution Research of Different Internal Flowing Channels in the Cooling Plate Applied to Electric Vehicle Batteries" Applied Sciences 9, no. 4: 636. https://doi.org/10.3390/app9040636
APA StyleCai, H., Xu, C., Liao, Y., Su, L., & Weng, Z. (2019). Mass Maldistribution Research of Different Internal Flowing Channels in the Cooling Plate Applied to Electric Vehicle Batteries. Applied Sciences, 9(4), 636. https://doi.org/10.3390/app9040636