friried applied
o sciences

Article
Efficient Transcoding and Encryption for Live
360 CCTV System

Tuan Thanh Le ¥, JongBeom Jeong ‘' and Eun-Seok Ryu *

Department of Computer Engineering, Gachon University, Seongnam 13120, Korea;
tuanlt@gc.gachon.ac . kr (T.T.L.); uof4949@gc.gachon.ac.kr (J.J.)
* Correspondence: esryu@gachon.ac.kr; Tel.: +82-10-4893-2199

check for
Received: 2 January 2019; Accepted: 18 February 2019; Published: 21 February 2019 updates

Abstract: In recent years, the rapid development of surveillance information in closed-circuit
television (CCTV) has become an indispensable element in security systems. Several CCTV systems
designed for video compression and encryption need to improve for the best performance and
different security levels. Specially, the advent of 360 video makes the CCTV promising for surveillance
without any blind areas. Compared to current systems, 360 CCTV requires the large bandwidth with
low latency to run smoothly. Therefore, to improve the system performance, it needs to be more robust
to run smoothly. Video transmission and transcoding is an essential process in converting codecs,
changing bitrates or resizing the resolution for 360 videos. High-performance transcoding is one of
the key factors of real time CCTV stream. Additionally, the security of video streams from cameras
to endpoints is also an important priority in CCTV research. In this paper, a real-time transcoding
system designed with the ARIA block cipher encryption algorithm is presented. Experimental
results show that the proposed method achieved approximately 200% speedup compared to libx265
FFmpeg in transcoding task, and it could handle multiple transcoding sessions simultaneously at
high performance for both live 360 CCTV system and existing 2D /3D CCTV system.

Keywords: CCTV; 360 videos; live streaming; transcoding

1. Introduction

Nowadays, closed-circuit television (CCTV) is widely deployed in the video surveillance systems
and video analysis is a key factor to provide intelligent services. Previously, analog CCTV systems
were used to search for intruders in the pre-recorded video by human. Currently, digital CCTV can
process automatically using video analytic technologies in a computer system. To meet the necessity of
CCTV systems video analytic, improving quality of service (QoS) of video CCTV is one indispensable
element. Especially, the existing 2D CCTV system cannot provide high-resolution such as Ultra-HD
4K, or has difficulty adopting new video codec such as High-Efficiency Video Coding (HEVC) [1]. The
video converting method is necessary to adapt the various requirements of CCTV systems.

Compared to the H.264/MPEG (Moving Picture Experts Group)-4 Advanced Video Coding (AVC),
the HEVC video encoding has achieved approximately twice the compression [2]. It was developed
and standardized by a joint team of MPEG known as the Joint Collaborative Team on Video Coding
(JCT-VC) [3]. H.264/ AVC standard (ITU-T Rec. H.264 | ISO/IEC 14496-10) is reviewed in [4]. HEVC
is also standardized as ITU-T H.265 | ISO/IEC 23008-2 (MPEG-H Part 2). HEVC has quickly been
deployed in many video services due to its high-performance in compression. Because of a large
amount of existing video content encoded with the H.264/AVC format, transcoding H.264/AVC
bitstream to HEVC bitstream is very demanding. In addition, most current 2D /3D CCTV systems
only support H.264/AVC, thus a transcoder would help upgrade these CCTV systems at a lowest cost.
The computational complexity of HEVC coding is extremely high compared to the H.264 standard.

Appl. Sci. 2019, 9, 760; d0i:10.3390/app9040760 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4117-0079
https://orcid.org/0000-0002-7356-5753
https://orcid.org/0000-0003-4894-6105
http://www.mdpi.com/2076-3417/9/4/760?type=check_update&version=1
http://dx.doi.org/10.3390/app9040760
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 760 20f18

This makes it difficult to implement real-time high-quality HEVC encoder software in multimedia
encoding and transcoding systems.

The emergence of 360 videos has brought new trends in video research. It promotes the change of
the video experience of users. Moreover, it also opens up more opportunities for video processing area
such as efficient encoding, high bandwidth transmission, high-resolution, real-time video interaction,
etc. Due to above factors, 360 video technology is promising in changing the surveillance of CCTV
systems in the near future. By using the 360 CCTYV, the surveillance system will have many changes in
monitoring methods as well as surveillance video analysis. However, 360 video streaming requires high
bandwidth with low latency, so it is hardly compatible with existing systems. Therefore, a transcoder
with the ability to change the bitrate, resolution, and codec is needed to meet the various demands of
the terminals.

Encryption is an important factor to ensure user information is secure in security systems.
There are many different methods to implement security features in CCTV systems. For example,
the encryption can be performed at the Network Abstract Layer (NAL) unit level and affect all NAL
units in whole bitstream file. The performance of the encoder is not significant as it will increase the
complexity of the encoder and the transcoder. Therefore, in this paper, we propose a transcoding
method for multi-core platforms. Moreover, the proposed system encrypts the Video Parameter Set
(VPS), Picture Parameter Set (PPS) and Sequence Parameter Set (SPS) NAL units of the HEVC bitstream
during transcoding process. The NAL encryption step occurs after NAL encoding step in a serial
process. Based on Big O notation theory, the encryption process for each transcoding thread does
not increase the complexity of the system. The experimental results show that the proposed system
provided significant speed, corresponding to a bit rate for H.264 to HEVC real-time transcoding of
36.4 frames/s for 1080p with six simultaneous threads and 33.6 frames/s for 4K with two simultaneous
threads. The conceptual architecture of the proposed system including various CCTV cameras is
illustrated in Figure 1.

b 0" " N PYTTT < %é

:‘, o Control Center

e
CCTV Transcoding- D

Encrypting Box —

rtsp://user_id:password@rtsp_service IP:port number/profile service
Figure 1. Conceptual architecture of live CCTV System with real-time transcoding.

The rest of the paper is organized as follows: Section 2 describes related works that were
considered for proposed system. Section 3 addresses the challenges in real-time CCTV system with
or without 360 cameras, and presents the proposed method. Section 4 shows the implemented
demonstration and the performance evaluation. Finally, Section 5 presents conclusions about the
proposed scheme and future work.

2. Related Work

2.1. Live CCTV System

The availability of CCTV camera poses challenges for massive video processing for transmissions
and analysis. CCTV camera data are received from a variety of sources, including traffic intersections,
retail shops, convenience stores, and traffic intersections. This condition has promoted the development
of computer vision, Al and machine learning. The great point comes from the direct video system that



Appl. Sci. 2019, 9, 760 30f18

is extracting the value from the video to impact on the scientific, social and business fields. To meet
the requirements of video analytics, CCTV systems need to be developed in real-time transmission,
low cost of operation and the ability of accurate data analysis from CCTV live videos. To achieve
the increasing demands of CCTV video data, an efficient solution is essential to handle the large
bandwidth, real-time, quality of service and quality of experience requirements. Using one transcoder
is one of most effective choices to propose reasonable solutions.

2.2. The 360 Video Standard in MPEG

In the 116th MPEG meeting, the MPEG-I group was established and organized to provide the
support for immersive media. They began the support project for immersive media by releasing
standards related to the format of immersive, and omnidirectional video in 2017 [5]. Figure 2 shows the
standardization roadmap of MPEG. MPEG-I group divided the standardization into three phases [6]
with some terminologies such as High Dynamic Range (HDR), Media Linking Application Format
(MLAF), Common Media Application Format (CMAF) and Descriptors for Video Analysis (CDVA).
One of them aims to provide 360 video contents including projection, video coding, and stitching.

The 360 video is mapped into a sphere and then mapped to the 2D plane for transmitting that
is known as projection. The omnidirectional media format (OMAF) [7] addressed the standards
for omnidirectional 360 video that includes projection types such as cubemap projection (CMP),
equirectangular projection (ERP), adjusted cubemap projection (ACP), octahedron projection (OHP),
rotated sphere projection (RSP), and segmented sphere projection (SSP).

Jan
2016 2017 2018 2019 2020 2021
Internet Video
Media ; 3

Coding HDR §

New Video Codec

Figure 2. Moving Picture Experts Group (MPEG) standardization roadmap.

According to the definition of projection types, ERP projection is the most popular and widely
used format for representing 360 videos. It makes the projection to the video on the sphere into the
rectangular 2D plane, as shown in Figure 3a. As top and bottom pixels areas mapped in the sphere are
overlapped during projection into 2D rectangular plane, there are some distortions in those areas.



Appl. Sci. 2019, 9, 760 40f18

AN N Top

7/ NN

rop ] .
s By

A LEF ac Ny
| I I I S B | | F, o \—\/ Left Front Right Back
Tong RIEI‘
| I B N A ! Botom J
(a) (b)

Figure 3. (a) Equirectangular projection; and (b) cubemap projection.

As shown in Figure 3b, the CMP projection is widely used nowadays for 360 video coding with six
square faces. By inscribing the sphere with 360 videos in a regular hexahedron, each face is projected
into a square. In some cases, it can reduce the size of the video compared to the ERP projection.
However, there are some distortions on each edge of the squares. Because CMP projection samples the
pixels non-uniformly, the video with CMP projection inefficiently represents the sphere.

As shown in Figure 4, the areas closer to the cube side edges are more densely sampled. Therefore,
ACP projection was developed to overcome the explained problems. It can process approximately
uniform sphere sampling while preserving the packing scheme.

Figure 4. Cubemap sampling.

The function shown in Equation (1)

0.34 — 1/0.342 — 0.09 [x
%] )

£(x) = sgn(x) "

modifies the lookup vectors, which are used in 2D to 3D conversion. For 3D to 2D conversion, the
inverse function of Equation (2) is used when modifying the lookup vectors:

g(x) = sgn(x)(—0.36x% 4+ 1.36 |x|) 2)

Consequently, ACP projection enlarges the center of the cubemap in CMP, as shown in Figure 5.
Figure 5b shows that ACP can make the center of the image become larger when compared to CMP,
while CMP focuses on the overall image, as shown in Figure 5a.



Appl. Sci. 2019, 9, 760 50f18

Figure 5. (a) Front face of 3 x 2 cubemap projection (CMP); and (b) front face of 3 x 2 adjusted
cubemap projection (ACP).

2.3. Video Transcoding

Video transcoder studies are reviewed in [8,9]. Regarding transcoding, there are some concepts
commonly used in multimedia tasks:

e  Transcoding is the process at a high level of retrieving compressed (or encoded) content, the next
is decompressing (or decoding) and then changing somehow to recompress it again. For example,
we can change the audio/video format (codec) from MPEG-2 video source to H.264/AVC video
and Advanced Audio Coding (AAC) audio. Other tasks might be adding various digital contents
to a video stream.

e  Trans-rating specifically focuses on changing the bitrate, such as taking the 4K Ultra-HD video
input stream at 10 Mbps and converting it to one or more lower bitrates: HD at 4 Mbps, 2 Mbps,
1 Mbps, etc.

e  Trans-sizing refers specifically to video frame change (can be understood as up-sampling,
down-sampling). Normally, the video source often has high video frame size such as 4K
(4096 x 2048), 8K, or even 12K. Thus, the trans-sizing usually is downgrading the resolution, for
example downgrading from 4K ultra-high-definition (UHD) resolution (3840 x 2160) to 1080p
(1920 x 1080) or 720p (1080 x 720).

Generally, transcoding is the combination or one or all of the above methods. The video conversion
requires intensive computational power, so transcoding often requires acceleration capabilities of
central processing units (CPUs) or graphics processing unit (GPU). Y. Chen et al. [10] proposed a
solution for H.264/AVC to HEVC transcoding using parallel processing based on multicore platforms.
Their proposed method speeds up the transcoding time to 5 frames/s for 720p and 1.5 frames/s for
1080p with the specified hardware platform. P.V. Luong et al. [11] proposed a method to reduce the
transcoding complexity based on deriving an optimal strategy. They proposed their system for using
various transcoding techniques to reduce the complexity in both prediction unit (PU) and coding unit
(CU) at optimization levels. The authors achieved an effective approach that can reduce the complexity
by around 82% while maintaining the bitrate loss below 3%. D. Honrubia et al. [12] proposed an
adaptive fast quadtree level decision (AFQLD) algorithm. The main idea is AFQLD algorithm to
exploit the information gathered at the H.264/AVC decoder in order to make faster decisions on CU
splitting in HEVC using a Naive-Bayes probabilistic classifier, which is determined by a supervised
process of data mining. The AFQLD algorithm for the three levels achieves a quantitative speedup



Appl. Sci. 2019, 9, 760 60f18

of approximate 2.31 times on average with the time reduction of around 56.7%. In this paper, the
proposed method uses an efficient library from Intel to implement transcoding task with advanced
points. This library supports multiple threads for transcoding in various kinds and allows transcoding
both video and audio streams.

2.4. Data Encryption for Surveillance System

In information security systems to secure users data, different encryption algorithms are widely
used. Users can access and interact with video streaming systems anywhere on any device such as
home, office, video-conferencing, etc. Therefore, user’s information is easily accessible by intruders
due to tje lack of security protocols. The necessity of safety communications becomes vital as the cost
of data loss is increasing. In the field of information security, especially in video surveillance systems,
data encryption is used to protect the data.

X. Zhang et al. [13] proposed lightweight encryption method based on automated cell subclassing
to protect privacy in video surveillance. The authors extracted region of interests (Rols) in the initial
state of the eight-cell automata, which is controlled by randomly selected rules for the transition states
of layered cellular automata (LCA). Therefore, all Rols are encrypted synchronously and independently.
Encrypted Rol is stored on the camera side and that can be interactively authenticated by the user
through a required way. Video surveillance without Rol will be accessible in real time by the user.
C. Wampler et al. [14] analyzed information leaking in video over IP traffic, including for encrypted
payloads. The authors verified leakage by analyzing the metadata of network traffic including video
bandwidth, packet size, and arrival time between packets. Event detection using metadata analysis
is possible even if common encryption methods such as AES, and Secure Sockets Layer (SSL) are
applied to video streaming. The leakage information has been observed on the camera and many codes.
Through various experiments of the x264 codec [15], the basis for the ability to detect events through
the package time was set. Based on this, event detection can be implemented on commercial streaming
video applications. In this paper, the proposed method implements an encryption mechanism for
specified Network Abstraction Layer (NAL) units based on ARIA cryptographic.

3. Fast Multiple Transcoding and Encryption

3.1. Multiple Transcoding

Instead of using a multiplexer to aggregate various video streams, the proposed method provides
a parallel-processing mechanism for transcoding based on Intel Media Software Development Kit (Intel
Media SDK), ARIA block cypher encryption and FFmpeg library. Additionally, Real-Time Streaming
Protocol (RTSP) is used to handle input/output real-time streams from CCTV cameras to RTSP clients.
As shown in Figure 6, each video transcoding session was handled by a CPU-core within one or more
threads. One thread can process a number of video frames as a batching or all frames of a video stream.
Figure 7 shows an example of parsing input streams, pipelining and multi-threading techniques handle
the input streams as parallel processing. Each input stream could be attached to one session. Then, all
sessions will be joined together to work simultaneously.



Appl. Sci. 2019, 9, 760 7 of 18

FFmpeg Library |
Intel Media SDK |
ARIA Crypto Library’_l
Receiver Transcoding Encryption RTSP Server
| Receiving Receiving Re-streaming Re-streaming
1| Stream #1 Stream #n Stream #1 Stream#n |+
U SO SR 1111152 SO — —
: RTSP RTSP
Input Stream [ | Input Stream Stream #1 Stream #n
A i : | ARIA Crypto Library l 1
: OpenHEVC Decryption & | | Decryption &
Decoding #1 Decoding #n
CCTV Cameras P RTSP Client
{ CCTVs:  iControl Center o
Figure 6. Multiple real-time streaming over transcoder box.
____Joining All Sessions Pipelineing Techniqure-Multple Transcoding/Encryption Threads Pipeline 0
Initialize Session 0 H Input Stream 0 H Transcoding —[ Aria Encryption H Output Stream 0 H Finalize Session 0 \ :
i 1P|pel|nel _______

Initialize Session 1 H Input Stream 1 H Transcoding H Aria Encryption H Output Stream 1 H Finalize Session 1 } :

e RSSO USRS Pipolisen______

Initialize Session n H Input Stream n H Transcoding H Aria Encryption l—[ Output Stream n }—{ Finalize Session n l 2

Figure 7. Transcoding and encryption for video streaming on multi-core platforms.

To handle multiple transcoding sessions, FFmpeg library software [16] can also provide a mixing
mechanism to multiplex video streams. However, the outputting, re-encoding and decoding multiple
times in the same FFmpeg process will slow down some encoders. A few video encoders such
libx264 [15] perform the encoding as threading, so they allow for parallel processing. However, audio
encoding may be serial and become the bottleneck issue. This leads to FFmpeg treating them as real
serial-processing. Thus, FFmpeg may not use all available cores. Another available solution can be
achieved by using multiple FFmpeg instances running in parallel or piping from one FFmpeg to another
encoding session. All these reasons lead to FFmpeg not working effectively for parallel encoding.

Even though Intel Quick Sync Video technology [17] integrated into FFmpeg can handle multiple
sessions, it can only support two sessions of 1080p video streams at the same time with high-latency
for the second streaming. Therefore, the proposed method suggests directly using video and audio
processing acceleration application programming interfaces (APIs) to improve the parallel processing
for the encoders. As shown in Figure 7, to optimize CPU cores and graphics power, the proposed
method uses Intel Media Software Development Kit (SDK) APIs to accelerate the video transcoding
application as in parallel processing. The main architecture of Intel Media SDK is illustrated in Figure 8.



Appl. Sci. 2019, 9, 760 8 of 18

Video Processing Applications ‘

t

Intel Media SDK APIs
Media Library Dispatcher (encode, decode, processing)

[T e — F— [

Intel HD Graphics
Hardware Acceleration
Optimized Media Library

Future Intel
Multicores Architecture
Optimized Media Library

Intel G45/GM45
Optimized Media Library

Intel Processor
Optimized Media Library

‘ DXVA/DDI Extensions ‘

{ Graphics Drivers ]

Figure 8. Intel Media SDK architecture.

To encrypt the video and audio simultaneously, we propose a model to transcode multiple audio
and video sessions. The audio sessions are classified into two categories. First, audio data from
video sessions are demuxed, and then the transcoder convert audio codec into AAC codec, as shown
in Figure 9. After that, the muxer combines video and audio elementary stream into one output
bitstream. Second, another audio transcoder is designed to adopt independent audio sessions based
on importance in emergency situations. These audio microphones are set up near the CCTV camera to
provide voice call. The audio transcoder allows converting multiple audio sessions simultaneously.

> Decode > Processing > Encode

Input Video Stream

Video elementary stream

Audio elementary stream

Decode > Processing Encode Output Video Stream

v

[
>

Figure 9. Video transcoding—elementary streams.

3.2. ARIA Encryption

To adapt secured video transmission over the Internet, an encryption algorithm is applied
to encrypt the transcoded video bitstream. From the security point of view, various well known
encryption algorithms can be used, such as Advanced Encryption Standard (AES), Digital Signature
Algorithm (DSA), etc. Additionally, to provide a real solution for CCTV system specially in Korea,
the ARIA encryption algorithm is used, which implemented the first version under the government’s
standard. The proposed system was considered using cryptographic and plaintext attacks on
ARIA to check the secured capability. Moreover, some related studies were verified to estimate
the performance of ARIA. Alex Biryukov et al. [18] provided the security and performance of
ARIA encryption in specified report. S. Li et al. [19] showed some cryptanalysis analytics on ARIA.
A. Pandey et al. [20] showed the comparative survey of different cryptographic algorithms, which
included ARIA cryptographic algorithm.

ARIA algorithm is a block cipher designed by a large group of researchers from South Korea.
Additionally, the Korean Agency for Technology and Standards voted and selected it as an efficient



Appl. Sci. 2019, 9, 760 90f 18

standard cryptographic technique in 2004. More information about ARIA encryption can be reviewed
in [21-23]. The ARIA algorithm provides a mechanism that uses a substitution-permutation network
structure based on the well-known AES encryption. The interface is similar to AES encryption such as
the key size of 128, 192, or 256 bits with 128 bits block size. Moreover, the number of rounds depends
on the key size with possible values of 12, 14, or 16. The ARIA encryption algorithm uses two 8 x 8-bit
S-boxes, and their inverses in alternate rounds; one of these boxes is the Rijndael S-box [21].

To achieve real-time transcoding/encryption, the proposed system uses ARIA to encrypt each
output video stream from the transcoder, as shown in Figures 6 and 7. Instead of encrypting whole
output stream, ARIA crypto library [24] was used to encrypt a few special frames of video streams.
For example, to perform encryption while transcoding to HEVC, the proposed system only encrypts
VPS, PPS and SPS slices. Additionally, the encryption mechanism also allows the transcoder encrypting
a part of the video stream as the length of the multiple of 16 bytes. As shown in Figure 10, “encDataLen”
is required as multiple of 16 bytes because of the “padding” issue. The padding issue leads to hard
work of decryption in client-side or control center. In this paper, we propose the encryption for both
video and audio data.

startCodeLen bytes encDataLen bytes (L - encDataLen - startCodeLen) bytes
@ esssssssssssansannnn PG ernnnnnnnnnnnnnnnnnnnnnn PG = rsssmmssmssssssssssssssEEsEssssssssssssEEn
StartCod
Ox(?oooc())o%l Encrypted Data Remaining Data
or 0x000001
@ eEEEEEEEEEEEEEE SRS EEEEEEEEEEEESESSESAEESESSESAESSESSESSESSESSESSESSESSESSESEESSEEEESEEEEEEEEEE=s >

Encrypted HEVC Bitstream File Length (L)

Figure 10. Output encrypted HEVC stream—Type 1.

The master key and round-key can be pre-generated and stored at both client and server sides.
The other option is that all keys are attached to full name (RTSP) stream at the server side, as shown in
Figure 11. Then, clients can interact with some particular points inside RTSP stream to detach master
key and round-key. In this case, the location and length of these keys are stored in a secret process,
which is only shared between server and client by another communication channel.

Position of Encryption Key

startCodeLen bytes keyLen bytes encDataLen bytes (L - encDataLen - startCodeLen - keyLen) bytes
@rsmsssssssssssssnnnnn P rnnnnnnnnnnannnnnnnn .. PG rsnnsnnsnnnnnannnnnnnnnn PG emsmmamssEsssssEsssssEssEEsEssEEsEsEEEEEEEEE >
()it&%%(())((i)%l Encryption Key Encrypted Data Remaining Data
or 0x000001
@ EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEESEEEEESEEEEESEESESSSSSSESEESESESSSSESEESESEESSSEEEEEEEEESEEEEEEEEEd >

Encrypted HEVC Bitstream File Length (L)

Figure 11. Output encrypted HEVC stream—Type 2.
3.3. RTSP Streaming

Real-time transmission protocol (RTSP) is a network control protocol designed for use in
entertainment and communication systems to control streaming media servers. The protocol is
used to establish and control communication sessions between endpoints. The transmission of data
online is not the task of RTSP. Most RTSP servers use real-time transmission protocols in combination
with real-time control protocols to distribute streaming media. However, some vendors implement
proprietary transmission protocols. More information about RTSP is extensively explained in [25,26].

To provide live streaming services from CCTV camera to clients, the proposed method is a
server—client model using RTSP protocol. This model consists of two part:

1. RTSP server side: Provides multiple real-time RTSP streams at the same time. Each RTSP stream

is transcoded and encrypted by transcoder box.
2. RTSP client side: Customer’s devices or control center uses computer, smartphone or tablet to
decrypt/decode RTSP stream.



Appl. Sci. 2019, 9, 760 10 0of 18

As shown in Figure 12, RTSP server functionality was merged into transcoding to avoid overhead
of computational complexity of system while adding more functionalities. Client-side consists of two
main functionalities: decryption and decoding RTP stream and rendering video. Regarding multiple
live streaming sessions, an optimized RTSP based FFmpeg library was implemented to support
multiple streaming simultaneously.

2D, 360 video HM Encoder GEU)
test sequences FFmpeg
360 C: @
amera
A

SAMSUNG Mobile VR HMD :
Saae :
Hanhwa CCTV 1 Gachon University Transcoder box RTSP Server > Control Center '
Network | Transcoding & Encrypting Client 1 !

v

Control Center E
Hanhwa CCTV 2 Client 2 :
Server side E E Client side |

Figure 12. Testbed for live CCTV system.

4. Performance Evaluation

4.1. Testbed Scenario

To demonstrate the operation of the proposed method in a real environment, we implemented a
testbed to verify the ability of real-time transcoding and encryption. For experimental measurements,
we set up a testbed scenario, as shown in Figure 12. We set up a transcoder box with a Intel(R) Core(TM)
i7-7500U 2.70GHz processor (Intel Corporation, Santa Clara, CA, USA), 16 GB of memory with Linux
Centos 64-bits version 3.10.0-862.9.1.el7.x86_64 (gcc version 4.8.5 20150623 (Red Hat 4.8.5-28) (GCC))
OS. We also used mobile virtual reality-based bead-mounted-device, desktop, and laptop as clients in
the control center. Additionally, we installed two Hanwha CCTV cameras [27] as 2D cameras and a
Samsung 360 camera as 360 CCTV camera. Table 1 shows the standard 360 4K video test sequences in
detail. These video test sequences were released by JCT-VC, as shown in Figure 13.

Table 1. The 360 videos bitstreams by JCT-VC.

Parameters Value
InputFile DrivingInCity 3840 x 1920_30fps_8bit_420_erp.yuv
Width 3840
Height 1920
InputFile KiteFlite 4096 x 2048_30fps_8bit_420_erp.yuv
InputFile Harbor 4096 x 2048_30fps_8bit_420_erp.yuv
InputFile GasLamp 4096 x 2048_30fps_8bit_420_erp.yuv
InputFile Trolley 4096 x 2048_30fps_8bit_420_erp.yuv
SourceWidth 4096
SourceHeight 2048
InputBitDepth 8
InputChromaFormat 420
FrameRate 30
FrameSkip 0
FramesToBeEncoded 300

Level 5.2




Appl. Sci. 2019, 9, 760 110f 18

© d) ' ©

Figure 13. The 360 video test sequences: (a) DrivingInCity; (b) Harbor; (c) KiteFlite; (d) Trolley; and
(e) GasLamp.

Regarding software, HM software with 360 libraries [24] was used as video encoder and
openHEVC software [28] as video decoder. Intel Media SDK [29] was used to accelerate transcoding
by multiple threads. Crypto++ crypto library [30] was used for bitstream encryption/decryption.
The hevcbrowser software [31] was used to perform the status of HEVC bitstream. To evaluate
performance, ERP Peak Signal-to-Noise Ratio (PSNR) software [32] and FFmpeg were used as
estimation tools. Additionally, HM and 360 libraries were used to process a spherical 360 video with
ERP projection [33]. The ERP projection is described in detail in Table A1. The encoding configuration
parameters of 360 bitstreams are listed in Table A2. The 2D video test sequences were also encoded
using HM version 16.15 within standard configurations for 8 bits.

To evaluate the quality of the output 360 videos, we calculated the distortion in the sphere to
properly respond to our view of the 360 videos, instead of calculating the PSNR in rectangle plane.
We used PSNR sphere (WS-PSNR) [33] weighted index method for calculating distortion of 360 videos
reproduced in the sphere domain to show the difference between the reconstructed video and the
original 360 video. The WS-PSNR software [32] provides WS-PSNR calculations for both ERP window
and entire ERP system, as shown in Figure 14. To perform performance evaluations for the proposed
method, we used a video test sequences as representation data for both 360 CCTV camera and the 2D
CCTV camera.

____________________________________________

____________________________

--r--———k-———-r—-q
1
1
I
|
!
I
1
1
L

_____________________________________________

Figure 14. Full equirectangular projection (ERP) and windowed ERP.
4.2. Evaluation

As shown in Figure 15, the input video bitstream had a duration of 10.03 s, and the average
transcoding time for the six sessions was approximately 7.05 s. In six transcoding sessions, there were
three sessions using ARIA encryption and three sessions without encryption. In sessions with



Appl. Sci. 2019, 9, 760 12 0f 18

encryption, transcoding was approximately equivalent to non-encryption sessions, and, in Session 1,
the total time was only 7.02 s. For example, for larger videos, a concatenated video from DrivingInCity
test sequence was 100.3 s, and transcoding and encryption averaged only 69.04 s, as shown in Table 2.
Through the transcoding and encryption of different lengths of various 360 videos, we conclude that the
transcoding and encryption system could process two 4K sessions or six 1080p sessions, and only took
up around 70-75% of the video duration. The average transcoding rate was 36.4 frames/s for 1080p and
33.6 frames/s for 4K resolution video. Table 3 shows that the proposed method could also transcode
2D video in real-time, and the transcoding time was approximately 60% of 2D video duration.

Transcoding Time

7.06

7.04913
705 7.04816

7.04271
7.04
_ 7.0291
7.03
7.02074

02
70 7.01198
7.01 7.0064
6.98

Session 0 Session1 Session2 Session3 Session4 Session5 Common

Time (secs)

o

Session 0: 306 frames, Aria encryption disable, bitrate 4Mbps, GOP 8
Session 1: 306 frames, Aria encryption enable (keyLen 32 bytes, encDatalLen 128 bytes), bitrate 4Mbps, GOP 8
Session 2: 306 frames, Aria encryption disable, bitrate 4Mbps, GOP 8
Session 3: 306 frames, Aria encryption enable (keyLen 32 bytes, encDataLen 192 bytes), bitrate 4Mbps, GOP 8
Session 4: 306 frames, Aria encryption disable, bitrate 4Mbps, GOP 8
Session 5: 306 frames, Aria encryption enable (keyLen 24 bytes, encDatalLen 128 bytes), bitrate 4Mbps, GOP 8

Figure 15. The DrivingInCity test sequence H.264/AVC to HEVC—six 1080p transcoding sessions.

Table 2. The 360 test sequences—common transcoding time.

Test_Sequence Video Duration (s): Transcoding Time (s) Video Duration (s): Transcoding Time (s)
DrivingInCity_1920 x 1080 10.03 (s) 7.04 (s) 100.3 (s):69.15 (s)
DrivingInCity_3840 x 1920 10.03 (s):8.92 (s) 100.3 (s):88.36 (s)

GasLamp_1920 x 1080 12.00 (s):8.45 (s) 120.0 (s):84.04 (s)
GasLamp_4096 x 2048 12.00 (s):9.07 (s) 120.0 (s):90.21(s)
Harbor_1920 x 1080 12.00 (s):8.58 (s) 120.0 (s):85.32 (s)
Harbor_4096 x 2048 12.00 (s):9.13 (s) 120.0 (5):90.54 (s)
KiteFlite_1920 x 1080 12.00 (s):8.66 (s) 120.0 (s):85.23 (s)
KiteFlite_4096 x 2048 12.00 (s):9.01 (s) 120.0 (s):90.29 (s)
Trolley_1920 x 1080 12.00 (s):8.64 (s) 120.0 (s):86.12 (s)
Trolley_4096 x 2048 12.00 (s):9.15 (s) 120.0 (s):90.76 (s)

Table 3. JCT-VC 2D test sequences—common transcoding time.

Test_Sequence

QP32 QP37

Basketball_1920 x 1080_500 frames_25fps 11.89s 11.964s 11.965s 11.956s
Cactus_1920 x 1080_500 frames_25fps 11.92s 11.676s 11.529s 11.075s
Kimono_1920 x 1080_240 frames_25fps ~ 5.61s 5.67s 584s 5765

ParkScene_1920 x 1080_240 frames_25fps 5.596s 5.643s 5.678s 5.715s

As shown in Tables 4 and 5, a comparison between x265 and proposed transcoding was processed
based on measurements of 2D and 360 video test-sequences. We used libx265 [34] with FFmpeg to verify
all transcoding sessions for these test sequences. Consequently, we conclude that the proposed method



Appl. Sci. 2019, 9, 760 130f 18

could speed up the transcoding by up to 195% when compared to x265. The highest achievement was
7.03 s for 360 transcoding time with a speed of 42.8 frames/s, and 2D video transcoding speed could
achieve up to 42.88 frames/s.

Table 4. The 2D transcoding comparison.

Test_Sequence x265 Proposed

Basketball_1920 x 1080_500 frames_25fps_qp22 53.45s (9.36 fps) 11.89 s (42.05 fps)
Cactus_1920 x 1080_500 frames_25fps_qp22 42.23 5 (11.84 fps) 11.92 s (41.94 fps)
Kimono_1920 x 1080_240 frames_25fps_qp22 24.79s (9.68 fps)  5.61 s (42.7 fps)

ParkScene_1920 x 1080_240 frames_25fps_qp22 21.76s (11.03 fps) 5.596 s (42.88 fps)

Table 5. The 360 transcoding comparison.

Test_Sequence x265 Proposed
DrivingInCity_1920 x 1080_300 frames 20.78 s (14.48 fps) 7.03 s (42.8 fps)
GasLamp_1920 x 1080_300frames 22.12's (13.56 fps) 8.45s (35.50 fps)
Harbor_1920 x 1080_300frames 22455 (13.37 fps) 8.58 s (34.9 fps)
KiteFlite_1920 x 1080_300frames 22.37 s (13.41 fps) 8.65 s (34.68 fps)
Trolley_1920 x 1080_300frames 22.29s (13.45 fps) 8.62 s (34.80 fps)

To evaluate the efficiency of ARIA encryption, we used FFprobe (a tool of FFmpeg software)
and hevcbrowser software to verify output HEVC bitstreams for both HEVC only and HEVC within
encryption. As shown in Figure 16a, FFmpeg tools showed that HEVC bitstream of Session 0 was
easy to parse or decode. Figure 16b shows that output HEVC encrypted bitstream of Session 1 could
not be parsed or decoded. The reason was the first NAL units were encrypted to a different format.
The output 360 DrivingIncCity video was decoded by openHEVC decoder, as shown in Figure 16¢c.
Additionally, by using hevcbrowser software, as shown in Figure 17b, we can confirm that VPS, PPS,
and SPS NAL units were encrypted successfully, while Figure 17a shows the output HEVC bitstream
of Session 0 without encryption. In Table 6, the WS-PSNR values show unsatisfactory performance
compared to other quality metrics when it comes to estimating the quality of images and videos
as perceived by humans. We verified the comparison for both 1080p and 4K video. All WS-PSNR
values of three channels were higher than 38 (dB), thus the quality of 360 videos at control center was
reasonable to feel fully immersed in 360 videos.

Tnput %0, heve, from 'out_1.h265" [heve (@ 0x3b86160] Format heve detected only with low score of 1,
Duration: N/A, bitrate: N/A Imisdetection possible!
Stream #0:0: Video: heve (Main), yuv420p(tv), [heve (@ 0x3b87920] Invalid NAL unit 0, skipping.
1920x1080 [SAR 1:1 DAR 16:9], 30 fps, 30 tbr, 1200k tbn, 30 tbe| | [heve @ 0x3b87920] PPS id out of range: 0
@ [AVBSFContext (@ 0x3b86820] Invalid NAL unit 0, skipping.
Input #0, mov, mp4, mda_ 3gp, [heve @ 0x3b87920] Invalid NAL unit 0, skipping.
Duration: 00:00:10.03, start: 0.000000, bitrate: 2137 kb/s [heve @ 0x3b87920] PPS id out of range: 0
Stream #0:0(und): Video: heve (Main) (hevl / 0x31766568), [heve (@ 0x3b87920] Error parsing NAL unit #0.
yuv420p(tv, progressive), 1920x1080 [SAR 1:1 DAR 16:9]. [heve @ 0x3b87920] PPS id out of range: 0
2132 kb/s, 30 fps, 30 thr, 15360 tbn, 30 the (default) Last message repeated 1 times
Metadata: [heve (@ 0x3b87920] Error parsing NAL unit #1.
handler name : VideoHandler [heve @ 0x3b87920] PPS id out of range: 0
(© (®)

Figure 16. FFmpeg parsing: (a) unencrypted HEVC bitstream; (b) encrypted HEVC bitstream;
(c) decoded output video.



Appl. Sci. 2019, 9, 760 140f 18

5 out_1.h265 B’ gut_2h265

File Help File Help
Open  Wamingz Info HDR Info o Wan Info HOR Info

Offset Length Mal Unit Type Infe

. Offset Length Mal Unit Type Infe
1 10n0 (D) 37 MAL_VPS Video paramete...
e - 1 Cheld () 138 INVALID
025 (37) 59 MAL_5P35 SEqUENCE para..
2 (mBa(138) 92778 MAL_IDR_W_RADL IDR Slice
3 OwB0 (96) 1 MNAL_PPS Picture parame... )
3 (x16af4 (92018) 18 MAL_SEI_PREFIX Supplemental e...
4 Dwbb (107) N MNAL_SEI_PREFIX Supplemental e...
4 0x16b06 (92034) 10932 MAL_TRAIL R B Slice
5 (wda(13g) 92778 MNAL_IDR_W_RADL IDR Slice
5  (x195ba (103866) 17 MNAL_SEI_PREFIX Supplemental e...
0000000000 00 01 40 01 Oc O1 £Ff ££ 21 40 00 00 03 00 | ....8@
0000000010 00 03 00 78 11 coO @0 00 03 00 | L.... 0000000000 I.J 00 00 Ol 16 78 8% da bé €2 31 97 f2 3b ed4 Sa | ..... x
ARARARAARA SR AR AR AE 1A AR AR AA AT Am AT AT A1 AR An e 0000000010 £2 £f 50 ba dd &7 &8 00 7£ 75 9c 3 a7 55 4a £f | ..F...

ANARAAANTIN 38 0 se ~T ss &0 @k Ed GF 60 AA &G ~0 17 F4 he | F T

(a) (b)
Figure 17. Hevcbrowser parsing: (a) unencrypted HEVC bitstream; (b) encrypted HEVC bitstream.

Table 6. WS-PSNR (Peak Signal-to-Noise Ratio) comparison.

Test_Sequence WS-PSNR Y Channel WS-PSNR U Channel WS-PSNR V Channel
DrivingInCity_300frames_30fps_1920 x 1080 39.36 45.14 44 .52
DrivingInCity_300frames_30fps_3840 x 1920 38.68 45.33 44.63
GasLamp_300frames_30fps_1920 x 1080 41.47 46.74 46.08
GasLamp_300frames_30fps_4096 x 2048 42.19 47.34 46.61
Harbor_300frames_30fps_1920 x 1080 40.92 47.36 47.52
Harbor_300frames_30fps_4096 x 2048 41.24 48.43 48.25
KiteFlite_300frames_30fps_1920 x 1080 38.03 44.22 45.49
KiteFlite_300frames_30fps_4096 x 2048 38.94 46.05 46.83
Trolley_300frames_30fps_1920 x 1080 39.46 45.43 46.81
Trolley_300frames_30fps_4096 x 2048 39.78 47.05 47.60

Figure 18 shows the video decryption and video client display. Here, the transcoder box will
encrypt the entire video. With correct ARIA keys, as shown in Figure 18a, the video client can show the
video after the decryption process. As shown in Figure 18b, video client cannot decrypt the VPS, SPS
and PPS NAL units. Thus, it could not find correct video stream info while parsing the RTSP stream.
To verify the encryption efficiency, the proposed system was used for experiments with AES and ARIA
algorithms. Table 7 shows the comparison between AES and ARIA on the transcoder box with the
master key sizes of 128 bits and 256 bits. The results prove that the AES algorithm could provide the
encryption speed up to 33.4 times when compared to the ARIA algorithm. Additionally, transcoding
and AES encryption process could reduce the total processing time by around 5-10% when compared
to the ARIA algorithm, as shown in Table 8. The percentage of AES encryption time over the total
processing time decreases when the CCTV video duration time increases. The ARIA encryption gives
the result in the same way with higher percentage than AES encryption. Finally, from the security
point of view, AES encryption was one of the best choices to secure data.

Table 7. Secure algorithm benchmark on proposed system using Crypto++.

Secure Algorithm MiB/S Cycles Per Byte Microseconds to Setup Key and IV Cycles to Setup Key and IV

AES (128_bit key) 4648 0.55 0.237 639
AES (256_bit key) 3948 0.65 0.228 617
ARIA (128_bit key) 140 18.36 0.250 675
ARIA (256_bit key) 109 23.71 0.261 705

Table 8. Processing time comparison between ARIA and AES algorithms.

Test_Sequence ARIA Total Time ARIA Time AES Total Time AES Time

ParkScene_240 frames_25fps 5.596 s (42.88 fps) 3.16% 5.07s(47.33 fps)  2.82%
Kimono_240 frames_25fps 5.61 s (42.7 fps) 2.53% 5.39 s (44.5 fps) 2.07%
Basketball_500 frames_25fps 11.89 s (42.05 fps) 2.28% 11555 (43.29 fps)  1.14%
Cactus_500 frames_25fps 11.92 5 (41.94 fps) 2.19% 11.28 s (44.32 fps)  0.95%




Appl. Sci. 2019, 9, 760 15 of 18

EF C\Wrdows\System3Z\amd ece-

(@) (b)
Figure 18. Video client decrypts encrypted CCTV video bitstream: (a) with correct keys; and (b)
without correct keys.

5. Conclusions

The development of 360 video technology has led to the promised development of CCTV
system, which has been maintained with long-standing technologies. In this paper, we propose the
transcoding and encryption scheme for live CCTV video streams in real-time. The proposed method
can be used for low bandwidth and capacity for 2D/3D CCTV systems that only support H.264
and earlier codecs. Experimental results show that the combination of parallel video processing and
encryption enhances the security without increasing the overall complexity of the system, while still
ensuring the real-time live streams from CCTV cameras to control center. The proposed system
optimized real-time transcoding for six 1080p sessions and two 4K sessions with speeds of 36.4 FPS
and 33.6 FPS, respectively.

In the future, we intend to apply cubemap projection extensively into 360 CCTV cameras to
improve the quality of video input. Additionally, the application of cubemap projection also offers
many advantages in optimizing the encoding of the 360 CCTV cameras. In addition, perfecting the
encoding/decoding mechanism is also an important factor in improving the performance of CCTV
systems in the coming years. Regarding security issue, we also plan to experiment with applying
cryptographic attack and plaintext attack to check the security feature.

Author Contributions: Conceptualization, Data curation and Writing—original draft, T.T.L.; Data curation and
Investigation, J.J.; and Project administration, Supervision and Writing—review and editing, E.-S.R.

Funding: This work was supported by Institute for Information & communications Technology Promotion (IITP)
grant funded by the Korea government (MSIP) (No. 2017-0-00307, Development of Tiled Streaming Technology
for High Quality VR Contents Real Time Service). It also was supported by the MSIT (Ministry of Science and
ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-2017-0-01630)
supervised by the IITP (Institute for Information & Communications Technology Promotion).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Tables Al and A2 are for 360 video encoding using ERP projection.



Appl. Sci. 2019, 9, 760 16 of 18

Table Al. Equirectangular projection for 360 video.

Parameters Value Note
SphereVideo 1 1: 360 video; 0: traditional video;
InputGeometryType 0  0: equirectangular; 1: cubemap; 2: equalarea;
SourceFPStructure 1100 frame packing order
CodingGeometryType 0
CodingFPStructure 1100 frame packing order
SVideoRotation 000 rotation along X, Y, Z;
CodingFaceWidth 0 0: automatic calculation; 4096 for 8K; 3328 for 4K;
CodingFaceHeight 0 0: automatic calculation; 2048 for 8K; 1664 for 4K;
InterpolationMethodY 5  interpolation method for luma, 0: bicubic; 1:NN, 2: bilinear, 3: bicubic, 4: lanczos2, 5: lanczos3
InterpolationMethodC 4 interpolation method for chroma, 0: bicubic; 1:NN, 2: bilinear, 3: bicubic, 4: lanczos2, 5: lanczos3
InternalChromaFormat 420 internal chroma format for the conversion process;
SPSNR_NN 1 enable end-to-end S-PSNR-NN calculation;
SPSNR_I 0 enable end-to-end S-PSNR-I calculation;
CPP_PSNR 0 enable end-to-end CPP-PSNR calculation;
E2EWSPSNR 1 enable end-to-end WS-PSNR calculation;
CODEC_SPSNR_NN 1 enable codec S-PSNR-NN calculation;
WSPSNR 1 enable codec WS-PSNR calculation;
CF_SPSNR_NN 1 enable cross-format S-PSNR-NN calculation;
CF_SPSNR_I 0 enable cross-format S-PSNR-I calculation;
CF_CPP_PSNR 1 enable cross-format CPP-PSNR calculation;
SphFile ../ cfg-360Lib/360Lib/sphere_655362.txt
ViewPortPSNREnable 0 1: Yes; 0: No
ViewPortList 275.075.00.00.075.0 75.0 —90.0 0.0
ViewPortWidth 428 1816 for 8K; 856 for 4K; 428 for Full HD
ViewPortHeight 428 1816 for 8K; 856 for 4K; 428 for Full HD

DynamicViewPort PSNREnable 1 1: Yes; 0: No
275.075.00 —45.0 —15.0 299 45.0 15.0 75.0 75.0 0 —135.0 —15.0 299 —45.0 15.0
1816 for 8K; 856 for 4K; 428 for Full HD;

1816 for 8K; 856 for 4K; 428 for Full HD;

DynamicViewPortList
DynamicViewPortWidth 428
DynamicViewPortHeight 428

Table A2. Coding configuration of 4K 360 video.

Parameters Value Note
InputFile videosequences 4096 x 2048_30fps_8bit_420_erp.yuv Format name
InputBitDepth 8 Input bitdepth
InputChromaFormat 420 Ratio of luminance to chrominance samples
FrameRate 30 Frame Rate per second
FrameSkip 0 Number of frames to be skipped in input
SourceWidth 4096 Input frame width
SourceHeight 2048 Input frame height
FramesToBeEncoded 300 Number of frames to be coded
Level 52
DynamicViewPort PSNREnable 1
DynamicViewPortList 275.075.00210 —18 299 300 12 75.0 75.0 0 30 —44 299 120 —14
DynamicViewPortWidth 856 (1816 for 8K; 856 for 4K; 428 for Full HD)
DynamicViewPortHeight 856 (1816 for 8K; 856 for 4K; 428 for Full HD)
References

1. JCT-VC. High Efficiency Video Coding (HEVC). Available online:
(accessed on 17 February 2019).

2. Ohm, J.-R;; Sullivan, G.J.; Schwarz, H.; Tan, T.K.; Wiegand, T. Comparison of the coding efficiency of video
coding standards—Including High Efficiency Video Coding (HEVC). IEEE Trans. Circuits Syst. Video Technol.
2012, 22, 1669-1684. [CrossRef]

3. JCT-VC—Joint Collaborative Team on Video Coding. Available online: https://www.itu.int/en/ITU-T/
studygroups/2013-2016/16/Pages/video/jctvc.aspx (accessed on 18 February 2019).

4. Wiegand, T,; Sullivan, G.J. Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst.
Video Technol. 2003, 13, 560-576. [CrossRef]

5. WG11 (MPEG). MPEG Strategic Standardisation Roadmap; Technical Report ISO/IEC JTC1/WG11;
MovingPicture Experts Group (MPEG): Villar Dora, Italy, 2016.

https:/ /hevc.hhi.fraunhofer.de/


https://hevc.hhi.fraunhofer.de/
http://dx.doi.org/10.1109/TCSVT.2012.2221192
https://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx
https://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx
http://dx.doi.org/10.1109/TCSVT.2003.815165

Appl. Sci. 2019, 9, 760 17 of 18

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Champel, M.L.; Koenen, R.; Lafruit, G.; Budagavi, M. Working Draft 0.4 of TR: Technical Report on Architectures
for Immersive Media; Technical Report ISO/IEC JTC1/WG11; Moving Picture Experts Group (MPEG):
Villar Dora, Italy, 2017.

Wang, X.; Chen, L.; Zhao, S.; Lei, S. From OMAF for 3DoF VR to MPEG-I media format for 3DoF+,
windowed 6DoF and 6DoF VR. In Proceedings of the 119th MPEG Meeting of ISO/IEC JTC1/5C29/ WG11,
MPEG 119/m44197, Torino, Italy, 17-21 July 2017.

Kalva, H. Issues in H.264/MPEG-2 video transcoding. In Proceedings of the 1st IEEE Consumer
Communications and Networking Conference, Las Vegas, NV, USA, 5-8 January 2004; pp. 657-659.

Zhou, Z.; Sun, S.; Lei, S.; Sun, M.-T. Motion information and coding mode reuse for MPEG-2 to H.264
transcoding. In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems, Kobe, Japan,
23-26 May 2005; pp. 1230-1233.

Chen, Y.; Wen, Z.; Wen, J.; Tang, M.; Tao, P. Efficient software H.264/ AVC to HEVC transcoding on distributed
multicore processors. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1423-1434. [CrossRef]

Luong, P.V; De Praeter, ].; Van Wallendael, G.; Van Leuven, S.; De Cock, J.; de WalleE, R.V. Efficient bit rate
transcoding for high efficiency video coding. IEEE Trans. Multimed. 2016, 18, 364-378.

Diaz-Honrubia, A.J.; Martinez, ].L.; Cuenca, P.; Gamez, ].A.; Puerta, ] M. Adaptive fast quadtree level decision
algorithm for H.264 to HEVC video transcoding. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 154-168.
[CrossRef]

Zhang, X.; Seo, S.H.; Wang, C. A lightweight encryption method for privacy protection in surveillance videos.
IEEE Access 2018, 6, 18074-18087. [CrossRef]

Wampler, C.; Uluagac, S.; Beyah, R. Information leakage in encrypted IP video traffic. In Proceedings of
the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USD, 6-10 December 2015.
VLC x264 Library. Available online: https://www.videolan.org/developers/x264.html (accessed on
17 February 2019).

FFmpeg Software. Available online: https:/ /www.ffmpeg.org/ (accessed on 17 February 2019).

Intel. Quick Sync Video Technology. Available online: https://www.intel.com/content/www /us/en/
architecture-and-technology/quick-sync-video/quick-sync-video-general.html (accessed on 17 February 2019).
Security and Performance Analysis of Aria. Available online: https://www.esat.kuleuven.be/cosic/
publications/article-500.ps (accessed on 17 February 2019).

Li, S; Song, C. Improved impossible differential cryptanalysis of ARIA. In Proceedings of the
2008 International Conference on Information Security and Assurance (isa 2008), Busan, Korea,
24-26 April 2008.

Pandey, A.; Rizvi, M.A. Comparative survey of different cryptographic algorithm. Int. J. Sci. Eng. Res.
2017, 8, 41-44.

Lee, J.; Kwon, D.; Kim, C. IETF RFC: ARIA Encryption Algorithm; NRSI: Syosset, NY, USA, 2010.
Available online: https:/ /tools.ietf.org/html/rfc5794 (accessed on 20 February 2019).

Kwon, D.; Kim, J.; Park, S.; Soong, S.H.; Sohn, Y.; Song, ].H.; Yeom, Y.; Yoon, E.-J.; Lee, S.; Le, J.; et al.
Aria Encryption KISA. In Proceedings of the Information Security and Cryptology (ICISC 2003), Seoul, Korea,
27-28 November 2003; LNCS 2971, pp. 432-445. Available online: http:/ /www.math.snu.ac.kr/~jinhong/
04Aria.pdf (accessed on 20 February 2019).

Kim, W.; Lee, J.; Park, J.; Kwon, D. IETF RFC: ARIA Cipher Suites to Transport Layer Security (TLS);
NRSI: Syosset, NY, USA, 2011. Available online: https://tools.ietf.org/html/rfc6209 (accessed on
20 February 2019).

HM Software and 360 Library. Available online: https://hevc.hhi.fraunhofer.de/ (accessed on
18 February 2019).

Schulzrinne, H.; Rao, A. Lanphier, R. IETF RFC: Real Time Streaming Protocol; RealNetworks:
Seattle, WA, USA, 1998. Available online: https:/ /tools.ietf.org/html/rfc2326  (accessed on
20 February 2019).

Schulzrinne, H.; Rao, A.; Lanphier, R.; Westerlund, M.; Stiemerling, M. IETF RFC: Real-Time Streaming
Protocol Version 2.0; Westerlund Ericsson, M., Stiemerling, M., Eds.; University of Applied Sciences
Darmstadt: Darmstadt, Germany, 2016. Available online: https:/ /tools.ietf.org/html/rfc7826 (accessed on
20 February 2019).


http://dx.doi.org/10.1109/TCSVT.2014.2380231
http://dx.doi.org/10.1109/TCSVT.2015.2473299
http://dx.doi.org/10.1109/ACCESS.2018.2820724
https://www.videolan.org/developers/x264.html
https://www.ffmpeg.org/
https://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
https://www.esat.kuleuven.be/cosic/publications/article-500.ps
https://www.esat.kuleuven.be/cosic/publications/article-500.ps
https://tools.ietf.org/html/rfc5794
http://www.math.snu.ac.kr/~jinhong/04Aria.pdf
http://www.math.snu.ac.kr/~jinhong/04Aria.pdf
https://tools.ietf.org/html/rfc6209
https://hevc.hhi.fraunhofer.de/
https://tools.ietf.org/html/rfc2326
https://tools.ietf.org/html/rfc7826

Appl. Sci. 2019, 9, 760 18 of 18

27.

28.

29.

30.
31.

32.

33.

34.

Hanwha CCTV Camera—Model LNO-6010R. Available online: https://www.hanwha-security.com/en/
products/camera/network/bullet/LNO-6010R/overview/ (accessed on 19 February 2019).

Open HEVC Decoder. Available online: Available:http://openhevc.github.io/openHEVC/ (accessed on
17 February 2019).

Intel Media SDK. Available online: https://software.intel.com/en-us/media-sdk (accessed on
17 February 2019).

Crypto++ Library. Available online: https:/ /www.cryptopp.com/ (accessed on 17 February 2019).
Hevcbrowser Software. Available online: https:/ /github.com /virinext/hevcesbrowser/projects (accesed on
19 February 2019).

ERP WS-PSNR Software. Available online: http://mpegx.int-evry.fr/software/ MPEG/Explorations/
3DoFplus/ERP_WS-PSNR (accesed on 19 February 2019).

Yu, M.; Lakshman, H.; Girod, B. A framework to evaluate omnidirectional video coding schemes.
In Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
Fukuoka, Japan, 29 September—3 October 2015.

VLC x265 Library. Available online: https://www.videolan.org/developers/x265.html (accessed on
19 February 2019).

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


https://www.hanwha-security.com/en/products/camera/network/bullet/LNO-6010R/overview/
https://www.hanwha-security.com/en/products/camera/network/bullet/LNO-6010R/overview/
 Available:http://openhevc.github.io/openHEVC/
https://software.intel.com/en-us/media-sdk
https://www.cryptopp.com/
https://github.com/virinext/hevcesbrowser/projects
http://mpegx.int-evry.fr/software/MPEG/Explorations/3DoFplus/ERP_WS-PSNR
http://mpegx.int-evry.fr/software/MPEG/Explorations/3DoFplus/ERP_WS-PSNR
https://www.videolan.org/developers/x265.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Live CCTV System
	The 360 Video Standard in MPEG
	Video Transcoding
	Data Encryption for Surveillance System

	Fast Multiple Transcoding and Encryption
	Multiple Transcoding
	ARIA Encryption
	RTSP Streaming

	Performance Evaluation
	Testbed Scenario
	Evaluation

	Conclusions
	
	References

