S-Box Based Image Encryption Application Using a Chaotic System without Equilibrium
Abstract
:1. Introduction
2. A Nonequilibrium System with Ten Terms and Its Feasibility
3. The S-Box Generation Algorithm Design and Performance Analysis
3.1. The S-Box Generation Algorithm Design
Algorithm 1: S-box generation algorithm pseudo code. |
|
3.2. Performance Analysis Results of Proposed S-Boxes
4. Design, Implementation and Analysis Results of the Image Encryption Algorithm
4.1. Design of Image Encryption Algorithm
4.2. Image Encryption Application and Security Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lorenz, E. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Rössler, O. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397–398. [Google Scholar] [CrossRef]
- Sprott, J. Some simple chaotic flows. Phys. Rev. E 1994, 50, R647–R650. [Google Scholar] [CrossRef]
- Gotthans, T.; Petržela, J. New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 2015, 73, 429–436. [Google Scholar] [CrossRef]
- Gotthans, T.; Sportt, J.C.; Petržela, J. Simple chaotic flow with circle and square equilibrium. Int. J. Bifurc. Chaos 2016, 26, 1650137. [Google Scholar] [CrossRef]
- Baptista, M.S. Cryptography with chaos. Phys. Lett. A 1998, 240, 50–54. [Google Scholar] [CrossRef]
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos–based cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef]
- Amigo, J.M.; Kocarev, L.; Szczepanski, J. Theory and practice of chaotic cryptography. Phys. Lett. A 2007, 366, 211–216. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, G.; Liu, W. A chaos–based robust wavelet–domain watermarking algorithm. Chaos Solitons Fractals 2004, 22, 47–54. [Google Scholar]
- Wu, Y.; Shih, F.Y. Digital watermarking based on chaotic map and reference register. Pattern Recognit. 2007, 40, 3753–3763. [Google Scholar] [CrossRef]
- Cavusoglu, U.; Akgul, A.; Kacar, S.; Pehlivan, I.; Zengin, A. A novel chaos based encryption algorithm over TCP data packet for secure communication. Secur. Commun. Netw. 2016, 9, 1285–1296. [Google Scholar] [CrossRef]
- Shen, Q.; Liu, W. A novel digital image encryption algorithm based on orbit variation of phase diagram. Int. J. Bifurc. Chaos 2017, 27, 1750204. [Google Scholar] [CrossRef]
- Ghebleh, M.; Kanso, A. A robust chaotic algorithm for digital image steganography. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1898–1907. [Google Scholar] [CrossRef]
- Grassi, G.; Mascolo, S. A system theory approach for designing cryptosystems based on hyperchaos. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 1999, 46, 1135–1138. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.W. A combined chaotic cryptographic and hashing scheme. Phys. Lett. A 2003, 307, 292–298. [Google Scholar] [CrossRef]
- Arumugam, G.; Praba, V.L.; Radhakrishnan, S. Study of chaos functions for their suitability in generating message authentication codes. Appl. Soft Comput. 2007, 7, 1064–1071. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, G.; Liu, W. Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recognit. Lett. 2010, 31, 347–354. [Google Scholar]
- Liu, Q.; Li, P.; Zhang, M.; Sui, Y.; Yang, H. A novel image encryption algorithm based on chaos maps with Marlov properties. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 506–515. [Google Scholar] [CrossRef]
- Stinson, D.R. Cryptography: Theory and Practice; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd ed.; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Adams, C.; Tavares, S. The structured design of cryptographically good S-boxes. J. Cryptol. 1990, 3, 27–41. [Google Scholar] [CrossRef]
- Webster, A.; Tavares, S.E. On the design of S-boxes. In Conference on the Theory and Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1985; pp. 523–534. [Google Scholar]
- Biham, E.; Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 1991, 4, 3–72. [Google Scholar] [CrossRef]
- Jakimoski, G.; Kocarev, L. Chaos and cryptography: Block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 2001, 48, 163–169. [Google Scholar] [CrossRef]
- Tang, G.; Liao, X.; Chen, Y. A novel method for designing S-boxes based on chaotic maps. Chaos Solitons Fractals 2005, 23, 413–419. [Google Scholar] [CrossRef]
- Wang, Y.; Wong, K.W.; Liao, X.; Xiang, T. A block cipher with dynamic S-boxes based on tent map. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3089–3099. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ü.; Kaçar, S.; Pehlivan, I.; Zengin, A. Secure image encryption algorithm design using a novel chaos based S-Box. Chaos Solitons Fractals 2017, 95, 92–101. [Google Scholar] [CrossRef]
- Khan, M.; Shah, T.; Batool, S.I. Construction of S-box based on chaotic Boolean functions and its application in image encryption. Neural Comput. Appl. 2016, 27, 677–685. [Google Scholar] [CrossRef]
- Özkaynak, F.; Yavuz, S. Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dyn. 2013, 74, 551–557. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ü.; Zengin, A.; Pehlivan, I.; Kaçar, S. A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system. Nonlinear Dyn. 2017, 87, 1081–1094. [Google Scholar] [CrossRef]
- Khan, M.; Shah, T. A novel image encryption technique based on Hénon chaotic map and S8 symmetric group. Neural Comput. Appl. 2014, 25, 1717–1722. [Google Scholar] [CrossRef]
- Khan, M.; Shah, T.; Mahmood, H.; Gondal, M.A.; Hussain, I. A novel technique for the construction of strong S-boxes based on chaotic Lorenz systems. Nonlinear Dyn. 2012, 70, 2303–2311. [Google Scholar] [CrossRef]
- Hussain, I.; Shah, T.; Gondal, M.A. A novel approach for designing substitution-boxes based on nonlinear chaotic algorithm. Nonlinear Dyn. 2012, 70, 1791–1794. [Google Scholar] [CrossRef]
- Brickell, E.F.; Denning, D.E.; Kent, S.T.; Maher, D.P.; Tuchman, W. SKIPJACK Review: Interim Report. Building in Big Brother; Springer Inc.: New York, NY, USA, 1995; pp. 119–130. [Google Scholar]
- Rijmen, V.; Daemen, J. Advanced encryption standard. In Proceedings of Federal Information Processing Standards Publications, National Institute of Standards and Technology; NIST: Gaithersburg, MD, USA, 2001; pp. 19–22. [Google Scholar]
- Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I. Localization of hidden Chua’s attractors. Phys. Lett. A 2011, 375, 2230–2233. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I. Hidden attractor in smooth Chua system. Phys. D 2012, 241, 1482–1486. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef]
- Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.; Leonov, G.; Prasad, A. Hidden attractors in dynamical systems. Phys. Rep. 2016, 637, 1–50. [Google Scholar] [CrossRef]
- Wang, Z.; Cang, S.; Ochala, E.; Sun, Y. A hyperchaotic system without equilibrium. Nonlinear Dyn. 2012, 69, 531–537. [Google Scholar] [CrossRef]
- Wei, Z. Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 2011, 376, 102–108. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Golpayegani, S.M.R.H. Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 2013, 377, 699–702. [Google Scholar] [CrossRef]
- Wang, X.; Chen, G. Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 2013, 71, 429–436. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, R.; Liu, A. A new finding of the existence of hidden hyperchaotic attractor with no equilibria. Math. Comput. Simul. 2014, 100, 13–23. [Google Scholar] [CrossRef]
- Rajagopal, K.; Karthikeyan, A.; Srinivasan, A.K. FPGA implementation of novel fractional–order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 2017, 87, 2281–2304. [Google Scholar] [CrossRef]
- Sprott, J.C. Elegant Chaos Algebraically Simple Chaotic Flows; World Scientific: Singapore, 2010. [Google Scholar]
- Jafari, S.; Sprott, J.C. Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 2013, 57, 79–84. [Google Scholar] [CrossRef]
- Sprott, J.C. A proposed standard for the publication of new chaotic systems. Int. J. Bifurc. Chaos 2011, 21, 2391–2394. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, J.; Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985, 57, 617. [Google Scholar] [CrossRef]
- Xu, G.; Shekofteh, Y.; Akgul, A.; Li, C.; Panahi, S. New chaotic system with a self-excited attractor: Entropy measurement, signal encryption, and parameter estimation. Entropy 2018, 20, 86. [Google Scholar] [CrossRef]
- Wang, C.; Ding, Q. A new two-dimensional map with hidden attractors. Entropy 2018, 20, 322. [Google Scholar] [CrossRef]
- Pincus, S. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Pincus, S. Approximate entropy (ApEn) as a complexity measure. Chaos Interdiscipl. J. Nonlinear Sci. 1995, 5, 110–117. [Google Scholar] [CrossRef]
- Volos, C.K.; Kyprianidis, I.M.; Stouboulos, I.N. A chaotic path planning generator for autonomous mobile robots. Robot. Auton. Syst. 2012, 60, 651–656. [Google Scholar] [CrossRef]
- Bouali, S.; Buscarino, A.; Fortuna, L.; Frasca, M.; Gambuzza, L.V. Emulating complex business cycles by using an electronic analogue. Nonl. Anal. Real World Appl. 2012, 13, 2459–2465. [Google Scholar] [CrossRef]
- Volos, C.K.; Kyprianidis, I.M.; Stouboulos, I.N. Image encryption process based on chaotic synchronization phenomena. Signal Process. 2013, 93, 1328–1340. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z.; Wu, M.; Zheng, W.; Weng, J. Dynamics analysis and circuit implementation of a new three–dimensional chaotic system. Optik 2015, 126, 765–768. [Google Scholar] [CrossRef]
- Lai, Q.; Yang, L. Chaos, bifurcation, coexisting attractors and circuit design of a three–dimensional continuous autonomous system. Optik 2016, 127, 5400–5406. [Google Scholar] [CrossRef]
- Chen, G. A novel heuristic method for obtaining S-boxes. Chaos Solitons Fractals 2008, 36, 1028–1036. [Google Scholar] [CrossRef]
- Liu, H.; Kadir, A.; Niu, Y. Chaos-based color image block encryption scheme using S-box. AEU-Int. J. Electron. Commun. 2014, 68, 676–686. [Google Scholar] [CrossRef]
- Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [Google Scholar] [CrossRef]
- Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. Cyber J. 2011, 1, 31–38. [Google Scholar]
- Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, W.; Chen, C.P. Image encryption using binary bitplane. Signal Process. 2014, 100, 197–207. [Google Scholar] [CrossRef]
- Liao, X.; Lai, S.; Zhou, Q. A novel image encryption algorithm based on self–adaptive wave transmission. Signal Process. 2010, 90, 2714–2722. [Google Scholar] [CrossRef]
- Wu, Y.; Noonan, J.; Yang, G.; Jin, H. Image encryption using the two–dimensional logistic chaotic map. J. Electron. Imag. 2012, 21, 013014. [Google Scholar] [CrossRef]
- Wong, K.; Kwok, B.; Law, W. A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 2008, 372, 2645–2652. [Google Scholar] [CrossRef] [Green Version]
12 | 40 | 113 | 158 | 92 | 235 | 25 | 47 | 236 | 59 | 31 | 75 | 137 | 30 | 214 | 248 |
35 | 17 | 255 | 219 | 67 | 7 | 87 | 163 | 18 | 55 | 88 | 111 | 154 | 146 | 141 | 23 |
22 | 79 | 1 | 180 | 90 | 177 | 20 | 191 | 106 | 115 | 196 | 220 | 157 | 232 | 9 | 41 |
203 | 112 | 209 | 173 | 185 | 51 | 71 | 247 | 186 | 216 | 73 | 201 | 2 | 183 | 234 | 231 |
33 | 101 | 131 | 86 | 117 | 46 | 36 | 225 | 151 | 132 | 68 | 78 | 253 | 152 | 27 | 156 |
240 | 11 | 175 | 121 | 226 | 98 | 44 | 197 | 63 | 194 | 161 | 100 | 114 | 184 | 228 | 223 |
153 | 15 | 62 | 124 | 229 | 212 | 204 | 244 | 167 | 4 | 39 | 130 | 193 | 187 | 10 | 97 |
48 | 170 | 249 | 182 | 19 | 206 | 239 | 69 | 6 | 150 | 135 | 24 | 26 | 174 | 164 | 58 |
104 | 243 | 227 | 178 | 189 | 145 | 99 | 52 | 43 | 221 | 102 | 29 | 70 | 57 | 218 | 242 |
84 | 138 | 224 | 127 | 199 | 190 | 85 | 122 | 28 | 74 | 103 | 95 | 254 | 205 | 50 | 109 |
14 | 38 | 94 | 162 | 210 | 147 | 77 | 195 | 142 | 144 | 208 | 155 | 149 | 93 | 192 | 21 |
49 | 8 | 107 | 207 | 171 | 250 | 217 | 81 | 140 | 148 | 202 | 5 | 72 | 215 | 91 | 181 |
133 | 34 | 83 | 160 | 139 | 108 | 211 | 176 | 252 | 110 | 119 | 116 | 213 | 245 | 66 | 76 |
37 | 118 | 3 | 168 | 42 | 61 | 32 | 105 | 54 | 241 | 165 | 238 | 16 | 125 | 166 | 80 |
89 | 128 | 56 | 233 | 222 | 200 | 230 | 123 | 96 | 134 | 60 | 82 | 120 | 143 | 172 | 45 |
53 | 136 | 198 | 159 | 0 | 13 | 129 | 65 | 179 | 251 | 246 | 188 | 237 | 126 | 169 | 64 |
1 | 14 | 25 | 36 | 217 | 33 | 196 | 140 | 190 | 143 | 210 | 13 | 149 | 88 | 240 | 115 |
183 | 220 | 180 | 199 | 154 | 184 | 231 | 204 | 0 | 171 | 96 | 161 | 60 | 219 | 110 | 3 |
11 | 21 | 32 | 243 | 207 | 201 | 176 | 116 | 159 | 170 | 49 | 222 | 169 | 77 | 230 | 223 |
158 | 132 | 81 | 173 | 224 | 80 | 19 | 195 | 45 | 27 | 91 | 108 | 79 | 182 | 93 | 101 |
227 | 245 | 163 | 69 | 59 | 97 | 247 | 191 | 181 | 155 | 38 | 86 | 58 | 2 | 174 | 252 |
139 | 63 | 47 | 76 | 124 | 134 | 126 | 16 | 117 | 189 | 206 | 188 | 129 | 234 | 221 | 113 |
198 | 111 | 67 | 51 | 239 | 104 | 28 | 150 | 162 | 229 | 55 | 114 | 251 | 215 | 105 | 22 |
50 | 235 | 71 | 107 | 99 | 178 | 61 | 197 | 100 | 46 | 121 | 179 | 209 | 74 | 9 | 68 |
194 | 57 | 29 | 18 | 241 | 218 | 233 | 205 | 53 | 26 | 95 | 144 | 56 | 167 | 151 | 142 |
120 | 128 | 130 | 34 | 165 | 118 | 255 | 92 | 119 | 168 | 228 | 172 | 62 | 200 | 94 | 82 |
123 | 177 | 10 | 127 | 7 | 148 | 187 | 5 | 83 | 35 | 137 | 135 | 131 | 44 | 4 | 72 |
186 | 24 | 152 | 37 | 242 | 41 | 244 | 78 | 147 | 193 | 153 | 125 | 42 | 192 | 202 | 43 |
23 | 141 | 66 | 226 | 138 | 30 | 156 | 185 | 20 | 106 | 136 | 211 | 39 | 73 | 232 | 164 |
160 | 112 | 84 | 90 | 52 | 48 | 203 | 214 | 6 | 70 | 250 | 166 | 249 | 85 | 216 | 208 |
175 | 64 | 248 | 103 | 12 | 40 | 146 | 75 | 238 | 254 | 236 | 98 | 237 | 54 | 246 | 109 |
157 | 8 | 89 | 31 | 102 | 15 | 17 | 253 | 145 | 122 | 65 | 213 | 212 | 87 | 225 | 133 |
37 | 61 | 12 | 130 | 208 | 4 | 215 | 157 | 199 | 44 | 125 | 81 | 219 | 237 | 212 | 59 |
148 | 95 | 119 | 142 | 168 | 79 | 221 | 76 | 31 | 156 | 93 | 113 | 35 | 184 | 247 | 223 |
105 | 158 | 33 | 36 | 152 | 253 | 49 | 141 | 153 | 162 | 169 | 3 | 32 | 108 | 41 | 195 |
60 | 198 | 242 | 151 | 183 | 235 | 204 | 231 | 149 | 14 | 83 | 110 | 131 | 112 | 67 | 102 |
2 | 63 | 122 | 234 | 128 | 89 | 177 | 202 | 92 | 185 | 222 | 211 | 77 | 121 | 238 | 28 |
205 | 45 | 101 | 43 | 53 | 71 | 129 | 200 | 226 | 197 | 51 | 150 | 86 | 173 | 109 | 245 |
217 | 220 | 246 | 248 | 11 | 124 | 164 | 213 | 75 | 88 | 250 | 230 | 19 | 70 | 16 | 27 |
214 | 90 | 23 | 243 | 240 | 94 | 30 | 161 | 116 | 206 | 188 | 100 | 155 | 7 | 85 | 10 |
178 | 15 | 134 | 17 | 170 | 96 | 123 | 135 | 193 | 136 | 172 | 167 | 103 | 192 | 207 | 224 |
182 | 209 | 144 | 22 | 191 | 233 | 80 | 249 | 29 | 196 | 66 | 47 | 132 | 216 | 171 | 25 |
146 | 50 | 24 | 42 | 174 | 64 | 186 | 127 | 244 | 57 | 69 | 137 | 111 | 78 | 180 | 98 |
201 | 232 | 54 | 120 | 254 | 104 | 227 | 58 | 252 | 99 | 40 | 241 | 255 | 0 | 203 | 166 |
5 | 228 | 159 | 181 | 91 | 229 | 145 | 87 | 34 | 9 | 139 | 117 | 20 | 56 | 143 | 154 |
138 | 190 | 187 | 115 | 82 | 84 | 39 | 140 | 225 | 179 | 165 | 114 | 236 | 8 | 189 | 55 |
26 | 210 | 147 | 72 | 175 | 239 | 65 | 194 | 38 | 107 | 251 | 73 | 62 | 126 | 46 | 218 |
6 | 21 | 118 | 176 | 1 | 48 | 68 | 160 | 133 | 163 | 97 | 106 | 74 | 18 | 13 | 52 |
S-Box | Nonlinearity | BIC-SAC | BIC-Nonlinearity | SAC | DP | ||||
---|---|---|---|---|---|---|---|---|---|
Min | Avg | Max | Min | Avg | Max | ||||
Proposed S-Box1 | 104 | 106 | 110 | 0.4988 | 103.857 | 0.4018 | 0.4946 | 0.5781 | 10 |
Proposed S-Box2 | 104 | 107 | 108 | 0.4997 | 103.357 | 0.4218 | 0.5029 | 0.5937 | 10 |
Proposed S-Box3 | 106 | 106 | 108 | 0.5058 | 104.14 | 0.3918 | 0.4916 | 0.5781 | 10 |
Jakimoski [24] | 98 | 103.2 | 108 | 0.5031 | 104.2 | 0.3761 | 0.5058 | 0.5975 | 12 |
Tang [25] | 99 | 103.4 | 106 | 0.4995 | 103.3 | 0.4140 | 0.4987 | 0.6015 | 10 |
Wang [26] | 102 | 104 | 106 | 0.5070 | 103.8 | 0.4850 | 0.5072 | 0.5150 | 12 |
Çavuşoğlu [27] | 104 | 106 | 108 | 0.49763 | 103.857 | 0.3906 | 0.5063 | 0.5937 | 12 |
Khan [28] | 84 | 100 | 106 | 0.4962 | 101.9 | 0.3712 | 0.4825 | 0.6256 | 16 |
Ozkaynak [29] | 100 | 104.2 | 109 | 0.4988 | 103.3 | 0.3906 | 0.4931 | 0.5703 | 12 |
Chen [60] | 100 | 103 | 106 | 0.5024 | 103.1 | 0.4218 | 0.5000 | 0.6093 | 14 |
Çavuşoğlu [30] | 104 | 106 | 110 | 0.5058 | 103.4 | 0.4218 | 0.5039 | 0.5937 | 10 |
Khan [31] | 98 | 105 | 110 | 0.4994 | 105.7 | 0.4062 | 0.4926 | 0.5937 | 12 |
Khan [32] | 96 | 103 | 106 | 0.5010 | 100.3 | 0.3906 | 0.5039 | 0.6250 | 12 |
Liu [61] | 102 | 104 | 106 | 0.5019 | 103.5 | 0.4825 | 0.5018 | 0.5175 | 10 |
Hussain [33] | 102 | 105.2 | 108 | 0.5053 | 104.2 | 0.4080 | 0.5050 | 0.5894 | 12 |
Skipjack S-Box [34] | 104 | 105.7 | 108 | 0.4994 | 104.1 | 0.3986 | 0.5032 | 0.5938 | 12 |
AES S-Box [35] | 112 | 112 | 112 | 0.5046 | 112 | 0.4531 | 0.5048 | 0.5625 | 4 |
Fan Image | City Image | Baboon Image | |
---|---|---|---|
Correlation Analysis () | 0.0054 | 0.0039 | 0.0061 |
NPCR | 99.6167 | 99.5232 | 99.5845 |
UACI | 31.7543 | 35.2089 | 32.0312 |
Information Entropy | 7.9563 | 7.9514 | 7.9572 |
Encryption Quality | 35.8046 | 45.3828 | 61.4676 |
Total Time (encryption+decryption) (sec) | 1.0540 | 1.0520 | 1.0485 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Çavuşoğlu, Ü.; Kacar, S.; Akgul, A.; Pham, V.-T.; Jafari, S.; Alsaadi, F.E.; Nguyen, X.Q. S-Box Based Image Encryption Application Using a Chaotic System without Equilibrium. Appl. Sci. 2019, 9, 781. https://doi.org/10.3390/app9040781
Wang X, Çavuşoğlu Ü, Kacar S, Akgul A, Pham V-T, Jafari S, Alsaadi FE, Nguyen XQ. S-Box Based Image Encryption Application Using a Chaotic System without Equilibrium. Applied Sciences. 2019; 9(4):781. https://doi.org/10.3390/app9040781
Chicago/Turabian StyleWang, Xiong, Ünal Çavuşoğlu, Sezgin Kacar, Akif Akgul, Viet-Thanh Pham, Sajad Jafari, Fawaz E. Alsaadi, and Xuan Quynh Nguyen. 2019. "S-Box Based Image Encryption Application Using a Chaotic System without Equilibrium" Applied Sciences 9, no. 4: 781. https://doi.org/10.3390/app9040781
APA StyleWang, X., Çavuşoğlu, Ü., Kacar, S., Akgul, A., Pham, V. -T., Jafari, S., Alsaadi, F. E., & Nguyen, X. Q. (2019). S-Box Based Image Encryption Application Using a Chaotic System without Equilibrium. Applied Sciences, 9(4), 781. https://doi.org/10.3390/app9040781