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Abstract: Graft repair of aortic coarctation is commonly used to mimic the physiological aortic
arch shape and function. Various graft materials and shapes have been adopted for the surgery.
The goal of this work is to quantitatively assess the impact of graft materials and shapes in the
hemodynamics and wall mechanics of the restored aortic arch and its correlation with clinical
outcomes. A three-dimensional aortic arch model was reconstructed from magnetic resonance images.
The fluid–structure interaction (FSI) analysis was performed to characterize the hemodynamics and
solid wall mechanics of the repaired aortic arch. Two graft shapes (i.e., a half-moon shape and a
crescent one) were considered. Material choices of the aortic arch repair included three commonly
used graft materials (i.e., polytetrafluoroethylene (PTFE) synthetic graft, CorMatrix extracellular
matrix, and pulmonary homograft) as well as one native tissue serving as a control. The pathological
hemodynamic parameters, in terms of the percentage area of low wall shear stress (WSS), high
oscillatory shear index (OSI), and high relative residence time (RRT), were quantified to be associated
with potential clinical outcomes. Results have shown that the peak von Mises stress for the aortic
arch repaired by the crescent graft was 76% less than that of the half-moon graft. Flow disturbance
and recirculation were also minimized with the crescent graft. Moreover, pathological hemodynamic
parameters were significantly reduced with the crescent graft. The graft material mismatch with the
surrounding tissue aggregated the stress concentration on the aortic wall, but had minimal impact on
flow dynamics. The present work demonstrated the role and importance of the graft geometry and
materials on hemodynamics and wall mechanics, which could guide optimal graft decisions towards
better clinical outcomes.

Keywords: fluid–structure interaction; aortic coarctation; graft repair; crescent; half-moon; aortic
arch; mechanics

1. Introduction

Aortic coarctation (CoA) (i.e., a narrowing in the aorta) is one of the common congenital heart
defects [1]. Its severity is associated with an elevated pressure gradient and blood velocity [2].
Common treatment techniques adopted by cardiothoracic surgeons include end-to-end anastomosis,
balloon angioplasty and graft repair [3]. Specifically, the graft repair is preferred for diffuse arch
hypoplasia [4]. A clinical study of patients demonstrated the efficacy of graft repair [5]. The major
complications include recoarctation and aneurysms at the graft site. These complications are well
acknowledged to be associated with altered biomechanical environments (i.e., hemodynamics and solid
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wall mechanics at the graft zone) [6]. A stiff Dacron graft, adopted in 1952, resulted in early and late
complications following the repair by material mismatch [7]. A relatively soft polytetrafluoroethylene
(PTFE) graft mitigates the material mismatch with the native tissue and exhibits a better clinical
outcome [8,9]. The autologous graft, homograft, or heterograft further reduces the material mismatch
with the native tissue. For example, the pulmonary artery homograft, compared with the PTFE, has a
stiffness closer to the native tissue [10]. CorMatrix extracellular matrix, a heterograft made from the
decellularized porcine small intestinal submucosa [11], is commonly used in aortic reconstruction due
to its commercial availability.

Regardless of the diminished variation between graft materials and native tissue, the surgical
repair of the aortic arch is still suboptimal in terms of late complications such as recoarctation [12].
The geometric feature may significantly affect the blood flow dynamics [13]. Specifically, the aortic
arch shape (i.e., the arch angle, curvature, and cross section dimensions) has been associated with
a disturbed flow [14], which in turn causes late aortic remodeling [15]. It has been shown that flow
disturbance and recirculation contributes to endothelial dysfunction, localization of atherosclerosis,
and arterial thickening by upregulating endothelial cell genes, leukocyte adhesion, permeability, and
so on [16,17]. From the perspective of mechanics, the graft geometry that deviates from the native arch
causes suboptimal hemodynamics immediately after the surgical repair, and thus results in early and
late clinical complications. However, there is scant data on the role of graft shapes on the reconstructed
mechanical environments of the aortic arch. In addition, the documented clinical studies of aortic arch
repair generally ignore the specification or description of graft shapes [18]. The graft shape adopted by
our clinical coauthors was considered as the baseline of this work. It looked like a half-moon from its
anterior view, and therefore it was referred to as the half-moon shaped graft.

The goal of this work was to quantitatively depict the underlying mechanism of aortic arch repair.
The impacts of graft shapes and materials on the hemodynamics and wall mechanics of the aortic arch
following surgical repair were characterized. The three-dimensional aortic arch model was reconstructed
from magnetic resonance images (MRIs). Three commonly used graft materials (i.e., PTFE, CorMatrix,
and pulmonary homograft) were studied. A crescent graft was proposed to better resemble the curvature
of the aortic arch in comparison to the half-moon shaped graft as illustrated in Figure 1. Both grafts
were named by their anterior view. There were a total of five model configurations in terms of graft
materials and shapes. Their roles in the hemodynamics and solid wall mechanics were quantified through
numerical fluid–structure interaction (FSI) analysis. The wall shear stress (WSS), oscillatory shear index
(OSI), relative residence time (RRT), and von Mises stress distributions on the aortic wall were obtained
and compared among the five choices. These mechanical indices have been associated with clinical
outcomes. Results were expected to provide a mechanistic understanding of the optimum surgical repair.
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2. Materials and Methods

The three-dimensional models of the aortic arch repaired with two graft shapes (i.e., the half-moon
and crescent) are illustrated in Figure 2. Both grafts were named by their anterior shape. The grafts
were highlighted in a grey color. Models were reconstructed from MRIs using the commercial software
package Mimics (Materialise, Belgium). The two graft shapes were constructed using Hypermesh
software (Altair Engineering, Michigan, USA). The chord length of the aortic arch, measured from the
echocardiography, was used to tailor the shape of both grafts. Figure 2a,b illustrate both graft shapes at
a blood pressure of 80 mmHg. It is obvious that the crescent graft matched better with the native aortic
arch. The centerline of the repaired aorta was used for anatomical measurements. The cross-section
A-A′ represents the ascending aorta near the graft site, which was 38.27 mm away for the inlet along
the centerline. The vertical cross-section B-B′, as shown in Figure 2c,d, was 55.76 mm away from the

inlet. The centerline angle (θ) at plane B-B′ was measured between two tangential vectors
→
a and

→
b

using ImageJ freeware [19]. The geometric quantifications are summarized in Table 1.
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Table 1. Geometric difference between half-moon and crescent models in terms of cross-section areas
at A-A′ and B-B′ as well as the centerline angle.

A-A′ B-B′ Centerline Angle

Half-moon 429.3 mm2 444.1 mm2 155.85◦

Crescent 431.4 mm2 335.3 mm2 139.74◦

A mesh convergence study was performed for both the solid and fluid domain, as shown
in Figure 3. The aortic wall, with a thickness of 2 mm [20], was meshed into 31,081 hybrid
hexahedral elements (C3D8H). The aortic lumen (i.e., the blood domain) was meshed with 166,245
tetrahedral elements. Both grafts and aortas were assumed to be isotropic elastic materials and nearly
incompressible (i.e., Poisson ratio of 0.45) [21,22]. The stiffness of the native aortic tissue was adopted
as 0.84 MPa [23]. The stiffness values of the three graft materials (i.e., PTFE, CorMatrix, and pulmonary
homograft) were 1000 MPa, 30 MPa and 3 MPa, respectively [24–26]. There were a total of five model
configurations in terms of graft materials and shapes. For the material mismatch cases, the control
configuration was the aorta with native tissue properties. For the shape effect, the control configuration
was the crescent graft with a pulmonary homograft.
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The Arbitrary Lagrangian–Eulerian (ALE) method was employed to capture the interaction
between the aorta wall and blood flow [27]. The two-way coupled FSI numerical model was
implemented using a commercial software Mpcci 4.5 (Fraunhofer SCAI, Germany) [28]. The passing
parameters between fluid domain and solid domain were the boundary-relative force vector and
nodal position (i.e., displacement) at the integration point of each element [29,30]. The neighborhood
search technique (i.e., the closest element of a source mesh to each node of a target mesh) and the
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shape function mapping [28] were adopted for non-matching meshes between fluid and solid domains.
The coupling was enforced at every 0.05 s. The Gauss–Seidel algorithm for the iterative coupling
scheme between the solid and fluid domains was adopted. A partitioned approach was used to solve
the governing equations sequentially.

The solid mechanics analysis was carried out through ABAQUS 2017 (Dassault Systèmes Simulia
Corp., Providence, RI, USA). Solid mechanics of the arterial wall was governed by the dynamic
equilibrium equation [31]:

fb = ρa
∂2ui
∂t2 −

∂σij

∂xj
(1)

where σij, fb, ρa, and ui are the stresses, the body force per unit volume, the arterial wall density
and the deformation, respectively. Inlet and outlets were constrained in all degrees of freedom
except for the radial direction. The traction-free boundary condition was employed on the external
boundary of the aorta wall. Fluid dynamics analysis was carried out through FLUENT (ANSYS®

Academic Research 17.2). The flow dynamics of the blood was governed by the mass and momentum
conservation equations:

Mass :
∂ui
∂xi

= 0 (2)

Momentum : ρ

(
∂ui
∂t

+
(
uj − vj

)∂ui
∂xj

)
=

∂

∂xj
(µ

(
∂ui
∂xj

+
∂uj

∂xi

)
)− ∂p

∂xi
(3)

where, ρ, p, uj, and vj are the density, pressure, velocity and mesh velocity, respectively, and uj − vj is
the velocity relative to the moving mesh.

The blood was assumed as a Newtonian fluid with a density of 1060 kg/m3 and a dynamic
viscosity of 0.0037 Pa·s. The Navier–Stokes equation was solved to obtain the blood flow field in
the aortic arch. A no-slip boundary condition was applied at the wall. The pulsatile inlet velocity
and outlet pressure for one cardiac cycle were adopted from an in vivo study [32] to replicate the
physiological flow in a cardiac cycle, as shown in Figure 4. The peak inlet velocity occurred at 0.32 s of
each cardiac cycle, and the peak outlet pressure occurred at 0.4 s. The corresponding cardiac output was
1.71 L/min, which agreed with the measurements by Calamandrei, et al. [33]. The diastolic pressure
at approximately 80 mmHg was considered as the base pressure corresponding to the reconstructed
model. The percentage of the mass flow rate was 70% at the descending aorta (i.e., Outlet 1) and 10%
each at three supra-aortic arteries (i.e., Outlets 2, 3, and 4) [34].
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Hemodynamic analysis included the time-averaged wall shear stress (TAWSS) over one cardiac
cycle, the oscillatory shear index (OSI) over each cardiac cycle, and the relative residence time (RRT),
as defined below:

TAWSS =
1
T

∫ T

0
wssidt (4)

OSI =
1
2
(1−

∣∣∣∫ T
0 wssidt

∣∣∣∫ T
0 wssidt

) (5)

RRT ∼ 1
TAWSS(1− 2 ∗OSI)

(6)

where T represents the time for one cardiac cycle.

3. Results

The FSI model of the aortic arch captured the blood flow dynamics and wall stress field
simultaneously. The mechanical environment of the aortic arch altered by the graft shapes, as well as
the PTFE, CorMatrix, and pulmonary grafts, was characterized in terms of WSS, OSI, RRT, and von
Mises stress distributions on the aortic wall.

3.1. Influence of Graft Shapes

The impact of the graft shape (i.e., a classical half-moon and our proposed crescent) was evaluated
using the pulmonary homograft. The repaired aortic arch by either the half-moon or crescent graft
was quantified using two representative cross-sectional areas and the centerline angle, as listed in
Table 1. It was clear that the half-moon arch repair, compared with the crescent one, exhibited a wider
cross-sectional area as well as a larger centerline angle. For the half-moon arch, the cross-sectional area
at the aortic arch (B-B′) was 24.49% larger than that of the crescent one. The centerline angle of the
half-moon graft was 11.52% larger than that of the crescent graft. These geometric differences were
hypothesized to affect their graft mechanics.

The von Mises stress distributions for both the half-moon and crescent grafts are shown in
Figure 5. Both grafts demonstrated larger stress than the adjacent native tissue, and the stress
concentrated on the lower border of the aortic arch. In addition, the stress level in the crescent graft
was smaller than the one in the half-moon graft. The pathline across the graft zone along the lower
border of the arch was used to capture the peak von Mises stress of the graft (Figure 5c). It was
observed that the maximum von Mises stresses on the half-moon and crescent grafts were 0.25 MPa
and 0.06 MPa, respectively. For the half-moon graft, the stress concentrated at the interface between
the graft and the native tissue. In contrast, there was not much stress variation along the pathline of
the crescent graft.
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pulmonary grafts; (c) von Mises stress across the graft zone along the lower border of the arch.

The blood flow dynamics at 0.4 s (peak pressure, systole) and 0.6 s (early diastole) for both graft
repairs are shown in Figure 6. Streamlines illustrate the helical blood motion while y-direction velocity
vectors, without any projection at two representative cross sections (ascending aorta A-A′ and aortic
arch B-B′), demonstrate the rotational flow. It is clear that flow disturbance was higher at the diastolic
phase. The positive velocity magnitude represents the forward flow, and the negative one represents
the reversed flow. The minimal flow disturbance was observed at the ascending aorta only at the
diastolic phase. However, at the aortic arc, the reversed flow was observed during both the diastolic
and systolic phases. The reversed flow was much more obvious in the half-moon graft than the crescent
one. The reversed flow zone was minimal in the crescent graft. In addition, the reversed flow occurred
around the inner curvature of the graft.
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Figure 6. Velocity distributions with y-direction velocity vectors without any projection at two different
time points (0.4 s and 0.6 s) and two different cross-sections (A-A′ and B-B′) in the half-moon and
crescent pulmonary grafts: (a) half-moon graft at 0.4 s, (b) half-moon graft at 0.6 s, (c) crescent graft at
0.4 s, and (d) crescent graft at 0.6 s.

The crescent graft was quantitatively compared with the half-moon one at the aforementioned
cross-sections in terms of the area, the maximum velocity, and the mass flow rate at both phases
(Table 2). Regardlesss of the graft shapes, both the cross-sectional areas and maximum velocity were
larger at the systolic phase than the diastolic one. At the ascending aorta (A-A′), the crescent graft
exhibited a relatively larger cross-sectional area at both phases, but the difference in the maximum
velocity for both graft shapes was minimal. This could be attributed to the alterations in both the
mass flow rate and cross-sectional area. At the ascending aorta (A-A′), the mass flow rates of the
crescent graft were 11.2% and 8.7% higher than that of the half-moon one at 0.4 s and 0.6 s, respectively.
The corresponding cross-sectional areas of the crescent graft were 5.6% and 6.1% larger than that of the
half-moon one, respectively.

Table 2. Cross-sectional areas, maximum velocities and mass flow rates of A-A′ and B-B′ at both 0.4 s
and 0.6 s.

Area (mm2)
at 0.4 s

Area (mm2)
at 0.6 s

Vmax (m/s)
at 0.4 s

Vmax (m/s)
at 0.6 s

.
m (kg/s) at

0.4 s

.
m (kg/s) at

0.6 s

Half-moon
(A-A′) 454.8 437.7 0.236 0.073 0.08592 0.01905

Crescent
(A-A′) 480.4 464.4 0.237 0.070 0.09555 0.02070

Half-moon
(B-B′) 484.1 461.0 0.170 0.092 0.04926 0.01735

Crescent
(B-B′) 367.0 354.4 0.224 0.075 0.05090 0.01771

At the aortic arch (B-B′), the cross-sectional area of the crescent graft was 31.9% smaller than that of
the half-moon one during systolic phase (0.4 s). The maximum velocity of the crescent graft was 24.1%
higher than that of the half-moon one due to the smaller area and relatively larger mass flow rate. It is
interesting to observe that during diastolic phase (0.6 s), the maximum velocity of the half-moon graft
was 22.7% higher than that of the crescent one although the cross-sectional area of the half-moon graft
was 30.1% larger than that of the crescent one. This could be explained by the vena contracta effect [35].
The positive flow area (PFA), as illustrated in Figure 7, is the area with only forward flow. The PFA
at the cross-section B-B′ at 0.6 s for the half-moon and crescent grafts was 364.8 mm2 and 344.3 mm2,
respectively. The PFA at the cross-section B-B′ at 0.6 s in the half-moon graft was 31% smaller than the
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total cross-sectional area, while the difference in the crescent one was minimal (i.e., 2.9%). Moreover,
the mass flow rate in the PFA of the half-moon graft was 8.4% higher than that of the crescent graft.
Therefore, the maximum velocity in the half-moon graft was higher than that in the crescent graft.
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Figure 7. Area enclosed by the boundary line and shaded positive flow area (PFA) at the cross-section
B-B′ at 0.6 s: (a) half-moon graft and (b) crescent graft.

The percentage areas of low TAWSS, high OSI and high RRT, viewed from the bottom of the aortic
arch, are shown in Figure 8. The crescent graft, compared with the half-moon one, demonstrated a
smaller percentage area of low TAWSS, high OSI and high RRT, which was calculated over the graft
region. Specifically, the percentage areas of low TAWSS (i.e., less than 0.2 Pa) were 0.360 and 0.046 for
the half-moon and crescent graft, respectively; the corresponding high OSIs, (i.e., larger than 0.2) were
0.161 and 0.030, respectively; the high RRTs (i.e., larger than 10 Pa−1) were 0.260 and 0.028, respectively.
These were associated with the potential clinical outcomes.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 17 
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3.2. Influence of Graft Materials

Various graft materials were commercially available for the aortic arch repair. The role of the graft
material properties on their von Mises stress distributions using the commonly adopted half-moon
shape are illustrated in Figure 9. Generally, stresses on the grafts were larger than on the adjacent
tissue, and stress concentrations were observed at the interface between the graft and the native tissue.
A stiffer graft resulted in larger stress concentrations. The peak von Mises stresses for PTFE, CorMatrix,
pulmonary, and native tissue equivalent grafts were 2.067 MPa, 0.638 MPa, 0.251 MPa, and 0.109 MPa,
respectively. To further illustrate the stress-shielding effect of the graft, the von Mises stresses along
two pathlines, representing the lower border of the graft or the native tissue with an offset of 13 mm
from the superior border of the graft, are depicted in Figure 10. The peak von Mises stress for both
pathlines was generally located around the proximal or distal borders of the graft. The stiffer graft
shielded much more stress for the adjacent native tissue, leading to a much smaller stress on the native
tissue. This could be explained by the larger load-sharing capacity of the stiffer graft. Specifically,
the peak von Mises stresses at the lower border of the graft were 1.808 MPa, 0.637 MPa, 0.204 MPa,
and 0.090 MPa in order of the PTFE, CorMatrix, pulmonary, and native tissue equivalent materials,
respectively. The corresponding stresses at the native tissue pathline were 0.039 MPa, 0.047 MPa,
0.050 MPa, and, 0.051 MPa, respectively.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 17 
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The graft material-induced blood flow dynamics had similar patterns as illustrated in Figure 6a,b.
Reversed flow patterns were observed near the inner curvature of the aortic arch. The reversed
flow region expanded with a softer graft material. The relation between graft compliance and the
flow pulsation during one cardiac cycle is summarized in Table 3. It was obvious that the aortic
cross-sectional areas increased with the softer graft materials. As the stiffness of the graft material
reduced, the maximum velocity at systolic phase reduced, and the maximum velocity at diastolic
phase increased. This implied that the flow pulsation during one cardiac cycle, represented by the
maximum velocity difference between 0.4 s and 0.6 s, was increased with a stiffer graft.

Table 3. Cross-sectional areas and peak velocities of B-B′ at 0.4 s and 0.6 s.

Area (mm2) at 0.4 s Area (mm2) at 0.6 s Vmax (m/s) at 0.4 s Vmax (m/s) at 0.6 s

PTFE 447.5 437.5 0.1894 0.0894
Cormatrix 466.2 448.9 0.1811 0.0916
Pulmonary 484.1 461.0 0.1701 0.0924

Native tissue 510.3 478.0 0.1622 0.0934

Various graft materials resulted in a similar percentage area of low TAWSS, high OSI, and high
RRT, calculated over the graft region, as shown in Figure 8. Specifically, for the adopted four graft
materials, the percentage areas of low TAWSS (<0.2 Pa), high OSI (>0.2), and high RRT (>10 Pa−1)
were 0.363 ± 0.015, 0.158 ± 0.014, and 0.253 ± 0.005, respectively. The corresponding relative standard
deviations were 4.12%, 8.97%, and 1.89%, respectively. This implies that the pathological hemodynamic
parameters were not sensitive to graft materials.

4. Discussions

The graft-induced alternations in the aorta mechanical environment were never quantitatively
characterized for different graft designs. The goal of this work was to delineate the role of graft shape
and materials on the aortic biomechanical environments following the aortic arch graft repair. The fluid
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structure interactions of the aortic arch were characterized in terms of arterial stress, flow dynamics,
and indicators associated with the initiation and progression of the vascular maladaptation [36–38]
(i.e., low WSS (<0.2 Pa), high OSI (>0.2), and RRT (>10 Pa−1)). The FSI computational framework has
been validated by the published experimental observations [30]. It is worth noting that this study
is not a clinical case study. It focused on the physical understanding of the graft design in terms of
geometry and materials.

It is well recognized that the geometry of the aortic arch affects the hemodynamics and thus
cardiac functions [39,40]. Tomita et al. [41] showed that in mice, both the aortic arch angle and
cross-sectional area of the aortic arch correlated positively with the area of the plaque. Enhanced
clinical outcomes were observed for an autologous vascular graft resembling the curvature of the aortic
arch [42]. The crescent graft herein was proposed to better mimic the native arch shape (i.e., a smaller
aortic arch angle), tapered cross-sectional area, and smooth curvature compared to the half-moon graft
(Figure 2).

The stress concentrations were observed at the interface between the graft and the native tissue,
regardless of graft shapes. This was due to the material mismatch. The peak von Mises stress of the
crescent graft was 76% smaller than the half-moon one (Figure 5). This could be explained by the local
geometrical discontinuity at the interface between the graft and native tissue [43], also referred to as
the geometry mismatch. The abnormal stresses have been associated with the reduced compliance of
the tissue and disruption of collagen fiber structure [44–46].

The geometrical discontinuity in the half-moon graft resulted in the obvious reversed flow adjacent
to the bottom border of the graft, especially at the diastolic phase. This was due to the constriction
effect at the proximal border of the graft. The cross-sectional area at the proximal border of the graft
discontinued the tapering of the ascending aorta, and induced a reversed tapering by implementing a
half-moon graft, which is analogous to the stenosis model. The reversed flow was well-observed and
explained by the adverse pressure gradient using the analogy of the stenosis case [47]. In comparison,
the tapering from the ascending aorta (A-A′) to the aortic arch (B-B′) was well preserved in the crescent
graft, and thus led to the minimal flow disturbance.

The graft geometry was also highly related to wall movement in terms of the cross-sectional area
and the mass flow rate redistributions [48]. It is interesting to observe that the difference between the
PFA and the cross-sectional area for the half-moon graft was significantly larger than for that of the
crescent one (Figure 7). This indicated that the flow disturbance and recirculation were more severe in
the half-moon graft. The flow streamlines had the same implication as the pressure contours (details
not shown for brevity). Moreover, the crescent graft exhibited a smaller percentage area of low TAWSS,
high OSI, and high RRT, compared with the half-moon one. A large percentage of these indicators has
been associated with neointimal hyperplasia and recoarctation [16,49].

The stress concentration at the graft edges was also associated with the choice of graft materials.
The peak von Mises stresses of the PTFE, CorMatrix, and pulmonary grafts were 15.92, 4.961, and 1.352
times larger than that of the native tissue equivalent graft, respectively (Figure 9). The large material
mismatch induced more stress concentrations on the borders of the grafts. The stress concentrations
correlated with the cellular changes in the tissue and accumulation of the fiber damage [50,51].
Moreover, a stiff graft shielded the surrounding tissue from loadings. However, the pathological
hemodynamic parameters were not sensitive to graft materials. It is worth noting that the obtained
results should be treated as a comparative or qualitative trend, instead of as absolute numbers, which
could vary depending on patients’ variations in terms of ages, disease conditions, anatomies, and
material properties. Further clinical case studies are desired for an optimal graft design.

In the present model, the suture line was idealized as the tie constraint. A realistic suture could
aggravate the stress concentration on the aortic wall [52]. The aortic wall was simplified by using
isotropic homogeneous materials. The anisotropy and heterogeneity of the aortic wall could change
the level of wall contractions and stress concentrations on the aortic wall [53,54]. In addition, the effect
of the aortic arch stiffness on the left ventricular (LV) function was ignored. Various aortic graft
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shape and material choices could alter the LV function [40], and thus the hemodynamics inflow
waveform [55]. A three-element Windkessel model could be used to account for the interaction
between the stoke volume and the compliance of the aorta. Despite these simplifications, the present
work demonstrated the important roles of graft shape and materials on the mechanics of the aorta,
which have significant clinical implications for optimal graft repair. This work can be used to provide
a fundamental understanding of the behavior and impact of graft designs on hemodynamics and wall
mechanics, and to provide guidance for better graft decisions and pre-clinical planning. The adopted
research approach could be translated to other tissue repair or replacement cases, regardless of ages
and anatomical positions.
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