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Abstract: Based on the morphology characteristics, low-dimensional (LD) nanostructures with high
aspect ratio can be usually divided into nanowire, nanocone, nanotube, nanorod, nanoribbon, nanobelt
and so on. Among numerous LD nanostructures, boron-based nanostructures attracted much interest
in recent years because they have high melting-point, large electric and thermal conductivity, and low
work function. Compared to traditional thermal emission, field emission (FE) has notable advantages,
such as lower power dissipation, longer working life, room-temperature operation, higher brightness
and faster switching speed. Most studies reveal they have lower turn-on and threshold fields as well
as high current density, which are believed as ideal cold cathode nanomaterials. In this review, we
will firstly introduce the growth methods of LD boron-based nanostructures (boron monoelement
and rare-earth metal hexaboride). Then, we will discuss their FE properties and applications. At last,
the conclusions and outlook will be summarized based on the above studies.

Keywords: low-dimensional (LD) boron-based nanostructures; boron monoelement; rare-earth metal
hexaboride (REB6); growth methods; field emission (FE)

1. Introduction

Field emission (FE) is a typical quantum tunneling effect, in which electrons can tunnel through
the barrier and enter the vacuum with the help of the applied electric field instead of going across
the barrier [1]. R. H. Fowler and L. Nordheim [2] first proposed the classical FE theory (FN theory)
for the metallic flat plane in 1928. With the developments of FE theories [3–8], different field emitters
have been explored, such as microtip or nanotip arrays [9–11], thin film [8,12], and low-dimensional
(LD) nanostructures [13–15]. During the FE studies of metal microtips, it is found that the existence of
a field enhancement factor can remarkably decrease the turn-on or threshold field of field emission
in comparison with flat plane [16], which can be approximately calculated by the ratio of length to
the curvature radius of the tip [1]. Under this circumstance, LD nanostructures (metal and metal
oxides [17], carbon-based [13,18,19], silicon-based [20], and III-V group-based [21,22]) nanostructures
inevitably attract considerable attention in cold cathode applications because their larger aspect ratio
suggests they should have ultrahigh field enhancement factors. There are usually several crucial
requirements for ideal nanostructures with excellent FE performances, which are respectively high
field enhance factor, low work function, large electrical and thermal conductivity, high melting-point,
and strong endurance to harsh conditions [1].

Among numerous LD nanostructure candidates, boron-based nanostructures are believed as ideal
cold cathode nanomaterials [23–41] because they not only can meet the above requirements for FE
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applications but also have low-density, large Young’s modulus [42] and strong endurance to high
current. For example, boron monoelement nanotube (NT) structures [24] have been proven to have
metallic conductivity whether their chirality belongs to armchair or zigzag, which are very beneficial
for actual FE applications. In addition, rare-earth metal hexaboride (REB6) nanostructures should be
very promising nanomaterials for FE application because they possess metallic conductivity, low work
function of 2.5~4.4 eV [32,39,40], large current density and stable electron emission ability. Therefore,
in this review, we will mainly focus on the recent progress of the growth methods and FE properties of
LD boron-based nanostructures (boron monoelement and rare-earth metal hexaborides).

2. The Synthesis of LD Boron-Based Nanostructures

There are some usual fabrication methods for LD boron-based nanostructures, which can be
classified into chemical vapor deposition (CVD) [23,24,28,32,43–52], laser ablation [53–59], magnetron
sputtering [60–63], solid-state reaction methods [64] etc. In this section, we will review these methods,
and discuss the advantages and disadvantages for growing boron-based nanostructures.

2.1. CVD Method

CVD method is a commonly-used way for deposition of thin film. Nowadays, it has been a typical
method to grow LD nanostructures, which can be almost suitable for all the reported LD boron-based
nanostructures. As shown in Figure 1, vapors, liquids or solids can be chosen as the reaction precursors
in CVD method based on the products. In CVD reaction, the transition change from solids or liquids
into vapors usually occurs for the precursors at appropriate temperature, and the vapors can be
transported to the upsides of substrate and form LD nanostructures via the vapor-liquid-solid (VLS) or
vapor-solid (VS) process. In the VLS process, the gas precursors continuously dissolve into the catalyst
droplets, and subsequently the solid solutes precipitate from oversaturated droplets and formed the
LD nanoamterials with the proceeding of the reaction. Different from the VLS process, the gaseous
precursors can directly change into solid-phase nanomaterials without undergoing the intermediate
liquid phase in the VS process. In addition, some precursors can be pre-deposited on the substrate and
participate in the reaction [39].
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Figure 1. Schematic diagram of a typical CVD system.

Typical morphologies of LD boron-based nanostructures are demonstrated in Figure 2. As seen in
Table 1, the boron precursors in these CVD methods can be divided into two categories, which are
respectively gaseous and solid phases. As for the use of the gaseous precursors, there are lots of
advantages, for example, the morphology control of nanostructures is facilely realized by adjusting the
flux or ratio of precursors and the reaction period is relatively shorter. However, the disadvantage for
this way is very obvious because these gaseous precursors are usually toxic, flammable or explosive,
which inevitably produce potential threat for our daily lives. The other strategy of CVD method is
to use B and B2O3 powders as source materials instead of gaseous precursors for preparation of LD
boron nanostructures, as described in Refs. [23,24,29,48,65]. Very recently, our group [28,39,66] further
developed this method to synthesize the LaB6 and SmB6 nanowires (NWs). In comparison with the
CVD method using gaseous precursors, this solid-precursor CVD way often needs relatively higher
growth temperature, as seen in Table 1. Therefore, low temperature and environment-friendly growth
method remains a challenge for the LD boron-based nanostructures.
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Table 1. Typical CVD growth parameters of boron-based nanostructure.

Nanostructures Precursors Growth Temperature
(◦C) Catalysts Carrier Gases Diameter/Thickness

+ Width (nm) Length (µm) Crystalline Types Growth Direction

Boron NWs [67] B, Si, I2 1000~1100 Au — 50~100 Hundreds Amorphous —
Boron NWs [68] B2H6 800 — H2, Ar 20~60 Several α-tetragonal —
Boron NWs [65] B, B2O3 800~1100 Au — 30~300 — — —
Boron NWs [69] B2H6 900 — H2 50~100 0.5~2 Amorphous —
Boron NWs [70] B2H6 750~1000 Au H2, N2 15~45 — Amorphous —

Boron nanocones (NCs) [29] B, B2O3 1000~1200 Fe3O4 H2, Ar 50~100 Several α-tetragonal <001>
Boron nanoribbons (NRBs) [44] B2H6 630~750 — Ar 15~20 + 200 ~ — α-tetragonal <001>

Boron NWs [48] B, B2O3, Mg 1100 Fe3O4 H2, Ar 50~200 Tens β-rhombohedral —<012>
Boron NWs [23] B, B2O3, C 1000~1100 Fe3O4 H2, Ar 20~40 5 α-tetragonal <001>
Boron NTs [43] BCl3 870 Mg H2 3 0.016 — —

Boron NWs and NTs [24] B, B2O3 1000~1200 Fe3O4 Ar 10~40 2~4 α-tetragonal <001>
LaB6 NWs [45] LaCl3, BCl3 1150 Au H2, N2 100 Tens Cubic <111>

LaB6 NWs and NTs [46,49,52] La, BCl3 1070 — H2, Ar 100~200 and Tens and Cubic <111> or <100>
LaB6 nanoobelisks [47] LaCl3, B10H14 1000 Pt Ar 11 ± 5 (tip) ~4 Cubic <001>

LaB6 NWs [32] LaCl3·7H2O,
B2H6

930~970 — H2, Ar 80~120 15~20 Cubic <100>

LaB6 NWs [28] LaCl3, B, B2O3 1100 Ni H2, Ar 100 Tens Cubic <100>

REB6 NWs [51]
RECl3, B10H14,
RE = (Y, La, Ce,

Pr, Nd
1000 Pd Ar 50 Several Cubic <100>

SmB6 NWs [35,71] Sm, BCl3 1100~1140 — H2, Ar 80~100 Tens Cubic <100>

SmB6 NWs [72] SmCl3, BCl3 1070 — H2, Ar 60~150 1~5 Cubic <100>

SmB6 NWs [39] Sm film, B, B2O3 1100 Ni H2, Ar 175 5 Cubic <100>

CeB6 NWs [36,73] Ce, BCl3 1125 — H2, Ar 20~100 Several Cubic <100>

CeB6 NWs [74] CeCl3, BCl3 1125 Pt H2 50 Several Cubic <001>

GdB6 NWs [25] GdCl3, BCl3 — — H2 50~60 Several Cubic <001>

NdB6 NWs [75] Nd, BCl3 1150 — H2, Ar 80 Several Cubic <100>

EuB6 NWs and NTs [76] Eu, BCl3 950 — H2, Ar 100~300 Tens Cubic <100>

PrB6 nanorods (NRs) [37] Pr, BCl3 1050 — H2, Ar 80 Several Cubic <100>

PrB6 NWs and NTs [77,78] Pr, BCl3 1000~1150 — H2, Ar 50~300 1~4 Cubic <100>

ErB6 NWs [79] ErCl3·6H2O,
B10H14

1000 Pd Ar 30~150 Several Cubic <001>
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2.2. Laser Ablation Way

Laser ablation is also an effective method to fabricate LD boron nanostructures [53–59]. In laser
ablation method, high-power continuous or pulsed laser sources are needed to irradiate the solid
precursors and turn them into vapors or plasmas, which are subsequently transferred to the substrate
and produce nanostructures. By this way, boron nanobelts (NBs) [55–58,81] and NWs [53,59] can
be fabricated by using a pure boron or a B/NiCo as target, as shown in Figure 3a. Both the boron
NBs and NWs were indexed as tetragonal structures. As seen in Table 1, the NBs are observed
to have a width-to-thickness ratio of about 5, and their length ranges from several micrometers
to millimeters [55]. And the boron NWs have a diameter less than 100 nm and a averaged length
of hundreds nanometers [59]. Although laser ablation way has special advantage for growth of
high-melting LD boron nanostructures, the experimental equipment is too expensive to be widely
used for many researchers compared with CVD methods.

2.3. Magnetron Sputtering Way

Magnetron sputtering way is another synthesis method for boron NWs [60–63], in which
direct-current (DC) or radio frequency (RF) sputtering techniques are used to produce the plasma
by bombarding the targets for the formation of nanostructures on substrate [60]. As shown in
Figure 3b,c, well-aligned and large-scale boron NW arrays can be prepared on different substrates by
this way [60]. The mean length and diameter of the as-grown NWs are tens of micrometers and 45 nm,
respectively. However, it is hard to fabricate crystalline boron nanostructures by magnetron sputtering
method [62,63].

2.4. Other Methods

Besides the above-mentioned methods, there exist other methods to synthesize LD boron-based
nanostructures. By a solid-state reaction way, Y. M. Zhao et al. [64] synthesized single crystalline
SmB6 NWs with cubic structure at low temperature of 220~240 ◦C, and they are 50~120 nm in
diameter and 8~12 µm in length. As presented in Figure 3d. X. J. Wang et al. [33,34] respectively
prepared the LaB6 FE arrays and microtriodes by etching the LaB6 single crystal or micro-fabrication
technology. Single crystalline boron NTs with β-rhombohedral structure can be fabricated in a Cu alloy
at 1573 K and separated by 50% HNO3 solution [82]. As described above, there are many choices for
preparation of LD boron-based nanostructures, and the researchers should adopt the suitable method
by comprehensive consideration of the intrinsic characteristics of the products and the precursors.
At the viewpoint of actual FE applications, the CVD method should take great advantages over other
methods because the products by CVD way usually have higher crystallinity, larger aspect ratio and
better morphology controllability, which corresponds to better FE performances.
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3. Field Emission Properties of LD Boron-Based Nanostructures

LD boron-based nanostructures were found to have outstanding FE properties in recent studies.
Based on the research goal in experiments, FE measurement techniques can be simply divided into
two kinds, which are respectively individual nanostructure and nanostructured film measurement
methods. In this section, we will discuss the research advances in FE properties and applications of LD
boron-based nanostructures.

3.1. FE Properties of LD Boron-Based Nanostructures

3.1.1. FE Studies of a Single Boron-Based Nanostructure

FE measurement on individual nanostructures are very necessary because of which efficiently
avoid the field shielding effect [83–85], and thus it can reveal the intrinsic FE properties and mechanisms
of LD boron-based nanostructures. There are usually two methods for investigating the FE properties
of a single nanostructure. One is W-tip assisted anode probe measurement technique, which can be
depicted as follows. In the first step, the researchers are required to peel a suitable single nanowire from
the substrate. Subsequently, the researchers need to stick a nanostructure on the W tip by laser welding
way. Finally, the emission behaviors of individual nanostructure attaching on the W tip can be studied
in the commonly-used FE measurement system, in which a fluorescent screen or metal stage is used as
anode probe, and the distance between cathode and anode keeps constant in experiments. The other
is in-situ microprobe measurement technique [23–28]. By this technique, one can freely manipulate
the distance between the W microprobe anode and individual nanostructures on substrate in in-situ
microprobe measurement system, in which stepping nanomotor is used to control the movement
of microprobe to approach a single nanostructure at nanometer precision in the modified SEM or
TEM system. In this system, the electric conductivity and FE behaviors of a single LD boron-based
nanostructures as cathode can be easily studied, as indicated in Figure 4a. Compared with W-tip
assisted anode probe technique, in-situ microprobe measurement technique has significant merits,
such as higher accuracy, more handily manipulation and in-situ observation of the FE behaviors of
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nanostructures in experiments. As a result, in-situ microprobe measurement technique should a better
choice for the studies of individual boron-based or other nanostructures.
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WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) I-E curves of a single boron NT [24]. Copyright 2010
The Royal Society of Chemistry. (d) FE properties of individual LaB6 NW [28]. Copyright 2017 The Royal
Society of Chemistry.

Table 2 lists the recent FE results of individual boron-based nanostructures. As seen in Figure 4b,d,
the maximum FE currents of a single boron or LaB6 nanostructures are far higher than 1 µA.
Especially for individual boron NT and LaB6 NW, their maximum emission current respectively
reach as high as 88.9 µA [24] and 96.0 µA [28], which are much better than many other nice cold
cathode nanostructures (boron NW [86], GdB6 NW [25] and Mo nanoscrew [87]). Moreover, their FE
performances can be comparable to individual carbon NT [88,89] and graphene carbon NT tree with
excellent emission performances [90]. However, the FE current stability of boron-based nanostructures
needs to be further improved due to their relatively larger current fluctuation.

Table 2. Summary of FE properties of individual boron-based nanostructures and other nanostructures.

Individual Nanostructures 1 nA Field (V/µm) 1 µA Field (V/µm) Max FE Current (µA) Current Fluctuation (1 h)

Boron NW [23,24] — 59~74 ~2 22%

Boron NW [86] — ~4.7 —

Boron NT [24] 26.1~74.8 28.2~75.8 88.9 23%

GdB6 NW [25] — — ~0.23 —

LaB6 NW [26] — — ~0.033 —

LaB6 NW [27] — — 20 —

LaB6 NW [28] — — 96.0 —

Mo nanoscrew (NS) [87] — — 15.8 —

Vertically aligned carbon NT [88] — — 80~120 —

Carbon NT [89] — — 14.5 —

Graphene carbon NT tree [90] — — 76.5 —

In addition, J. Tang et al. [40] used field ion microscopy (FIM) and field emission microscopy
(FEM) to investigate the emission site distribution of a single LaB6 NW. The FIM patterns of LaB6

NWs with <001> and <012> orientations are respectively demonstrated in Figure 5a,b. It is found that
LaB6 NW with <001> orientation has the highest FE symmetry while LaB6 NW with <012> orientation
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has the lowest apical work function. Also, H. J. Gao et al. [41] researched on the diameter-dependent
FE properties of a single boron NW by in-situ microprobe technique. They found that the FE
mechanism of individual boron NWs deviates from the classical FN theory when their diameter
gradually decreases. Further effort is still needed for mastering the intrinsic FE mechanisms of LD
boron-based nanostructures.
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3.1.2. FE Behaviors of Boron-Based Nanostructured Film

The FE properties of boron-based nanostructured film are very significant for evaluating their
actual applications, in which the turn-on field and threshold field, current stability and maximum
emission current density are the crucial parameters. To investigate the FE properties of boron-based
nanostructure film, a column-like probe with smaller diameter of about several mm, a fluorescent
screen or a metal platform is often used as an anode. FE current of the nanostructured film sample
can be auto-recorded by the programmed amperemeter when the electric voltage is applied between
cathode film and anode. Sometimes, a gate voltage may be introduced to assist the anode to extract
the electrons from the cathode. Usually, the turn-on and threshold fields are defined as the applied
electrical field, corresponding to the FE current density reaches 10 µA/cm2 and 1 mA/cm2. And the
current stability directly reflects the current fluctuation at fixed field. There is a very simply and
classical calculation expression of current fluctuation Ifluct, i.e., I f luct = (Imax − Imin)/(Imax + Imin),
where Imax and Imin are respectively the maximum and minimum currents at given field during a
measurement period over 2 h. It is known to us all that lower turn-on and threshold field as well
smaller current fluctuation of nanostructured film suggest that they have excellent FE properties.

The FE properties of LD boron-based nanostructures are listed in Table 3. H. J. Gao’s group [29–31]
and N. S. Xu’s group [23] separately carried out the FE studies of boron nanostructured film. As shown
in Figure 6a, LD boron nanostructures with higher work function and smaller electric conductivity
have a relatively higher turn-on field of 2.8~5.1 V/µm and threshold field of 4~10.5 V/µm than LaB6

nanowires (about 2 and 5 V/µm). Meanwhile, the emission current density of boron nanostructured film
can reach up to 45 mA/cm2 and their emission current stability is less than 3%. In addition, the patterned
boron nanocones (NCs) have better FE properties (such as lower turn-on and threshold fields) compared
to the continuous boron NC films [30,31]. Also, the FE properties of REB6 nanostructured films were
investigated. As demonstrated in Figure 6b, CeB6 NW film exhibits a turn-on field of 7.6 V/µm and
their maximum FE current is about 287 µA. Our group has compared the FE properties of SmB6 NW
and nanopencil (NP) films, as seen in Figure 6c. It is found that the SmB6 NWs have a lower turn-on
field (6.5 V/µm) than SmB6 NPs (6.9 V/µm), and the maximum emission current density of both
nanostructures can reach several hundred µA/cm2. As seen in Figure 6d, X. J. Wang et al. [33,34] found
that the emission current density of LaB6 FE microtriode arrays can arrive as high as 558 mA/cm2 at
the gate voltage of 145 V. By using a flat metal stage as anode, we [28] investigated the FE properties
of LaB6 NWs film with an area of 0.34 cm2. It is seen in Figure 6c,d, the FE current density of
LaB6 NW film arrives at 16.7 mA/cm2 and their current fluctuation is only about 1.7% for 2 hour
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continuous measurements. In addition, J. Q. Xu et al. [23] studied the effect of the morphologies (sparse
nanoneedles (NNs), dense NNs, dense nanorods (NRs), and NW arrays) on the FE properties of LaB6

nanostructures, and their turn-on fields were found to be respectively 4.12, 2.16, 2.80 and 1.80 V/µm.
In this case, larger aspect ratio is observed to be very essential to lower their turn-on field of LaB6

nanostructures because it represents larger field emission enhancement factors. Also, H. J. Gao et al. [30]
investigated the FE properties of different growth density (low, medium, and high) of boron NCs.
They found that the boron NCs with medium growth density have the most excellent FE properties
(the lowest turn-on and threshold fields). It suggests their FE properties can be improved by adjusting
the distance among neighbored boron NCs to close to the length of NCs, which can be attributed to the
weakening of field screening effect at suitable nanostructure density. In conclusion, better crystallinity,
larger aspect ratio and suitable growth density are highly demanded for the FE applications of LD
boron-based nanomaterials.

Table 3. FE characteristics of typical boron-based nanostructures.

Nanostructures Turn-on Field
(V/µm)

Threshold
Field (V/µm)

Maximum Current
Density (mA/cm2)

Sample Area
(cm2)

Current Fluctuation
(2 h)

Boron NCs [29] 3.5 5.3 25 0.01 <±3%

Boron NWs [23] 5.1 11.5 8.1 — —

Boron NCs [30] 4.7 7.6 ~31 0.00785 —

Boron NCs [31] 2.8 3.8 ~45 0.00785 <10%

LaB6 NWs [32] 1.82 2.48 ~5.7 — <6%

LaB6 FE microtriodes [33] — — 558 0.01 stable

LaB6 FE arrays [34] 3.2 — ~107 0.3 —

LaB6 NWs [28] 2.2 2.9 16.7 0.34 1.7%

SmB6 NWs [35] 4.2 ~9.4 ~1.3 0.19625 < 10%

CeB6 NWs [36] 7.6 13.5 — — —

PrB6 NRs [37] 2.80 6.99 ~1.2 — <10%

NdB6 NWs [38] 5.55 — ~0.12 — —

SmB6 NWs [39] 6.5 — ~0.3 0.49 —

Carbon NTs [91] 1.28~1.60 1.62~2.24 4686~6171 0.0007 1.4%

W18O49 nanotips [92] 2.0 ~3.2 14 — 2%

Mo nanoscrews [87] 1.65 ~2.4 106.39 0.02 0.46%

Mo NWs [17] 2.2 ~4 ~17.9 0.02 —

The temperature-dependent FE properties of LD boron-based nanostructure film also attract
researchers’ interest because of which care about their practical applications. Y. M. Zhao et al. [35,37,49]
compared the temperature-dependent FE properties among several REB6 NW films. As shown in
Figure 7a,b, the research results show that the FE current density of rare-earth hexaboride (LaB6,
SmB6, and PrB6) NW film at 573 K increases to be about 10 times larger than that of it at room
temperature. J. Q. Xu and our group [28,32] respectively investigated the temperature-dependent FE
behaviors of LaB6 nanowire film, as shown in Figure 7c–f. The FE current densities at 723 K and 773 K
were observed to respectively increase about 45 and 2.3 times larger than the room-temperature
current density. Both of these two research groups attributed the FE improvement mechanism
of LaB6 nanowires to the decrease of the effective work function resulting from desorption of the
adsorbent gases during temperature-rising process. Moreover, F. Liu et al. [28] found out that the
FE current density of LaB6 NWs unvaried with the drop of temperature and almost recovered to the
original excellent FE performances after detachment of the surface oxygen molecules in O2 injecting
experiments. As seen in Table 3, LD boron-based nanomaterials have comparable FE properties with
many excellent cathode nanostructures [87,91,93,94]. Combined the FE performances of individual LD
boron-based nanomaterials and nanostructured film, the LD boron-based nanostructures should have
promising future in cold cathode electron sources. Of course, the FE current density and stability of
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LD boron-based nanostructures are worse than thermal emission in present [95–97]. Therefore, it is
still a long way to fabricate high-quality nanostructures and design a much better FE device structure
to enhance their emission performances for actual applications.
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(e,f) Temperature-dependent FE curves of the LaB6 NWs from F. Liu et al. [28]. Copyright 2017 The
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3.2. FE Applications of Boron-Based Nanostructures

In recent studies, low-power nanostructure-based microwave electron tubes were observed to
exhibit nice performances, in which 27.5 W output power and 19.5 dB gain have been achieved at a
frequency of 10.5 GHz, a helix voltage of 3.35 kV and a cathode current of 58.6 mA [98,99]. In addition,
carbon NTs [100–104] and ZnO NWs [105] were used as X-ray sources with a spatial resolution of less
than 25 µm. In the meantime, a single LaB6 NW with growing along <001> direction was fabricated
into the electron gun of the SEM system by H. Zhang et al. [97] because of its outstanding FE behaviors.
As shown in Figure 8, individual LaB6 NW was fixed on the end of W needle as the cathode filament
by in-situ e-beam-induced deposition (EBID) technique in the modified SEM system. It was found that
the current density gain of LaB6 NW is about 1000 times greater than that of the W(310) tip and no
emission decay was observed during tens of hours of operation. Moreover, the SEM equipped with a
single LaB6 NW electron source can capture an enough low noise, high resolution (up to 2.6 nm) image
and have a rapid mapping ability of chemical compositions at room temperature. N. S. Xu et al. [24]
have demonstrated the prototype luminescent tube using boron NT cathode. The luminance of boron
NT-based luminescent tube was observed to increase nearly linearly with the cathode current, and
the maximum luminance can arrive at 1412 cd/m2 at 3 mA/cm2 current density. Moreover, the boron
NT-based luminescent tube exhibited very stable operation and uniform brightness distribution in 2 h
continuous measurements, in which the fluctuation was less than 7% and the emission uniformity was
over 95 %. Therefore, it suggests that LD boron-based nanostructures should be excellent candidates
for future cathode electron source of high-power microwave electron tubes, X-ray tubes or cold cathode
electron guns in SEM/TEM system.
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Figure 8. Individual LaB6 NW as a FE electron gun in a modified SEM system [97]. Copyright 2015
Springer Nature. (a–c) Schematic diagram, SEM picture and FE images of a single LaB6 NW fixed on
the top of W needle. (d) Typical 100,000 times magnification image captured by SEM with individual
LaB6 NW cathode at 5.0 kV extraction voltage. (e) EDS mapping result. The inset is the spectrum of
the mapping area. (f) The dependence of normalized angular current density on extraction voltage.
The corresponding FN plots are shown in the inset. (g) Electron energy distribution from a LaB6 NW
and a W(310) tip.

4. Outlook and Conclusions

In summary, the researches on the synthesis ways and FE properties of LD boron-based
nanostructures have made great progress in the past two decades, but there still exist two big challenges
for their future developments. One is the growth of pure boron single crystalline NTs with controlled
layers and aspect ratio because the boron NTs with metallic properties usually coexisted with the p-type
NWs as well as their length and diameter are hard to control using the known ways. In this situation,
the electron transport and FE properties of boron NTs can’t be effectively modulated and improved.



Appl. Sci. 2019, 9, 1019 12 of 17

The other is to fabricate high-performance LD boron-based nanostructure cathodes to meet the critical
requirements for cold cathode electron sources, which can bear enough larger current density with
a long lifetime and higher stability. In present studies, the emission current of nearly all individual
boron-based nanostructures can arrive at 1 µA current and their maximum current can be even as high
as 96.0 µA in measurements [23,24,28,86]. But when their nanostructured film are used, the averaged
emission current of a single nanostructure on film is found to be only about 0.2 µA [33], which is far
lower than that of individual nanostructure. As a result, the FE performances of LD boron-based
nanostructures are not good enough for their cold cathode electron source applications nowadays.

The aim to these two main problems, there are the following possible solutions by our analysis.
As for the synthesis of pure boron NTs, the researchers can realize this goal by adjusting the growth
parameters, such as heating or cooling rate, the flow rate ratio of carrier gas, the mass ratio of source
materials and the collection area of products. If we hope to efficiently improve the FE performances
of LD boron-based nanostructure films, two strategies can be considered. One is to control the
nanostructure density on substrate, which can effectively decrease the field shielding effect and
ensure more nanostructures involve in emission. The other is to enhance the heat dissipation capacity
by designing a more effective device structure [106], fabricating composite structure [90], increasing
the electron conductivity of boron-based nanostructures by element doping and lowering the contact
resistance between nanostructures and substrate, which may remarkably improve their endurance to
large emission current.

Considering their excellent emission properties, REB6 nanostructures should have great potential
applications as the cold cathode electron sources in SEM/TEM system, high-power microwave
electron tubes or X-ray sources. Moreover, boron monoelement nanowires or nanotubes with large
Young’s modulus [42] may have a more promising future in portable, flexible and low-power cathode
electron sources.
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