Environmental Effects on HV Dielectric Materials and Related Sensing Technologies
Abstract
:1. Introduction
2. Analyses and Discussions
- Normal operation and temporary power-frequency over-voltages;
- Switching surge voltages;
- Lighting surge voltages.
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, R. An Incomplete History and Timeline of Electric Telegraph and CD 731 Compromise Insulator, Hamilton, Ohio. 2010. Available online: https://www.insulators.info/shows/handouts/cd_731.pdf (accessed on 9 January 2019).
- Tod, J.H. A history of Electrical Porcelain Industry in the United States; Printed privately by Jack H. Todd. 1977. Available online: https://www.r-infinity.com/ebay/Electrical_Porcelain/Electrical_Porcelain_Adobe.pdf (accessed on 29 January 2019).
- Gençoglu, M.T. The comparison of ceramic and non-ceramic insulators. Nat and Appl. Sci. Electr. Eng. 2007, 2, 274–294. [Google Scholar]
- Hall, J.F. History and biography of polymeric insulators for outdoor applications. IEEE Trans. Power Deliv. 1993, 8, 376–385. [Google Scholar] [CrossRef]
- Thompson, W.C. The mechanism of the contamination of porcelain insulators. J. IEE 1944, 91, 317–327. [Google Scholar]
- Lambeth, P.J. Effect of pollution on high-voltage outdoor insulators. Proc. IEE Rev. 1971, 118, 1107–1130. [Google Scholar] [CrossRef]
- Sundararajan, R.; Mohammed, A.; Chaipanit, N.; Karcher, T.; Liu, Z. In-service aging and degradation of 345 kV EPDM transmission line insulators in a coastal environment. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 348–361. [Google Scholar] [CrossRef]
- Hussain, M.; Farokhi, S.; McMeekin, S.G.; Farzaneh, M. Dry Band Formation on HV Insulators polluted with Different Salt Mixtures. In Proceedings of the Annual Conference on Electrical Insulation and Dielectric Phenomena, Ann Arbor, MI, USA, 18–21 October 2015; pp. 201–204. [Google Scholar]
- El-Amine, M.S.; Hadi, H.; Flazi, S. Investigation on Influence of Salts Mixture on the Determination of Flashover Discharge Constant Part I: A Preliminary Study. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena, Quebec, QC, Canada, 26–29 October 2008; pp. 674–677. [Google Scholar]
- Sima, W.; Yuan, T.; Yang, Q.; Xu, K.; Sun, C. Effect of nonuniform pollution on the withstand characteristics of extra high voltage suspension ceramic insulator string. IET Gen. Trans. Distrib. 2009, 4, 445–455. [Google Scholar] [CrossRef]
- Kimoto, I.; Fujimura, T.; Naito, K. Performance of insulators for direct current transmission line under polluted condition. IEEE Power Eng. Soc. 1972, PAS-92, 944–949. [Google Scholar]
- Naito, K.; Morita, K.; Hasegawa, Y.; Imakoma, T. Improvement of the dc voltage insulation efficiency of suspension insulators under contaminated conditions. IEEE Trans. Dielectr. Electr. Insul. 1988, 17, 1025–1032. [Google Scholar] [CrossRef]
- Seta, T.; Arai, N.; Udo, T. Natural pollution test of insulators energized with HVDC. IEEE Trans. Power App. Syst. 1974, 93, 878–883. [Google Scholar] [CrossRef]
- Kimoto, I.; Fujimura, T.; Naito, K. Performance of Insulators for direct current transmission line under polluted condition. IEEE Trans. Power App. Syst. 1973, 92, 943–949. [Google Scholar] [CrossRef]
- Venkataraman, S.; Gorur, R.S. Prediction of flashover voltage of non-ceramic insulators under contaminated conditions. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 862–869. [Google Scholar] [CrossRef]
- Venkataraman, R.; Gorur, S.; Mishra, A.P. Impact of weathering on flashover performance of nonceramic insulators. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1073–1080. [Google Scholar] [CrossRef]
- Huafeng, S.; Zhidong, D.J.; Zhicheng, C.G.; Licheng, L. Mechanism of contaminant accumulation and flashover of insulator in heavily polluted coastal area. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1635–1641. [Google Scholar]
- Horenstein, M.N.; Melcher, J.R. Particle contamination of high voltage DC insulators below corona threshold. IEEE Trans. Dielectr. Electr. Insul. 1979, 14, 297–305. [Google Scholar] [CrossRef]
- Lampe, W.; Hogluend, T.; Nellis, C.; Renner, P.; Stearns, R. Long-term tests of insulators under natural pollution condition at the big eddy test center. IEEE Trans. Power Del. 1989, 4, 248–258. [Google Scholar] [CrossRef]
- Fuzeng, Z.; Zhao, J.; Wang, M.L.; Zhicheng, C.G. Experimental investigation on outdoor insulation for DC transmission line at high altitudes. IEEE Trans. Power Deliv. 2010, 25, 351–357. [Google Scholar] [CrossRef]
- IEEE Standard Techniques for High Voltage Testing; (Std. 4–1987); IEEE: New York, NY, USA, 1995.
- Hussain, M.M.; Farokhi, S.; McMeekin, S.; Farzaneh, M. Mechanism of saline deposition and surface flashover on outdoor insulators near coastal areas part II: Impact of various environment stresses. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1068–1076. [Google Scholar] [CrossRef]
- Dahham, I.A. Effect of the combined pollution of brick industry and sandstorms on the performance of high voltage insulators. Tikrit J. Eng. Sci. 2018, 1, 68–72. [Google Scholar]
- Abdel-Salam, H.H.; Nagat, M.K.A.; Bahaa, A.A. Effect of desert environmental conditions on the flashover voltage of insulators. Energy Convers. Manag. 2002, 43, 2437–2442. [Google Scholar]
- Ward, S.W.; Sanwar, M.R. A study of pollution effect on flashover phenomenon for south-west Iraqi (132kV) grid insulators. Al-Qadisiyia J. Eng. Sci. 2010, 3, 1–18. [Google Scholar]
- Challagondla, N.K. Behaviour of Water Drop on the Insulator Surface and Study of Electric Field Distribution on Parallel Insulators Under DC. Ph.D. Thesis, Brandenburg University of Technology, Brandenburg, Germany, 2015. [Google Scholar]
- Kataria, N.; Tiwari, K. Effect of environment pollution on the performance of power transmission lines: Insulator’s flashover. Int. J. Eng. Res. 2018, 7, 531–533. [Google Scholar]
- Nasrat, L.S.; Ibrahim, A.A.; Mortadda, H.A. Effect of environment desert conditions on the performance of hydrophobic polymer insulator surfaces. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 567–574. [Google Scholar]
- Jermi, A.; He, Y.; Khan, Q.U. Performance of high-voltage polymeric insulators under simulated environmental conditions in desert areas of Southern Libya. Trans. Electr. Electron. Mater. 2018, 19, 53–57. [Google Scholar] [CrossRef]
- Benson, E. Generating Infrastructural invisibility: Insulation, interconnection, and avian excrement in the Southern California power grid. Environ. Humanit. 2015, 6, 103–130. [Google Scholar] [CrossRef]
- Izadi, M.; Rahman, M.S.A.; Ab-Kadir, M.Z.A.; Gomes, C.; Jasni, J.; Hajikhani, M. The influence of lightning induced voltage on the distribution power line polymer insulators. PLoS ONE 2017, 12, e0172118. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Li, C.R.; Hao, Z.; Geng, B.B.; Xu, D.G.; Liu, S.Y.; Deng, C. Surface discharge initiated by immobilized metallic particles attached to gas insulated substation insulators: Process and features. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 792–800. [Google Scholar] [CrossRef]
- Jiang, X.L.; Liu, Y.; Meng, Z.G.; Long, C.H.; Jin, X.; Zhang, Z.J. Effect of fog-haze on AC flashover performance of insulator. High Volt. Eng. 2014, 40, 3311–3317. [Google Scholar]
- Deng, H.M.; He, Z.H.; Xu, Y.H.; Ma, J.; Li, J. Effects of haze environment on discharge path under lightning impulses. High Volt. Eng. 2009, 35, 2669–2673. [Google Scholar]
- Wang, L.M.; Liu, D.; Chen, F.L.; Mei, H.W.; Lu, M. Simulation method and testing apparatus of fog-haze. High Volt. Eng. 2014, 40, 3297–3304. [Google Scholar]
- Liu, Y.Y.; Li, Y.; Wang, J.; Liang, X.D. Adhesion force and long-range attractive force between contamination particles and insulator surface. High Volt. Eng. 2014, 40, 1010–1016. [Google Scholar]
- Ramos, H.; Jose, A.; Compayo, M.; Jose, J. Insulator pollution in transmission lines. RE&PQJ 2006, 1, 124–130. [Google Scholar]
- International Electrotechnical Commission. Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions—Part 1: Definitions, Information and General Principles; IEC TS 60815-1:2008; 2008; pp. 1–53. [Google Scholar]
- Nogol, O. High Voltage Insulators Constructed to Have Plural Dry Bands in Use. U.S. Patent 4,891,473, 1990. [Google Scholar]
- Slama, M.E.A.; Beroual, A. Behaviour of AC high voltage polyamide insulators: Evolution of leakage current in different surface conditions. Power Eng. Electr. Eng. 2015, 13, 74–80. [Google Scholar]
- Arshad; Nekahi, A.; McMeekin, S.G.; Farzaneh, M. Effect of pollution severity and dry band location on the flashover characteristics of silicone rubber surfaces. Electr. Eng. 2017, 99, 1053–1063. [Google Scholar] [CrossRef]
- Sierra, R.C.; Oviedo-Trespalacios, O.; Candelo, J.E.; Soto, J.D. Assessment of the risk of failure of high voltage substations due to environmental conditions and pollution on insulators. Environ. Sci. Pollut. Res. 2015, 22, 1–10. [Google Scholar]
- Imhof, A. High Voltage Insulator. U.S. Patent 2945912A, 1960. [Google Scholar]
- Denholm, A.S. High-Voltage Electrical Insulating Bushing. U.S. Patent 3126439A, 1964. [Google Scholar]
- Talcott, D.T. Weatherable Electrical Insulators made of Thermosetting Resin. U.S. Patent US 3,511,698, 1970. [Google Scholar]
- Mitsumatsu, Y.; Seike, S. High Voltage Porcelain Insulators. Patent EP0119838B1, 1987. [Google Scholar]
- Niemi, R.G. Method of Improving A High Voltage Insulator and Suitable Composition. Patent EP0123487B1, 1970. [Google Scholar]
- Amarasekera, J.; Doin, J.E. Silicone Compositions for High Voltage Insulator Applications. Patent EP0 928008A2, 1999. [Google Scholar]
- Phillips, A.J.; Birrell, D.S.; Childs, D.J. Aging Resistant, High Voltage Non-Ceramic Insulation. Patent 5,792,996, 1998. [Google Scholar]
- Greyling, C.J. Polymeric High Voltage Insulator with a Hard, Hydrophobic Surface. U.S. Patent 2010/0326699 A1, 2010. [Google Scholar]
- Chisholm, W.; Farzaneh, M. Environmental Exposure of Insulators for Icing and Polluted Environments; Wiley–IEEE Press: Hoboken, NJ, USA, 2009; pp. 59–154. [Google Scholar]
- Niemi, R.G. High Voltage Insulators. U.S. Patent 4476155A, 1984. [Google Scholar]
- Becker, K. Conductive Contamination Resistant Insulator. U.S. Patent US 2010/0108915 A1, 2012. [Google Scholar]
- Li, J.; Fan, L.; Wong, C.-P.; Lambert, F.C. Insulator Coating and Method for Forming Same. U.S. Patent 7,722,951 B2, 2010. [Google Scholar]
- Ghosh, D.; Khastgir, D. Degradation and stability of polymeric high-voltage insulators and prediction of their service life through environmental and accelerated aging processes. ACS Omega 2018, 3, 11317–11330. [Google Scholar] [CrossRef]
- Narain, G.H. Aparatus for Washing Electrical Insulators. U.S. Patent 5,041,164A, 1991. [Google Scholar]
- Meguriya, N.; Azechi, S.; Sekiguchi, S.; Yoshida, T. Silicone Rubber Compositions for High-Voltage Electrical Insulators and Polymeric Bushings. U.S. Patent 6,106,954A, 2000. [Google Scholar]
- Richards, C.N. Semiconductive Attachment Disc for Insulators to Reduce Electrical Stress Induced Corrosion. U.S. Patent 6,265,669 B1, 2001. [Google Scholar]
- Amin, M.; Akbar, M.; Khan, M.N. Aging Investigations of Polymeric Insulators: Overview and Bibliography. IEEE Electr. Insul. 2007, 23, 44–50. [Google Scholar] [CrossRef]
- Peek, F.W., Jr. Dielectric Phenomena in High Voltage Engineering, 3rd ed.; McGraw-Hill: New York, NY, USA, 1929. [Google Scholar]
- Korzhov, A.V.; Okrainskaya, I.S.; Sidorov, A.I.; Kufel’d, V.D. A study of electromagnetic radiation of corona discharge near 500-Kv electric installations. Power Tech. Eng. 2004, 38, 57. [Google Scholar] [CrossRef]
- Que, W.G.; Sebo, S.A.; Hill, R.J. Practical cases of electric field distribution along dry and clean nonceramic insulators of high voltage power lines. IEEE Trans. Power Deliv. 2007, 22, 1070–1078. [Google Scholar] [CrossRef]
- Gillen, K.T.; Clough, R.L. Anomalous aging phenomena in a crosslinked polyolefin cable insulation. Radiat. Phys. Chem. 1993, 41, 803. [Google Scholar] [CrossRef]
- Misaki, T.; Tsuboi, H.; Itaka, K.; Hara, T. Computation of three-dimensional electric field problems and its application to optimum insulator design. IEEE Trans. Power Appar. Syst. 1982, 101, 627. [Google Scholar] [CrossRef]
- Kaana-Nkusi, S.; Alexander, P.H.; Hackam, R. Potential and electric field distribution at a HV insulator shed. IEEE Trans. Electr. Insul. 1998, 23, 307–317. [Google Scholar] [CrossRef]
- El-Kishky, H.; Gorur, R.S. Electric potential and field along ac HV insulators. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 982–990. [Google Scholar] [CrossRef]
- Xu, G.; McGrath, P.B. Electrical and thermal analysis of polymer insulator under contaminated surface conditions. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 289–298. [Google Scholar]
- Kontargyri, V.T.; Gonos, I.F.; Stathopulos, I.A. Measurement and simulation of the electric field of high voltage suspension insulators. Eur. Trans. Electr. Power 2009, 19, 509. [Google Scholar] [CrossRef]
- Bojovschi, A.; Wong, K.L.; Rowe, W.S.T. Impact of electromagnetic radiation on cascaded failure in high voltage insulators. Appl. Phys. Lett. 2011, 98, 051504. [Google Scholar] [CrossRef]
- Rowland, S.M.; Lin, F.C. Stability of alternating current discharges between water drops on insulation surfaces. J. Phys. D Appl. Phys. 2006, 39, 3067–3076. [Google Scholar] [CrossRef]
- Zhu, Y.; Haji, K.; Otsubo, M.; Honda, C. Electrohydrodynmaic behaviour of water droplet on an electrically stressed hydrophobic surface. J. Phys. D Appl. Phys. 2006, 39, 1970–1975. [Google Scholar] [CrossRef]
- Yamada, T.; Sugimoto, T.; Higashiyama, Y.; Takeishi, M.; Aoki, T. Resonance phenomena of single water droplet located on a hydrophobic sheet under AC electric field. IEEE Trans. Ind. Appl. 2003, 39, 59–65. [Google Scholar] [CrossRef]
- Higashiyama, Y.; Kamada, M. Dehumidification using negative corona discharge from a water droplet. In Proceedings of the Annual Meeting of the Electrostatics of America, Ottawa, ON, Canada, 13–15 June 2017. [Google Scholar]
- Hinde, D.D. Corona discharges on the surfaces of high voltage composite insulators. Ph.D. Thesis, Queensland University of Technology, Brisbane, Queensland, Austria, 2009. [Google Scholar]
- Zeleny, J. Instability of electrified liquid surfaces. Phys. Rev. 1917, 10, 1. [Google Scholar] [CrossRef]
- Taylor, G. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. Ser. A 1964, 280, 383–397. [Google Scholar]
- English, W.N. Positive and negative point-to-plane corona in air. Phys. Rev. 1948, 74, 179. [Google Scholar] [CrossRef]
- Bojovschi, A.; Rowe, W.S.T.; Wong, K.L. The influence of hanging water droplets on discharge activity, application to high voltage insulators. Appl. Phys. Lett. 2011, 98, 091504. [Google Scholar] [CrossRef]
- Kreuger, F.H. Partial Discharge Detection in High Voltage Equipment; Butterworths: London, UK, 1989. [Google Scholar]
- Gutfeisch, F.; Niemeyer, L. Measurement and simulation of pd in epoxy voids. IEEE Trans. Dielectr. Electric. Insul. 1995, 2, 729–743. [Google Scholar] [CrossRef]
- Ficker, T. Electron avalanches I. Statistics of partial microdischarges in their pre-streamer stage. IEEE Trans. Dielectr. Electric. Insul. 2003, 10, 689–699. [Google Scholar] [CrossRef]
- Ficker, T. Electron avalanches II. Fractal morphology of partial microdischarge spots on dielectric barriers. IEEE Trans. Dielectr. Electric. Insul. 2003, 10, 700–707. [Google Scholar] [CrossRef]
- Kawada, M.; Tungkanawanich, A.; Kawasaki, Z.; Matsumura, K. Detection of wide-band E-M signals emitted from partial discharge occurring in GIS using wavelet transform. IEEE Trans. Power Deliv. 2000, 15, 467–471. [Google Scholar] [CrossRef]
- Wong, K.L. Application of very-high-frequency (VHF) method to ceramic insulators. IEEE Trans. Dielectr. Electric. Insul. 2004, 11, 1057–1064. [Google Scholar] [CrossRef]
- Oughstun, K.E.; Sherman, G.C. Electromagnetic Pulse Propagation in Causal Dielectrics; Springer: Berlin, Germany, 2002. [Google Scholar]
- Tian, Y.; Kawada, M.; Isaka, K. Locating partial discharge source occurring on distribution line by using FDTD and TDOA methods. IEEJ Trans. Fundam. Mater. 2009, 129, 89–96. [Google Scholar] [CrossRef]
- Bojovschi, A.; Rowe, W.S.T.; Wong, K.L. Radiation Spectra of Partial Discharge in Dielectrics. In Proceedings of the 19th Australian Universities Power Engineering Conference, Adelaide, Australia, 27–30 September; pp. 1–9.
- Wong, K.L. Method and Apparatus for Detecting an Event. Patent WO 2007070942, 2007. [Google Scholar]
- Bojovschi, A.; Rowe, W.S.T.; Wong, K.L. Dynamcis of Partial Discharge in Dielectrics: A Computational Approach. In Proceedings of the 16th International Symposium on High Voltage Engineering, Cape Town, South Africa, 24–28 August 2009; pp. 430–435. [Google Scholar]
- Bojovschi, A.; Rowe, W.S.T.; Wong, K.L. Electromagnetic field intensity generated by partial discharge in high voltage insulating materials. Prog. Electromagn. Res. PIER 2010, 104, 167–182. [Google Scholar] [CrossRef]
- Smith, P.S. Device for Locating and Detecting Insulator Defects. U.S. Patent 20010052778A1, 2001. [Google Scholar]
- Domingues, E.D. S Improved Condition Monitoring of Composite Insulators. Ph.D. Thesis, University of Manchester, Manchester, UK, 2012. [Google Scholar]
- Kloes, H.; Koenig, D. Multifactor-Surface-Tests of Organic Insulating Materials in the Early Stage of Degradation. In Proceedings of the IEEE International Symposium on Electrical Insulation, Montreal, QB, Canada, 16–19 June 1996; pp. 296–299. [Google Scholar]
- Brown, R.E.; Humphrey, B.G. Asset management for transmission and distribution. Power Energy Mag. IEEE 2005, 3, 39–45. [Google Scholar] [CrossRef]
- Bertling, L.; Allan, R.; Erickson, R. A reliability-centered asset maintenance method for assessing the impact of maintenance in power distribution systems. IEEE Trans. Power Syst. 2005, 20, 75–82. [Google Scholar] [CrossRef]
- Gubanski, S.; Dernfalk, A.; Andersson, J.; Hillborg, H. Diagnostic methods for outdoor polymeric insulators. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 1065–1080. [Google Scholar] [CrossRef]
- Zhao, L.; Li, C.; Xiong, J.; Zhang, S.; Yao, J.; Chen, X. Online hydrophobicity measurement for silicone rubber insulators on transmission lines. IEEE Trans. Power Deliv. 2009, 24, 806–813. [Google Scholar] [CrossRef]
- Da Costa, E.; Ferreira, T.; Neri, M.; Queiroz, I.; Germano, A. Characterization of polymeric insulators using thermal and UV imaging under laboratory conditions. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 985–992. [Google Scholar] [CrossRef]
- Qaddoumi, N.; El-Hag, A.; Al Hosani, M.; Al Mansouri, I.; Al Ghufli, H. Detecting defects in outdoor non-ceramic insulators using near-field microwave non-destructive testing. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 402–407. [Google Scholar] [CrossRef]
- Chandrasekar, S.; Kalaivanan, C.; Cavallini, A.; Montanari, G. Investigations on leakage current and phase angle characteristics of porcelain and polymeric insulator under contaminated conditions. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 574–583. [Google Scholar] [CrossRef]
- Amin, M.; Amin, S.; Ali, M. Monitoring of leakage current for composite insulators and electrical devices. Rev. Adv. Mater. Sci. 2009, 21, 75–89. [Google Scholar]
- Gorur, R.; Schneider, H.; Cartwright, J.; Beausajour, Y.; Kondo, K.; Gubanski, S.; Hartings, R.; Shah, M.; McBride, J.; de Tourreil, C.; et al. Surface resistance measurements on nonceramic insulators. IEEE Trans. Dielectr. Electr. Insul. 2001, 16, 801–805. [Google Scholar]
- Larsson, A.; Kröll, A.S.; Dernfalk, D.; Gubanski, S.M. In-situ diagnostics of high-voltage insulation using laser-induced fluorescence spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 274–281. [Google Scholar] [CrossRef]
- Bakhtiari, S.; Ganchev, S.; Qaddoumi, N.; Zoughi, R. Microwave non-contact examination of disbond and thickness variation in stratified composite media. IEEE Trans. Microw. Theory Tech. 1994, 42, 389–395. [Google Scholar] [CrossRef]
- Chunghtai, A.; Smith, D.; Kumosa, L.; Kumosa, M. FTIR Analysis of non-ceramic composite insulators. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 585–596. [Google Scholar] [CrossRef]
- Blackmore, P.D.; Birtwhistle, D.; Cash, G.A.; George, G.A. Condition assessment of EPDM composite insulators using FTIR spectroscopy. IEEE Trans Dielectr. Electr. Insul. 1998, 5, 132–141. [Google Scholar] [CrossRef]
- Birtwhistle, D.; Blackmore, P.; Krivda, A.; Cash, G.; George, G. Monitoring the condition of insulator shed materials in overhead distribution networks. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 612–619. [Google Scholar] [CrossRef]
- Birtwhistle, D.; Blackmore, P.; Cash, G.; Gillespie, T.; Krivda, A. Application of advanced chemical analysis techniques to the assessment of composite insulator condition. CIGRE Paris 2000, 1, 15–307. [Google Scholar]
- Amin, M.; Salman, M. Aging of polymeric insulators (an overview). Rev. Adv. Mater. Sci. 2006, 13, 93–116. [Google Scholar]
- Homma, H.; Kuroyagi, T.; Izumi, K.; Mirley, C.L.; Ronzello, J.; Boggs, S.A. Evaluation of surface degradation of silicone rubber using gas chromatography/mass spectroscopy. IEEE Trans. Power Deliv. 2000, 15, 796–803. [Google Scholar] [CrossRef]
- El-Hag, A.H. Leakage current characterization for estimating the conditions of non-ceramic insulators’ surfaces. Electr. Power Syst. Res. 2007, 77, 379–384. [Google Scholar] [CrossRef]
- Otsubo, M.; Hashiguchi, T.; Honda, C.; Takenouchi, O.; Sakoda, T.; Hashimoto, Y. Evaluation of insulation performance of polymeric surface using a novel separation technique of leakage current. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 1053–1060. [Google Scholar] [CrossRef]
- Hjartarson, T.; Jesus, B.; Hughes, D.T.; Godfrey, R.M. Development of Health Indices for Asset Condition Assessment. In Proceedings of the IEEE PES Transmission and Distribution Conference and Exposition, Oakville, ON, Canada, 7–12 September 2003; pp. 541–544. [Google Scholar]
- Wong, K.L. Electromagnetic emission based monitoring technique for polymer ZnO surge arresters. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 181–190. [Google Scholar] [CrossRef]
- Wong, K.L.; Bojovschi, A. Fault Detection System. Patent WO/2013/091028, 2013. [Google Scholar]
- Bojovschi, A.; Rusus, L.I.; Wagner, J.M. System, Method and Computer Program Product for Characterizing Object Status and Determining a Maintenance Schedule. U.S. Patent 20180121845, 2018. [Google Scholar]
Insulator Based on Material Content | Specific Characteristics | Year of Implementation |
---|---|---|
Glass insulators | Good contamination performance due to self-cleaning property High dielectric strength Attracts condensation Easily fractured | 1865 |
Ceramic insulators | High degree of standardization Outstanding insulating properties Fairly high electrical and mechanical strength Self-cleaning property Heavy Easily fractured | 1880 |
Composite polymeric insulators | Fairly low degree of standardization Good hydrophobicity Self-healing Prone to mould growth Good flashover performance Low cost High mechanical strength to weight ratio Lighter in weight Flexible | 1960 |
Nature of Suspended Matter | Diameter (µm) | |
---|---|---|
Inorganic | Smoke | 0.001–0.3 |
Fumes | 0.01–1.0 | |
Dust | 1.0–100.0 | |
Organic | Bacteria | 1.0–10.0 |
Plant spores | 10.0–20.0 | |
Pollen | 15.0–50.0 | |
Water | Fog | 1.0–50.0 |
Mist | 10.0–100.0 | |
Drizzle | 50.0–400.0 | |
Rain | 400.0–4000.0 |
Contaminant | Source of Pollution |
---|---|
Salt | Coastal areas Salt industries Salt from snow melting |
Cement | Cement plants Construction sites |
Fertilisers | Fertilizer plants Fertilizers used in cultivated fields |
Metallic | Mining process |
Coal | Coal handling process Coal burning/brick-kiln areas |
Defecation | Roosts of birds |
Smog | Automobile emissions at highways and crossings Diesel engine emissions at railway yards |
Smoke | Wild fire Industrial burning Agricultural burning |
ESDD (mg/cm2) | Site Severity Based on Pollution | Leakage Distance (inch/kVL-G) |
---|---|---|
<0.01 | Very light | 0.87 |
0.01–0.04 | Light | 1.09 |
0.04–0.15 | Medium | 1.37 |
0.15–0.40 | Heavy | 1.70 |
>0.40 | Very heavy | 2.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojovschi, A.; Quoc, T.V.; Trung, H.N.; Quang, D.T.; Le, T.C. Environmental Effects on HV Dielectric Materials and Related Sensing Technologies. Appl. Sci. 2019, 9, 856. https://doi.org/10.3390/app9050856
Bojovschi A, Quoc TV, Trung HN, Quang DT, Le TC. Environmental Effects on HV Dielectric Materials and Related Sensing Technologies. Applied Sciences. 2019; 9(5):856. https://doi.org/10.3390/app9050856
Chicago/Turabian StyleBojovschi, Alexe, Thai Vu Quoc, Huy Nguyen Trung, Dung Trinh Quang, and Tu Cam Le. 2019. "Environmental Effects on HV Dielectric Materials and Related Sensing Technologies" Applied Sciences 9, no. 5: 856. https://doi.org/10.3390/app9050856
APA StyleBojovschi, A., Quoc, T. V., Trung, H. N., Quang, D. T., & Le, T. C. (2019). Environmental Effects on HV Dielectric Materials and Related Sensing Technologies. Applied Sciences, 9(5), 856. https://doi.org/10.3390/app9050856