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Abstract: Multi-Source RS data integration is a crucial technology for rock surface extraction in
geology. Both Terrestrial laser scanning (TLS) and Photogrammetry are primary non-contact active
measurement techniques. In order to extract comprehensive and accurate rock surface information
by the integration of TLS point cloud and digital images, the segmentation based on the integrated
results generated by registration is the crux. This paper presents a Multi-Features Fusion for Simple
Linear Iterative Clustering (MFF-SLIC) hybrid superpixel segmentation algorithm to extract the rock
surface accurately. The MFF-SLIC algorithm mainly includes three contents: (1) Mapping relationship
construction for TLS point cloud and digital images; (2) Distance measure model establishment
with multi-features for initial superpixel segmentation; (3) Hierarchical and optimized clustering for
superpixels. The proposed method was verified with the columnar basalt data, which is acquired in
Guabushan Geopark in China. The results demonstrate that the segmentation method could be used
for rock surface extraction with high precision and efficiency, the result of which would be prepared
for further geological statistics and analysis.
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1. Introduction

Rock masses behavior is governed by properties of rock surface including fractures, joints, faults
and other geological structures. For a rock engineering research, it is necessary to make a detailed
investigation for geological conditions. With the distribution, combination condition and geometrical
information of rock mass, both engineering geological evaluation and rock mass classification would
be proceeded well. Therefore, it is worthy for transportation engineering, hydropower engineering
and mining engineering to extract rock surface accurately, efficiently and comprehensively, which is
necessary for engineering design, exploration, construction and evaluation.

However, for those dangerous and inaccessible regions, such as alpine and gorge, the traditional
contact measurements could not be proceeded efficiently and safely with a limited time. Terrestrial
Laser Scanning (TLS) and close-range photogrammetry, which are the mainly two non-contact active
measurements, could collect point cloud or digital images data and achieve rock surface extraction
more comprehensively and conveniently in a virtual digital environment [1–4].
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TLS could obtain an accurate 3D model of an object in high efficiency, and get the spatial
coordinates of an object with high accuracy and speed, which could be used for several purposes [5].
With the advantages of high spatial resolution, high temporal resolution and uniform accuracy, the TLS
data is more appropriate for many applications, especially for inaccessible and dangerous regions [3,6].
However, as the TLS data is characterized as unstructured 3D point clouds, it is poor at expressing
the object features. As another non-contact active measurement technique, photogrammetry is used
to process stereoscopic images delivering RGB and spectral channel information, which could be
considered largely complementary to TLS [7,8]. So, the integration of the multi-source RS data has
complementary advantages, which is valuable for geological investigation.

Registration is one crucial problem that the research of rock surface extraction based on the
integration of the multi-source RS data involves, as the correlation of the TLS point cloud and digital
images could be obtained by registration. About the registration of the two data for geological objects,
the authors have provided a detailed method in another article [9]. For the integration of multi-source
RS data, it is also necessary to comprehensively analyze and evaluate multi-feature of the data and
make a correct and efficient segmentation, which is the key of accurate, efficient and full extraction for
rock surface. So, this paper mainly discusses the segmentation problem which the TLS point cloud
and digital images integration is involved in.

The first step to be finished is the construction of the direct mapping relationship between
the two data sources. Texture mapping is a simple way for 3D visualization of the textured point
cloud. However, the true mapping relationship for the point cloud and digital images could not
be obtained. Therefore, exploring a new method for direct mapping relationship construction is
the precondition of rock surface extraction. Furthermore, in order to get an efficient and accurate
segmentation result, the difference as well as the correlation between the characteristics of geological
objects in the Multi-source RS data should be taken full use of.

At present, there is only so much research on point cloud or image segmentation, which would
be valuable for the segmentation of multi-source RS data integration. The point cloud segmentation
methods include edge-based segmentation [10–12], model fitting-based segmentation [13–15],
region-based segmentation [16–20] and feature clustering-based segmentation [21,22]. For the point
cloud, the only spatial information is insufficient for segmentation. Segmentation based on the
depth image generated from point cloud would result in an expensive computational cost and
information loss, which may affect the precision of segmentation result. For the image segmentation,
there are mainly three groups: threshold-based segmentation [23–25], edge-based segmentation and
region-based segmentation [26,27]. Instead of the above segmentation methods in pixels, some scholars
put forward the idea of superpixel segmentation, which is a preprocessing stage to group pixels into
“superpixels” [28]. The superpixel is composed of a set of pixels with some similar features, including
texture, brightness and color. The image feature description with superpixels could decrease the edge
extraction difficulty of complex objects, and improve the efficiency of image segmentation. Generally,
superpixel segmentation algorithms could be classified into: (1) graph-based, including Normalized
cut, Superpixel Lattice and Entropy Rate; (2) gradient-ascent-based, including Watersheds, Mean-shift,
Quick-shift, Turbopixels and SLIC (Simple Linear Iterative Clustering). All the above algorithms
show different performance in efficiency, precision, boundary adherence and expansibility [29].
In comparison of segmentation algorithms in pixels, superpixel segmentation has a better consideration
of the association between local regional features, merging and clustering based on which could
improve the efficiency and precision of segmentation. However, as most of existing algorithms
are proposed for image data, which only applies the 2D image features, the precision could not be
guaranteed for those objects with the similar image features but different spatial or other features.

Based on the above analysis, this paper develops a new hybrid superpixel segmentation algorithm,
MFF-SLIC, for accurate, efficient and full extraction of rock surface. This algorithm firstly obtained the
mapping relationship between the TLS point cloud and digital images according to the registration
result; and then explored a new distance measure model for initial superpixel segmentation. The new
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distance measure model integrated multi-features of both two types’ data, including color and pixel
location of digital images as well as geological properties and spatial position of TLS point cloud.
With the above distance measure model, the geological object could be divided into a number of
superpixels which have certain semantic features; next, superpixels would be clustered hierarchically
and optimally (i.e., the initial segmentation result would be further processed) to provide credible
data for fine extraction of rock surface. At last, with the columnar basalt data (acquired in Guabushan
Geopark in Nanjing, China), the segmentation method proposed in this paper was verified. The results
show that the MFF-SLIC hybrid superpixel segmentation algorithm could achieve rock surface
extraction accurately based on the integration of the Multi-source RS data, even without any manual
interactions, which provides a valuable data basis for further geological statistics and analysis.

The rest of this paper is organized as follows: Section 2 reviews the registration overview about
multi-source RS data and the existing 2D SLIC algorithm for image segmentation. Section 3 describes
the detailed methodology of the MFF-SLIC hybrid superpixel segmentation algorithm for rock surface
extraction. In Section 4, an experiment with the columnar basalt data is conducted in order to illustrate
the feasibility and applicability in geology of the algorithm. Section 5 draws the conclusion.

2. Related Work

2.1. Registration for the Multi-Source RS Data

Segmentation needs to take use of the direct correlation between the TLS point cloud and digital
images, which could be obtained according to the registration result. Existing registration algorithms
for point cloud and images mainly includes four groups: (1) Registration by use of artificial targets
(e.g., retro-reflective targets); (2) Registration through corresponding features respectively extracted
from images and point cloud [30,31]; (3) Registration with the point cloud respectively generated by
digital images and acquired by TLS [32–34]; (4) Registration with intensity image and digital image
generated by point cloud [35–37]. For geological objects, as the indeterminate distribution and irregular
appearance of rock mass, it is difficult to directly extract corresponding primitives including points,
regular line segments and planar features from the point cloud and images.

A G-Super4PCS algorithm for registration of TLS point cloud and digital images is provided [9].
With the Structure from Motion (SfM) technique, a point cloud could be generated from digital images,
which has different scale, position and attitude with the TLS point cloud. The G-Super4PCS algorithm
firstly performs key-scale rough estimation combining spin images and cumulative contribute rate,
then defines a generalized super 4-points congruent base as the registration primitive, and introduces
the rock surface features contraints to improve the efficiency and accuracy of its extraction. On the
above basis, two key point clouds respectively extracted from the TLS point cloud and generated from
digital images are used for rough estimation of rigid transformation parameters, and then the original
TLS point cloud and the dense SfM point cloud from digital images are used for fine registration.

2.2. D SLIC Algorithm for Image Segmentation

The SLIC is a gradient-ascend-based segmentation algorithm, which generates superpixels by
clustering pixels with the distance measure according to their proximity and color similarity in the
image plane [38]. An example is shown in Figure 1. Figure 1a shows the origin image, and Figure 1b
shows the corresponding superpixel segmentation result.



Appl. Sci. 2019, 9, 906 4 of 25
ISPRS Int. J. Geo-Inf. 2019, 6, x FOR PEER REVIEW  4 of 26 

 

 

Figure 1. An example of superpixel segmentation: (a) The origin image; (b) Overlay display of the 
origin image and the corresponding superpixel segmentation result. 

The distance measure is constructed by a 5D vector including the color vector (L, a, b) and the 
pixel position coordinates (x, y). Instead of the Euclidean distance, the 2D SLIC algorithm introduced 
a normalized distance measure considering superpixel size. Suppose the size of an image I is W by 
H, then the number of pixels N is described as Equation (1). 𝑁 = 𝑊 × 𝐻, (1)

This algorithm specifies K superpixels with approximately equal size as input. For image I with 
N pixels, the size of each superpixel is 𝑁 𝐾⁄ . Therefore, the grid interval S of superpixels is computed 
as Equation (2). 𝑆 ≈ ඥ𝑁 𝐾⁄ , (2)

where S denotes the size of the superpixel. For the distance measure normalization, the value of S is 
used to determine weight coefficients of different feature components.  

Choose K superpixel cluster centers 𝐶 = [𝐿, 𝑎, 𝑏, 𝑥, 𝑦]் (k = [1, K]) at regular grid intervals 
S. The computational formula of distance measure is shown in Equation (3). 𝐷ௌ = 𝑑 + 𝑚 𝑑௫௬ 𝑆⁄                                        𝑑 = ඥ(𝐿 − 𝐿)ଶ + (𝑎 − 𝑎)ଶ + (𝑏 − 𝑏)ଶ𝑑௫௬ = ඥ(𝑥 − 𝑥)ଶ + (𝑦 − 𝑦)ଶ                        , (3)

where 𝐷ௌ denotes the normalized distance measure; 𝑑 denotes the Euclidean distance of 
the color vector (𝐿,  𝑎, 𝑏) and (𝐿,  𝑎, 𝑏) in CIELAB color space; 𝑑௫௬  denotes the Euclidean 
distance of pixel (𝑥,  𝑦) and pixel (𝑥,  𝑦)  in the image plane; m is a variable to control the 
compactness of a superpixel. The greater the value of m, the more important spatial proximity and 
the more compact the cluster. Experience indicates that the optimal range of values for m is [1,20], 
which can get a good tradeoff between color similarity and spatial proximity [38]. 

2.3. Segmentation for the Multi-Source RS Data 

Existing segmentation methods for image and point cloud data mainly concentrate on planar (or 
other geometrically primitive) feature extraction, most of which are computationally expensive and 
often utilize 2D or 3D information alone. Based on the above consideration, several segmentation 

(a) (b) 

Figure 1. An example of superpixel segmentation: (a) The origin image; (b) Overlay display of the
origin image and the corresponding superpixel segmentation result.

The distance measure is constructed by a 5D vector including the color vector (L, a, b) and the
pixel position coordinates (x, y). Instead of the Euclidean distance, the 2D SLIC algorithm introduced a
normalized distance measure considering superpixel size. Suppose the size of an image I is W by H,
then the number of pixels N is described as Equation (1).

N = W × H, (1)

This algorithm specifies K superpixels with approximately equal size as input. For image I with
N pixels, the size of each superpixel is N/K. Therefore, the grid interval S of superpixels is computed
as Equation (2).

S ≈
√

N/K, (2)

where S denotes the size of the superpixel. For the distance measure normalization, the value of S is
used to determine weight coefficients of different feature components.

Choose K superpixel cluster centers Ck = [Lk, ak, bk, xk, yk]
T (k = [1, K]) at regular grid intervals S.

The computational formula of distance measure is shown in Equation (3).

DS = dLab + mdxy/S

dLab =
√
(Lk − Li)

2 + (ak − ai)
2 + (bk − bi)

2

dxy =
√
(xk − xi)

2 + (yk − yi)
2

, (3)

where DS denotes the normalized distance measure; dLab denotes the Euclidean distance of the color
vector (Lk, ak, bk) and (Li, ai, bi) in CIELAB color space; dxy denotes the Euclidean distance of pixel
(xk, yk) and pixel (xi, yi) in the image plane; m is a variable to control the compactness of a superpixel.
The greater the value of m, the more important spatial proximity and the more compact the cluster.
Experience indicates that the optimal range of values for m is [1,20], which can get a good tradeoff
between color similarity and spatial proximity [38].
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2.3. Segmentation for the Multi-Source RS Data

Existing segmentation methods for image and point cloud data mainly concentrate on planar
(or other geometrically primitive) feature extraction, most of which are computationally expensive
and often utilize 2D or 3D information alone. Based on the above consideration, several segmentation
schemes combining 2D features from digital image with 3D features from point cloud data
are proposed.

Reference [39] builds 3D models of urban environments based on 3D range scans and 2D
images. This method utilizes a range segmentation algorithm to extract planar regions and linear
features so that a 3D range scan could be converted to a set of bounded planes and finite lines.
However, the applicability of the algorithm is limited due to planar regions and linear features are only
common for urban environments, but geological objects are often characterized as irregular features.
Reference [40], for segmenting a colored laser point cloud, an extension method for camera-only
graph-based segmentation is proposed. In this method, segment unions based on spatial proximity
is proposed, and a dynamic segment union criterion based on color and surface normal produces a
quality segmentation. However, this method requires a fixed positional relationship between camera
and laser scanner in order for the co-registration. Reference [41] takes both colorimetric and geometric
data as input, clusters pixels and divides the colorimetric data by use of SLIC algorithm, then produces
normal vector for each superpixel with a plane-fitting technique, and last performs classification
of superpixels by a multi-class support vector machine technique. This scheme in reference [41]
needs to place several colored markers in the scene prior to data acquisition, which is infeasible for
some geological objects, such as alpine and gorge region which is often dangerous and inaccessible.
Besides, although the SLIC algorithm with high efficiency is utilized in this reference, it still performs
segmentation only by color vector and planar position of pixels, and ignores the local rock surface
attitude, which is an important feature for geological objects. It may affect the rock surface extraction
precision, especially for those regions with similar color and texture.

The MFF-SLIC algorithm developed in this paper performs superpixel segmentation not only by
color and planar position features but also by spatial and some geological features, which guarantees
the accuracy of complicated rock surface extraction.

3. Methodology

Comparing with other superpixel segmentation algorithms, the advantages of 2D SLIC algorithm
are as follows: (1) with equally sized compact superpixels; (2) with low computational cost and few
input parameters; (3) with an optimal tradeoff between under-segmentation error and boundary recall.
However, from the definition of distance measure, it’s apparent that only the color and planar position
of pixels are involved in, and the spatial geometric and some other attribute features which would
have more of an effect on the segmentation results, are ignored. For geological objects, attitude is
an important attribute to reflect the difference of the rock surface. Besides color and planar position,
rock surface attitude is an essential component for distance measure to get a reliable segmentation result.
Moreover, in some special circumstances, the spatial location may have more impact on geological
objects segmentation. For example, pixels with similar color and proximal planar position but very far
apart in the direction perpendicular to the image plane may be assigned into the same superpixel with
2D SLIC algorithm. Therefore, a new hybrid superpixel segmentation algorithm, MFF-SLIC, has been
developed in this paper. The algorithm firstly describes a 1-N mapping relationship model for the TLS
point cloud and digital images based on registration result. Instead of traditional distance measuring
in 2D SLIC algorithm, a new multi-feature fusion distance measure model is defined, which combines
color and position of pixels in digital images, local attitude of rock surface and spatial location of the
TLS point cloud; Then an initial segmentation result consisting of a set of superpixels is obtained;
the superpixels need to be further processed by hierarchical and optimized clustering in order to get
the final result. The flowchart of MFF-SLIC algorithm is shown as Figure 2.
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In the process of initial segmentation, clustering centers are optimized to the position with the
minimum gradient in a local neighborhood so that they are not edge pixels or noise pixels. The gradient
calculation formula for 3× 3 neighboring window is shown as Equation (4):

G(x, y) = ‖I(x + 1, y)− I(x− 1, y)‖2 + ‖I(x, y + 1)− I(x, y− 1)‖2, (4)

where I(x, y) means CIELAB color vector (L, a, b) of pixel (x, y); ‖·‖ denotes the norm of the
color vector.

As the connectivity of pixels is not explicitly mandatory, some isolated pixels may exist in the end
of the iteration for superpixel segmentation. A further connectivity processing is necessary to merge
the isolated pixels into the nearest superpixels.
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3.1. 1-N Mapping Relationship between TLS Point Cloud and Digital Images

As the point in the TLS point cloud may be projected to more than one image, this paper
defines a 1-N mapping relationship between the TLS point cloud and digital images. The coordinate
transformation mathematical model is the key to get the 1-N mapping relationship.

Suppose one point Pi = (XTLS, YTLS, ZTLS)
T in the TLS point cloud, and the corresponding

point P′i =
(
X′TLS, Y′TLS, Z′TLS

)T in the SfM point cloud generated by digital images could be obtained
according to the rigid transformation model of registration, which is shown as Equation (5).

P′i =

 X′TLS
Y′TLS
Z′TLS

 = µR

 XTLS

YTLS

ZTLS

+ T = µRPi + T, (5)

where R and T respectively denotes the rotation and translation matrix; µ means the scale factor.
Let the rotation matrix Rj and translation matrix Tj of image Ij, then in the camera coordinate

system of image Ij, coordinates of the point P(j)
i

′
which corresponds to the point Pi could be calculated

by Equation (6):

P(j)′
i =


X(j)

TLS

′

Y(j)
TLS

′

Z(j)
TLS

′

 = Rj

 X′TLS
Y′TLS
Z′TLS

+ Tj = RjP′i + Tj, (6)

All elements of P(j)
i

′
are divided by

(
−Z(j)

TLS

′
)

, and denotes as Equation (7):

p = −

 X(j)
TLS

′
/Z(j)

TLS

′

Y(j)
TLS

′
/Z(j)

TLS

′

 =

[
x′

y′

]
, (7)

Let f denote the camera focal length, and k1 as well as k2 denote radial distortion parameters,
then coordinates of the point p′ in image coordinate system corresponding to the point Pi could be
obtained by Equation (8).

p′ =

[
x
y

]
= f ·r(p)·

[
x′

y′

]
= f ·r(p)·p, (8)

where,
r(p) = 1 + k1·‖p‖2 + k2·‖p‖4, (9)

The image coordinate system o-xy takes the image principle point as the origin, the x axis is to
the right, and the y axis is vertical upward. However, instead of the above image coordinate system,
the pixel coordinate system o′-uv is commonly used in the process of calculation, the origin of which is
located in the upper-left corner of the image. The relation between image coordinate system and pixel
coordinate system is shown as Figure 3.

In Figure 3, it can be concluded that for the point Pi in the TLS point cloud, its corresponding
point p′′ in pixel coordinate system is expressed as Equation (10).

p′′ =

[
u
v

]
=

[
(W/2) + x
(H/2)− y

]
, (10)

where W and H respectively means the width and height of an image.
Both the intrinsic and extrinsic parameters for each image as well as transformation parameters

between the TLS point cloud and SfM dense point cloud could be obtained with the G-Super4PCS
registration algorithm introduced in reference [9]. According to all of the above process, the 1-N
mapping relationship between the Point cloud and images could be concluded. The sketch map is
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shown as Figure 4, where P denotes one 3D point in the TLS point cloud, and [p1 . . . pN ] respectively
denotes the corresponding image point in digital images [I1 . . . IN ].
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3.2. Multi-Feature Fusion Distance Measure Model of MFF-SLIC

In the initial segmentation stage of MFF-SLIC algorithm, K clustering centers are initialized first,
and the distance between each pixel in search area and clustering centers is respectively calculated by
multi-feature fusion distance measure model based on a local k-means method, then each pixel would
be assigned to the clustering center with minimum distance. Finally, the image I is segmented into K
superpixels with special sematic characteristics by iteratively.

During the above process, instead of the traditional k-means method searching the whole image,
the local k-means defines a local square search area with 2S× 2S. The difference of the two methods
are shown as Figure 5.

The main function of the distance measure model is to distinguish dissimilar pixels and assign
similar pixels into the same superpixel. The quality of the distance measure model determines the
accuracy of superpixel segmentation.

With the 1-N mapping relationship of the TLS point cloud and digital images, not only the 2D
image features such as color and planar position of pixels but also the 3D TLS point cloud features
including spatial geometric as well as other characteristics should be considered for distance measure
model. For the geological objects, the local attitude of rock surface is an important component
for distance measure model construction. Besides, the 3D spatial location of pixels contributes to
distinguishing pixels with similar texture and local attitude but are very far apart from each other in
order that they would not be assigned into the same superpixel. Based on the above analysis, this paper
defines a multi-feature fusion distance measure model according to 1-N mapping relationship between
the 3D TLS point cloud and digital images, which is used to calculate the distance between unclassified
pixels and clustering centers. The flowchart of distance measure model construction is shown
as Figure 6.
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3.2.1. Color Feature Calculation of Digital Image

The transformation from RGB color space to Lab color space needs to use intermediate variables
XYZ. Therefore, the color feature calculation of digital images could be divided into two sections.

1. RGB to XYZ [42]
Suppose the three original color variables r, g and b, and the range of values is [0, 255]. A function

is defined as Equation (11),

γ(x) =

{ ( x+0.055
1.055

)2.4
, x > 0.04045

x
12.92 , other

, (11)

where γ(x) is used to improve contrast by non-linear hue adjustment. The three original variables r,
g and b are transformed by Equation (11), R

G
B

 =

 γ(r/255)
γ(g/255)
γ(b/255)

, (12)

Let [R, G, B]T is transformed to [X, Y, Z]T by matrix M, which is shown as Equation (13), X
Y
Z

 = M ∗

 R
G
B

, (13)
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where,

M =

 0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

, (14)

2. XYZ to Lab [42,43]
Suppose a function f (y) as Equation (15),

f (y) =

{
y1/3, y >

( 6
29
)3

1
3
( 29

6
)2y + 4

29 , other
, (15)

where f (y) is also a correction function, then the calculation formula of color feature in CIELAB color
space is described as Equation (16), L

a
b

 =

 116 f (Y/Y0)− 16
500[ f (X/X0)− f (Y/Y0)]

200[ f (Y/Y0)− f (Z/Z0)]

, (16)

where X0, Y0 and Z0 is respectively used for the normalization of X, Y and Z. Generally, the value of
[X0, Y0, Z0]

T is set to [95.047, 100, 108.883]T.

3.2.2. Local Attitude Feature Calculation of TLS Point Cloud

The attitude of rock surface is usually described as dip angle θ and dip α, the value range of which
is respectively [0◦, 90◦] and [0◦, 360◦]. The values of θ and α could be calculated with the normal vector
according to space geometry relation of rock surface. The normal vector of any point in a point cloud
is calculated by the local plane fitted by points in neighborhood. The normal vector of the point is
approximately equal to the one of the fitted local plane. According to the above, the local attitude of
the point cloud could be obtained by the normal vector of the corresponding point.

The geometric relation of normal vector and local attitude is shown as Figure 7. In Figure 7a,
the normal vector of the point cloud is denoted as n = OA =

(
nx, ny, nz,

)T, and θ and OA′ respectively
means the dip angle and the direction of the dip in the local rock surface. In Figure 7b, the projection
of the normal vector in horizontal plane is denoted as n′ = OA′, and α and OA′ respectively means
the magnitude and direction of the dip. The local attitude could be calculated as the following two
ways because of the different values of the normal vector.
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1. All three components of the normal vector are not equal to 0.
Under this condition, the relation of the normal vector n, dip α and dip angle θ is described as

Equation (17). {
nx = nz· tan θ· cos α

ny = nz· tan θ· sin α
, (17)

A calculation formula for dip α and dip angle θ derived from Equation (17) by using the
elimination method is shown as Equation (18).{

θ = tan−1
(√

n2
x + n2

y/|nz|
)

α = tan−1(ny/nx
) , (18)

where the sign of nx, ny and nz determines the quadrant of dip α in the horizontal plane. The four
geographic directions of east, south, west and north are respectively represented by E, S, W and N,
which is shown as Figure 6b, then the relation of three components of the normal vector and the dip is
listed in Table 1.

Table 1. The relation of the normal vector and the dip.

nx ny nz Dip (Direction) nx ny nz Dip (Direction)

>0 >0 >0 NE <0 >0 >0 NW
>0 >0 <0 SW <0 >0 <0 SE
>0 <0 >0 SE <0 <0 >0 SW
>0 <0 <0 NW <0 <0 <0 NE

2. No less than one component of the normal vector is equal to 0.
For some certain special rock surfaces, such as those developed horizontally and vertically, it is

not suitable for Table 1. The calculation of local attitude of rock surface could be achieved by Table 2.

Table 2. The relation of the normal vector and the dip for horizontally and vertically developed
rock surface.

The Normal Vector n = (nx,ny,nz) Dip (Magnitude) Dip (Direction) Dip Angle(
nx = 0, ny 6= 0, nz 6= 0

) (ny × nz > 0
)

– N

Equation (18)

(
ny × nz < 0

)
– S(

nx 6= 0, ny = 0, nz 6= 0
) (nx × nz > 0) – E
(nx × nz < 0) – W(

nx 6= 0, ny 6= 0, nz = 0
)

– Equation (18) – 90◦(
nx = ny = 0, nz = 1

)
– – 0◦(

nx = nz = 0, ny = 1
)

– – 90◦(
nx = 1, ny = nz = 0

)
– – 90◦

3.2.3. Distance Measure Model Construction of the MFF-SLIC

Suppose the fusion eigenvector for pixels
(

Ii, Ij
)

in image I with M × N is denoted as
(L, a, b, x, y, θ, α, X, Y, Z)T, then for digital images, the calculation formula for distance of color
components (Li, ai, bi)

T and
(

Lj, aj, bj
)T is represented as Equation (19).

dLab =
√(

Lj − Li
)2

+
(
aj − ai

)2
+
(
bj − bi

)2, (19)
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The calculation formula for distance of pixel planar position components is described as
Equation (20).

dxy =
√(

xj − xi
)2

+
(
yj − yi

)2, (20)

For the TLS point cloud, the local attitude (the dip angle θi and θj, and the dip αi and αj) of each
point could be calculated as Equation (21).{

dθ =
∣∣θj − θi

∣∣
dα =

∣∣αj − αi
∣∣ , (21)

The distance for spatial location components of points in the TLS point cloud could be calculated
as Equation (22).

dXYZ =
√(

Xj − Xi
)2

+
(
Yj −Yi

)2
+
(
Zj − Zi

)2, (22)

All above distances defined in various standards have different effects on the construction of
multi-feature fusion distance measure model, which should be normalized according to some certain
criterions. In this paper, the normalized distance measure model constructed by the eigenvector
integrated with multiple features is described as Equation (23).

DS = dLab/m + dxy/S + dθ/∆θ + dα/∆α + dXYZ/∆XYZ, (23)

where S means the grid interval of superpixels; m means the compactness control variable of
superpixels; ∆θ and ∆α respectively means the maximum distance of local dip angle and dip.

The TLS point cloud and digital images acquired independently are not always associated in a
one-to-one relationship. The TLS point cloud is composed of a set of points distributing as a certain
density, while the digital image consists of a series of pixels distributing densely and uniformly.
For those pixels without corresponding points in the TLS point cloud, the spatial features could
be obtained by use of the inverse distance weighting method, the expression of which is shown as
Equation (24).

Z̃(x0, y0) = ∑n
i=1 ωiZ(xi, yi), where ωi =

1
di

/
(

∑n
i=1

1
di

)
, (24)

3.3. Hierarchical and Optimized Clustering for Superpixels

The result of superpixel segmentation is a set of superpixels composed by pixels with similar
features such as the local attitude. Although these superpixels could express the boundary of rock
surface well, it is difficult to accurately describe the whole structure of rock surface. In order to get the
optimal results, it is necessary for initial superpixels to make a further process. This paper provides
a hierarchical and optimized clustering strategy for superpixels, which takes superpixels as nodes,
constructs the Region Adjacency Graph (RAG) and Nearest Neighbor Graph (NNG) by defining a
regional dissimilarity function for superpixels based on the attitude of rock surface, and achieves
superpixels merging. The flowchart of hierarchical and optimized clustering for superpixels is shown
as Figure 8. In this paper, the attitude of a superpixel corresponds to the histogram peak of the dip
distribution of all pixels contained in the current superpixel.
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3.3.1. Definition of Dissimilarity between Superpixels

The superpixel segmentation is a process to assign a superpixel label for each pixel, while the
clustering of superpixels refers to reassign a new label for each superpixel, i.e., superpixels with similar
characteristics would be divided into the same group. In this paper, regional dissimilarity is defined as
the criterion of superpixels clustering.

Suppose the image I is segmented into n superpixels, which is represented as the following set S:

S = {S1, S2, · · · , Sn}, (25)

For the ith superpixel Si (i = 1, · · · , n), the corresponding set of pixels is denoted as Equation (26).

Si =
{

p(i)1 , p(i)2 , · · · , p(i)m

}
, (26)

where m means the number of pixels in the ith superpixel; p(i)k denotes the kth pixel in the ith superpixel,
1 ≤ k ≤ m.

The regional dissimilarity relation between superpixels Si and Sj could be described as
Equation (27). (

Si, Sj
)
= 1−

(
Si ∩ Sj/Si ∩ Sj

)
, (27)

where the range of value is [0, 1], and the more similar the two superpixels, the closer the value and 0,
else, the closer the value and 1.

In order to describe the regional dissimilarity in a global sense, Equation (27) should be combined
with Equation (28).

sgn(S) =

{
1, Si is next to Sj
+∞, else

, (28)
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Suppose the dip angle and dip sets of pixels in superpixel Si are denoted as Equation (29), and the
corresponding histograms could be obtained.{

θ
(i)
1 , θ

(i)
2 , · · · , θ

(i)
m

}{
α
(i)
1 , α

(i)
2 , · · · , α

(i)
m

} , (29)

Denote the attitude of superpixel Si as (θi, αi), then values of which are respectively equal to peaks
of above histograms. The regional dissimilarity function between superpixels Si and Sj is defined as
Equation (30).

diff
(
Si, Sj

)
= diff

(
θi, θj

)
+ diff

(
αi, αj

)
, (30)

3.3.2. Topological Description for Superpixels with RAG

Theoretically, the clustering of superpixels based on the regional dissimilarity needs an exhaustive
comparison between superpixels, the complexity of which is O

(
n2), here n means the number of

superpixels. However, only the adjacent superpixels are possible to be merged. Therefore, this paper
introduces RAG to describe the topological relation between superpixels, on the basis of which
only adjacent superpixels would be compared, and the complexity is effectively reduced to linear.
Figure 9a,b respectively shows an example of superpixel segmentation result for an image as well as
the corresponding RAG.ISPRS Int. J. Geo-Inf. 2019, 6, x FOR PEER REVIEW  14 of 26 
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Figure 9. An example of superpixel segmentation for an image: (a) Overlay display of the origin image
and the corresponding superpixel segmentation result; (b) The RAG corresponding to superpixels.

The RAG of the superpixel set {S1, S2, · · · , Sn} could be described by nodes and edges. Each node
represents a superpixel, and each edge connects two adjacent superpixels. An example of RAG
composed of nine superpixels is shown as Figure 10. In Figure 10b, {V1, V2, · · · , V9} means the set
of nodes, i.e., the set of superpixels, and {E1, E2, · · · , E9} means the set of edges. In Figure 10a,
the superpixel S1 corresponds to the node V1 in Figure 10b; adjacent superpixels of S1 is S2, S5 and
S6, and V2, V5 and V6 are corresponding nodes, and edge E1, E2 and E3 respectively connect S1 to S2,
S5 and S6.
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The weight of each edge is calculated according to the regional dissimilarity function. Suppose
attitudes of two adjacent superpixels Si and Sj are denoted as (θi, αi) and

(
θj, αj

)
, the number of pixels

which contain are respectively denoted as mi and mj. Let

ηij =
(
mi·mj

)
/
(
mi + mj

)
, (31)

The calculation formula of weight for edge Ek connecting two adjacent superpixels is written as
Equation (32).

WEk =
1

ηij·
((

θi − θj
)
/∆θmax +

(
αi − αj

)
/∆αmax

) , (32)

where ∆θmax and ∆αmax respectively means the maximum of the dip angle and the dip between all
adjacent superpixels.

For the RAG in Figure 10b, if the length of the edge is used to describe its weight, it can be
concluded that the weight of the bold black edge E11 is minimum, which indicates that the node V5

and V6, i.e., the superpixel S5 and S6 should be merged. The updated RAG is shown as Figure 11.
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3.3.3. Fast Clustering for Superpixels Based on Nearest Neighbor Graph

The clustering of superpixels based on RAG takes a bottom-up way and a hierarchical merge
strategy. During the above process, the merging as the minimum of edge weight involves in repeated
update and storage of RAG, the computation of which is too expensive. Therefore, this paper combines
NNG with RAG in order to get the required results with higher efficiency and less computation.

From Figure 10, it is obvious that one superpixel node may correspond to several adjacent nodes
and edges, and these edges have no direction so that the RAG is a scalar graph. The NNG keeps nodes
the same as the RAG, while scalar edges are converted to vector ones in the NNG. Figure 12 shows the
conversion process between RAG and NNG.
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In the NNG, all adjacent superpixels are connected by scalar edges, and the length of each edge
reflects the regional dissimilarity of the adjacent superpixels. Compare weights of all scalar edges,
preserve the one with minimum weight, and specify the direction from the current node to the adjacent
one with minimum weight. As one node corresponds to no more than one edge, the total number of
edges is no more than the number of nodes. For example, in Figure 12, node V1, V2 and V7 respectively
correspond to edge E2, E6 and E14; node V3 ↔ V4 , V5 ↔ V6 and V8 ↔ V9 respectively share edge E7,
E11 and E15. In comparison of RAG and NNG, it can be concluded that the number of edges in NNG
is less than the one in RAG although they have the same number of nodes, and edges of NNG are
vector. An important characteristic of NNG is that for any NNG, there exists at least one bidirectional
edge which connects the two adjacent superpixels with the minimal regional dissimilarity. Therefore,
the clustering of superpixels could be achieved by searching all bidirectional edges in NNG.

Based on all the above analysis, superpixels could be clustered hierarchically and efficiently by
combination of RAG and NNG.

4. Experiment and Discussion

In order to verify the segmentation algorithm based on the registration result obtained by the
G-Super4PCS algorithm proposed by Zhang et.al [9], this paper also takes the columnar basalt data
from Guabushan Geopark in Nanjing, China as the experimental data. The digital images are acquired
by Fujifilm X-T10 digital camera, and the TLS point cloud is acquired by FARO Focus3D X330 terrestrial
laser scanner. The test area is respectively shown as Figure 13a (the digital image) and Figure 13b (the
point cloud).
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Firstly, the 1-N mapping relationship between the point cloud and images is obtained based on
the registration result. According to mapping relationships between the TLS point cloud and different
images, colors and textures of images could be added to the TLS point cloud. The correspondences of
the TLS point cloud and images (a)~(g) in 3D visualization is shown as Figure 14.ISPRS Int. J. Geo-Inf. 2019, 6, x FOR PEER REVIEW  17 of 26 
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gradations in Figure 15b represent fissure developmental state. 

Figure 14. 3D visualization of the mapping relationship between TLS point cloud and images.

Secondly, distance measure model calculation is an important part of MFF-SLIC algorithm.
For color feature calculation of digital image, RGB color space should be transformed into Lab color
space first according to Section 3.2.1. There are 251,861 3D points in the experimental TLS point cloud.
Calculate the local attitude of each 3D point in the point cloud according to Section 3.3.2. Figure 15a
shows an intuitional distribution of local attitudes for 251,861 points (red points in the figure), which is
a pole plot projected by equal angle. The range values of the dip angle and dip are respectively [0◦, 90◦]
and [0◦, 360◦]. The radius of the pole plot is 90◦, so the distance between the blue center of the circle
and each red point denotes the dip angle of the red point, and correspondingly, its dip is equal to the
angle between due North and the direction in which the red point is connected to the blue center of
the circle. For example, dips angle and dips of two yellow cross marks in the pole plot are respectively
[65◦, 23◦] and [40◦, 273◦]
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Figure 15b shows the contour plot generated from local attitudes for 251,861 points. The contour
plot describes poles density distribution characteristics and laws by use of isopleth based on the pole
plot. The color gradations in Figure 15b represent fissure developmental state.

In this paper, the overlapping area of Figure 14a is taken as an example for the following
segmentation and clustering experiments of superpixels.

In digital images, attitudes of those pixels corresponding to 3D points in the TLS point cloud
could be obtained according to the 1-N mapping relationship between the two data sources. For those
pixels without corresponding 3D points in the TLS point cloud, attitudes could be calculated via
interpolation with Equation (24) in Section 3.2.3. The 2D visualization of attitudes for a digital image is
shown as Figure 16.
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Figure 16. The 2D visualization of attitudes for a digital image: (a) The 2D visualization of dips in the
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The next is to construct the multi-feature fusion distance measure model with all feature
components of both the two data sources, and perform MFF-SLIC hybrid super pixel segmentation.
The number of superpixels is a key parameter which affects the result of segmentation. This paper
makes a comparison between 2D SLIC algorithm and MFF-SLIC algorithm by setting various
superpixel number. Figure 17 shows the comparison result when the number of superpixels is set to
500. In this figure, the red and green lines respectively represent superpixel segmentation boundaries of
the two algorithms. It is observed from the two local rectangle regions A and B that the minute fissure
of rock stratum is processed more accurately with the MFF-SLIC algorithm, while under-segmentation
could not be avoided well for the 2D SLIC algorithm, such as the fissures marked with cyan, the color
and texture of which are similar to the surrounding area. Therefore, it is difficult to distinguish without
the local geological attitude information. It is obvious that the MFF-SLIC algorithm considering
local geological features has a better performance on quality segmentation. Moreover, superpixels
segmented by the use of MFF-SLIC algorithm are all with geological attributes, which would make the
next clustering process achieve higher efficiency and accuracy.

Figure 18 shows the comparison of segmentation results with 1000 superpixels. It can be seen that
MFF-SLIC still performs better boundary consistency.

According to the above experimental results, it can be indicated that compared with 2D SLIC,
the MFF-SLIC algorithm has precise and reliable advantages. It is worth mentioning that the difference
between the two algorithms will not be obvious when the number of superpixels is too large. Figure 19
shows the comparison of segmentation results for the two algorithms when the number of superpixels
is set to 2500. The size of the superpixel is so small that it is difficult to evaluate the performance of
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the two algorithms. Therefore, the number of superpixels may affect both efficiency and precision of
the algorithm, which should be reasonably set according to image size and superpixel size. Too few
superpixels would cause under-segmentation, which may decrease the rock surface extraction precision.
Conversely, too many superpixels would cause over-segmentation, which may reduce segmentation
efficiency. Besides, the size of superpixels is so small that the attitude difference between superpixels
is not obvious, so it is difficult to distinguish valid rock surface.ISPRS Int. J. Geo-Inf. 2019, 6, x FOR PEER REVIEW  19 of 26 
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Histograms for attitude distributions of some part superpixels are shown as Figure 20, the left
column shows dip angle histogram distributions, and the right column shows dip histogram
distributions. The horizontal axis represents the value of the dip angle or the dip, and the vertical axis
represents pixel numbers corresponding to different dip angles or dips in a superpixel. All histograms
indicate that attitudes of pixels in a superpixel are approximately consistent, i.e., most pixels in a
superpixel have similar attitude characteristics, which demonstrates that the result of superpixel
segmentation is reliable and accurate.ISPRS Int. J. Geo-Inf. 2019, 6, x FOR PEER REVIEW  21 of 26 
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The test image size is 784 by 845 pixels, which is approximately determined by overlapping area,
and the size and the number of superpixels are experimentally set to 442 (pixels) and 1500 (superpixels).
The corresponding RAG and NNG for superpixel segmentation result are shown as Figure 21. The blue
nodes represent superpixels, each red line segment connects two adjacent superpixels, and the weight
of the red line segment is reflected by dissimilarity of the adjacent superpixels.ISPRS Int. J. Geo-Inf. 2019, 6, x FOR PEER REVIEW  22 of 26 
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Figure 21. (a) The RAG of the superpixel segmentation result; (b) The NNG of the superpixel
segmentation result.

With the RAG and NNG, the hierarchical and optimized clustering of superpixels could be
achieved according to Section 3.3. Figure 22 shows the superpixels clustering result for the test image.
After 20 iterations, the number of superpixels reduced to 118.
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The final segmentation results could be obtained through a further congruency analysis to all
overlapping areas between the two data sources. Therefore, 61 structural planes are successfully
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extracted according to the segmentation results, which are marked in different colors, and the 3D
visualization is shown as Figure 23.ISPRS Int. J. Geo-Inf. 2019, 6, x FOR PEER REVIEW  23 of 26 
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Figure 23. The 3D visualization of the final segmentation results.

In order to verify the reliability of the MFF-SLIC hybrid superpixel segmentation algorithm,
this paper makes a statistic and comparison to rock surface extraction results respectively obtained by
the proposed segmentation method and the manual measuring method by geologists. Comparing the
results shows that the max dip difference and max dip angle difference are both less than 6◦, and the
accuracy meets the requirement of geological analysis. Moreover, the contour plots for the two rock
surface extraction results by the proposed method and the manual measuring method by geologists are
shown as Figure 24, and it is not difficult to see that they are basically identical, i.e., the distributions of
structural planes are consistent.
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All the above experimental results demonstrate that the MFF-SLIC hybrid superpixel
segmentation algorithm could achieve reliable and accurate segmentation by integrating multiple
features from the TLS point cloud and digital images without any manual interactions, which provides
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important data materials for further geological statistics and analysis. Besides, most existing
segmentation methods involves many parameters so that the quality of segmentation results heavily
depends on the choice of parameters. Relatively, the whole process of the MFF-SLIC algorithm needs
few parameters, which improves the automatization of segmentation.

5. Conclusions

Compared to traditional segmentation methods in pixels, superpixel segmentation methods
could well consider local regional correlation, and clustering on this basis could improve segmention
efficiency and accuracy. However, most existing superpixel segmentation algorithms are presented for
2D images, which only depend on the color and pixel planar position of image to define the distance
measure. For geological objects, they may also be more affected by other characteristics such as the
spatial location and rock surface attitude. Such segmentation methods are not always appropriate
for geological objects, and especially for those special circumstances with similar image features but
various spatial or other features, it is difficult to guarantee reliable and accurate results. In this paper,
a new hybrid superpixel segmentation algorithm, MFF-SLIC, for rock surface extraction by integrating
the TLS point cloud and digital images is proposed. In order to take full use of characteristics of
Multi-Source RS data, this algorithm constructs the 1-N mapping relationship between TLS point cloud
and digital images based on the registration results, defines a new distance measure model integrating
multiple features including the color and planar position of pixels in digital images as well as the
spatial location and local rock surface attitude of 3D points in the TLS point cloud, and introduces a
hierarchical and optimized clustering strategy of superpixels which defines a regional dissimilarity as
adjacent superpixels clustering criterion and combines RAG and NNG to improve clustering efficiency.
The algorithm was verified by use of the columnar basalt data from Guabushan Geopark in Nanjing,
China. The results demonstrate that the proposed method could achieve rock surface extraction with
high precision and efficiency, the result of which would be prepared for further geological statistics
and analysis.
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