Development of a Low-Cost Multi-Waveband LED Illumination Imaging Technique for Rapid Evaluation of Fresh Meat Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Samples
2.2. Instrumentation and Image Acquisition
2.3. Light-Emitting Diode (LED) Wavebands Selection
2.4. Image Acquisition
2.5. Reference Measurements
2.6. Spectral Extraction and Correction
2.7. Data Analysis
3. Results and Discussion
3.1. Selection of Optimal Wavebands Using Hyperspectral Imaging (HSI) Data
3.2. Spectral Characteristics of Meat Samples
3.3. Model-Parameter Optimization
3.4. Chemical Component Prediction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xazela, N.; Hugo, A.; Marume, U.; Muchenje, V. Perceptions of Rural Consumers on the Aspects of Meat Quality and Health Implications Associated with Meat Consumption. Sustainability 2017, 9, 830. [Google Scholar] [CrossRef]
- Xiong, Z.; Sun, D.-W.; Pu, H.; Gao, W.; Dai, Q. Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Kadim, I.T.; Mahgoub, O.; Al-Marzooqi, W.; Annamalai, K. Prediction of Crude Protein, Extractable Fat, Calcium and Phosphorus Contents of Broiler Chicken Carcasses Using Near-infrared Reflectance Spectroscopy. Asian Australas. J. Anim. Sci. 2005, 18, 1036–1040. [Google Scholar] [CrossRef]
- Kucha, C.T.; Liu, L.; Ngadi, M.O. Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review. Sensors 2018, 18, 377. [Google Scholar] [CrossRef] [PubMed]
- Narsaiah, K.; Jha, S.N. Nondestructive methods for quality evaluation of livestock products. J. Food Sci. Technol. 2012, 49, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.R.; Yasmin, J.; Lee, W.H.; Mo, C.; Cho, B.K. Imaging Technologies for Nondestructive Measurement of Internal Properties of Agricultural Products: A Review. J. Biosyst. Eng. 2017, 42, 199–216. [Google Scholar]
- Mo, C.; Lim, J.; Kwon, S.W.; Lim, D.K.; Kim, M.S.; Kim, G.; Kang, J.; Kwon, K.-D.; Cho, B.K. Hyperspectral Imaging and Partial Least Square Discriminant Analysis for Geographical Origin Discrimination of White Rice. J. Biosyst. Eng. 2017, 42, 293–300. [Google Scholar]
- Qin, J.; Kim, M.S.; Chao, K.; Cho, B.-K. Raman Chemical Imaging Technology for Food and Agricultural Applications. J. Biosyst. Eng. 2017, 42, 170–189. [Google Scholar]
- Wang, W.; Paliwal, J. Near-infrared spectroscopy and imaging in food quality and safety. Sens. Instrum. Food Qual. Saf. 2007, 1, 193–207. [Google Scholar] [CrossRef]
- Qu, J.H.; Liu, D.; Cheng, J.H.; Sun, D.W.; Ma, J.; Pu, H.; Zeng, X.A. Applications of Near-infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances. Crit. Rev. Food Sci. Nutr. 2015, 55, 1939–1954. [Google Scholar] [CrossRef] [PubMed]
- Kandpal, L.M.; Lee, H.; Kim, M.S.; Mo, C.; Cho, B.K. Hyperspectral reflectance imaging technique for visualization of moisture distribution in cooked chicken breast. Sensors 2013, 13, 13289–13300. [Google Scholar] [CrossRef] [PubMed]
- Naganathan, G.K.; Grimes, L.M.; Subbiah, J.; Calkins, C.R.; Samal, A.; Meyer, G.E. Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Comput. Electron. Agric. 2008, 64, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Balage, J.M.; da Luz e Silva, S.; Gomide, C.A.; Bonin Mde, N.; Figueira, A.C. Predicting pork quality using Vis/NIR spectroscopy. Meat Sci. 2015, 108, 37–43. [Google Scholar] [CrossRef] [PubMed]
- ElMasry, G.; Sun, D.-W.; Allen, P. Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Res. Int. 2011, 44, 2624–2633. [Google Scholar] [CrossRef]
- De Marchi, M.; Penasa, M.; Cecchinato, A.; Bittante, G. The relevance of different near infrared technologies and sample treatments for predicting meat quality traits in commercial beef cuts. Meat Sci. 2013, 93, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT Food Sci. Technol. 2013, 53, 225–232. [Google Scholar] [CrossRef]
- Tøgersen, G.; Arnesen, J.F.; Nilsen, B.N.; Hildrum, K.I. On-line prediction of chemical composition of semi-frozen ground beef by non-invasive NIR spectroscopy. Meat Sci. 2003, 63, 515–523. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Kim, M.S.; Lee, W.H.; Cho, B.K. Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef. Infrared Phys. Technol. 2016, 74, 1–10. [Google Scholar] [CrossRef]
- Feng, C.H.; Makino, Y.; Oshita, S.; García Martín, J.F. Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art research advances. Food Control 2018, 84, 165–176. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Papadopoulou, O.; Carstensen, J.M.; Nychas, G.-J.E. Potential of multispectral imaging technology for rapid and non-destructive determination of the microbiological quality of beef filets during aerobic storage. Int. J. Food Microbiol. 2014, 174, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Barbin, D.F.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem. 2013, 138, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 321. [Google Scholar]
- Xiao, H.; Sun, K.; Sun, Y.; Wei, K.; Tu, K.; Pan, L. Comparison of benchtop fourier-transform (FT) and protable grating scanning spactrometers for determination of total soluable solid contents in single grape berry (Vitis vinifera L.) and calibraiton transfer. Sensors 2017, 17, 2693. [Google Scholar]
- Coen, T.; Saeys, W.; Ramon, H.; De Baerdemaeker, J. Optimizing the tuning parameters of least squares support vector machines regression for NIR spectra. J. Chemom. 2006, 20, 184–192. [Google Scholar] [CrossRef]
- Thissen, U.; Üstün, B.; Melssen, W.J.; Buydens, L.M.C. Multivariate Calibration with Least-Squares Support Vector Machines. Anal. Chem. 2004, 76, 3099–3105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandpal, L.M.; Lohumi, S.; Kim, M.S.; Kang, J.-S.; Cho, B.K. Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sensors Actuators B Chem. 2016, 229, 534–544. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.W.; Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. J. Food Eng. 2012, 110, 127–140. [Google Scholar] [CrossRef]
- Chen, D.; Shao, X.; Hu, B.; Su, Q. Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra. Anal. Sci. 2005, 21, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cai, W.; Shao, X. Outlier detection in near-infrared spectroscopic analysis by using Monte Carlo cross-validation. Sci. China Ser. B Chem. 2008, 51, 751–759. [Google Scholar] [CrossRef]
- Tøgersen, G.; Isaksson, T.; Nilsen, B.N.; Bakker, E.A.; Hildrum, K.I. On-line NIR analysis of fat, water and protein in industrial scale ground meat batches. Meat Sci. 1999, 51, 97–102. [Google Scholar] [CrossRef]
Sample Type | Parameter | N | Range | Mean ± SD | Skewness | Kurtosis |
---|---|---|---|---|---|---|
Sirloin | Fat | 50 | 7.54–37.47 | 21.32 ± 6.51 | 0.08 | 2.64 |
Moisture | 50 | 47.52–73.86 | 59.09 ± 6.35 | 0.15 | 2.25 | |
Protein | 50 | 3.28–32.11 | 19.50 ± 5.83 | −0.25 | 3.31 | |
Turkey | Fat | 40 | 4.10–56.70 | 25.54 ± 13.18 | 0.37 | 2.29 |
Moisture | 40 | 26.55–72.01 | 51.09 ± 12.03 | −0.24 | 2.35 | |
Protein | 40 | 7.44–28.49 | 18.07 ± 4.97 | −0.20 | 2.43 | |
Tenderloin | Fat | 50 | 7.60–22.33 | 16.85 ± 4.01 | −0.75 | 2.30 |
Moisture | 50 | 57.78–70.55 | 63.75 ± 3.14 | −0.15 | 2.42 | |
Protein | 50 | 7.50–23.06 | 16.88 ± 4.19 | −0.61 | 2.13 |
Calibration | Prediction | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sample | Parameter | Analysis | n | RMSEC | n | RMSEP | LV | ||
Sirloin | Fat | PLSR/SVR | 34 | 0.81/0.99 | 2.76/0.57 | 14 | 0.81/0.89 | 2.95/2.12 | 4 |
Moisture | 34 | 0.90/0.93 | 2.03/1.76 | 14 | 0.70/0.84 | 2.77/2.48 | 7 | ||
Protein | 34 | 0.46/0.96 | 4.65/1.26 | 14 | 0.06/0.63 | 5.33/2.65 | 3 | ||
Turkey | Fat | 28 | 0.89/0.97 | 4.10/2.25 | 12 | 0.80/0.82 | 4.53/4.01 | 6 | |
Moisture | 28 | 0.74/0.96 | 5.55/2.46 | 12 | 0.74/0.85 | 5.59/3.86 | 3 | ||
Protein | 28 | 0.69/0.99 | 2.83/0.49 | 12 | 0.48/0.69 | 3.51/2.73 | 4 | ||
Tenderloin | Fat | 35 | 0.93/0.96 | 1.07/0.75 | 15 | 0.84/0.95 | 1.15/0.84 | 6 | |
Moisture | 34 | 0.90/0.91 | 0.97/0.93 | 14 | 0.84/0.85 | 1.33/1.19 | 7 | ||
Protein | 34 | 0.83/0.94 | 1.73/1.05 | 14 | 0.83/0.88 | 1.89/1.52 | 3 |
Calibration (n = 35) | Prediction (n = 15) | ||||||
---|---|---|---|---|---|---|---|
Sample | Parameter | Analysis | RMSEC | RMSEP | LV | ||
Sirloin | Fat | PLSR/SVR | 0.89/0.97 | 1.25/0.57 | 0.87/0.96 | 1.74/1.09 | 4 |
Moisture | 0.92/0.96 | 1.75/1.11 | 0.74/0.88 | 2.52/1.61 | 6 | ||
Protein | 0.90/0.91 | 0.69/0.68 | 0.87/0.89 | 0.94/0.89 | 3 | ||
Turkey | Fat | 0.92/0.96 | 4.40/2.88 | 0.84/0.91 | 5.82/4.18 | 4 | |
Moisture | 0.89/0.97 | 3.57/1.79 | 0.88/0.94 | 4.77/3.24 | 5 | ||
Protein | 0.74/0.95 | 2.52/1.12 | 0.60/0.92 | 3.51/1.58 | 4 | ||
Tenderloin | Fat | 0.94/0.99 | 0.64/0.30 | 0.92/0.96 | 1.11/0.71 | 3 | |
Moisture | 0.92/0.99 | 0.77/0.29 | 0.87/0.88 | 1.04/1.17 | 7 | ||
Protein | 0.88/0.96 | 1.38/0.76 | 0.76/0.91 | 2.34/1.47 | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandpal, L.M.; Lee, J.; Bae, J.; Lohumi, S.; Cho, B.-K. Development of a Low-Cost Multi-Waveband LED Illumination Imaging Technique for Rapid Evaluation of Fresh Meat Quality. Appl. Sci. 2019, 9, 912. https://doi.org/10.3390/app9050912
Kandpal LM, Lee J, Bae J, Lohumi S, Cho B-K. Development of a Low-Cost Multi-Waveband LED Illumination Imaging Technique for Rapid Evaluation of Fresh Meat Quality. Applied Sciences. 2019; 9(5):912. https://doi.org/10.3390/app9050912
Chicago/Turabian StyleKandpal, Lalit Mohan, Jayoung Lee, Jihoon Bae, Santosh Lohumi, and Byoung-Kwan Cho. 2019. "Development of a Low-Cost Multi-Waveband LED Illumination Imaging Technique for Rapid Evaluation of Fresh Meat Quality" Applied Sciences 9, no. 5: 912. https://doi.org/10.3390/app9050912
APA StyleKandpal, L. M., Lee, J., Bae, J., Lohumi, S., & Cho, B. -K. (2019). Development of a Low-Cost Multi-Waveband LED Illumination Imaging Technique for Rapid Evaluation of Fresh Meat Quality. Applied Sciences, 9(5), 912. https://doi.org/10.3390/app9050912