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Abstract: Leaf nitrogen concentration (LNC) is a major biochemical parameter for estimating
photosynthetic efficiency and crop yields. Laser-induced fluorescence, which is a promising potential
technology, has been widely used to estimate the growth status of crops with the help of multivariate
analysis. In this study, a fluorescence index was proposed based on the slope characteristics of
fluorescence spectrum and was used to estimate LNC. Then, the performance of different fluorescence
characteristics (proposed fluorescence index, fluorescence ratios, and fluorescence characteristics
calculated by principal component analysis (PCA)) for LNC estimation was analyzed based on
back-propagation neural network (BPNN) model. The proposed fluorescence index exhibited more
stability and reliability for LNC estimation than fluorescence ratios and characteristics calculated by
PCA. In addition, the effect of different kernel functions and hidden layer sizes of BPNN model on
the accuracy of LNC estimation was discussed for different fluorescence characteristics. The optimal
train functions “trainrp,” “trainbr,” and “trainlm” were then selected with higher R2 and lower
standard deviation (SD) values than those of other train functions. In addition, experimental results
demonstrated that the hidden layer size has a smaller impact on the accuracy of LNC estimation than
the kernel function of the BPNN model.

Keywords: Laser-induced fluorescence; fluorescence index; BPNN; leaf nitrogen concentration;
train function

1. Introduction

The photosynthesis ability of vegetation is closely related to vegetation growth status, which is
influenced by biochemical concentrations. The leaf nitrogen concentration (LNC) is one of the most
important biochemical parameters closely related to the photosynthetic efficiency and crop yields [1].
Therefore, LNC can serve as a major indicator for monitoring crop growth status based on passive
or active technology in the field of remote sensing [2,3], wherein related investigations have been
conducted by many researchers.

For passive remote sensing technology, the reflectance spectrum of crops was measured, and the
relationship between spectral characteristics and LNC or crop status was established. Thus, numerous
investigations regarding LNC estimation have been done due to the non-destructive, fast, and
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large-scale advantages of passive remote sensing technology [4–6]. These investigations found that
LNC was closely related to the visible and near-infrared regions of reflectance spectrum. Relative
metrics (such as vegetation indices and spectral characteristics) based on reflectance spectra were then
proposed for LNC estimation [1,7,8]. Kira et al. [9] analyzed the sensitivity of spectral bands for LNC
estimation. In addition, Bassanezi et al. [10] discussed the correlation between CO2 and LNC and
found that the efficiency of solar energy utilization was influenced by the LNC from the canopy scale.
What’s more, the three-dimensional information of crops can be measured by using light detection
and ranging (LiDAR), which is an active remote sensing technique. Several metrics calculated based
on spatial information can be efficiently applied in the monitoring of crop status. At present, passive
and active remote sensing technologies have been maturely applied in the monitoring of crop growth
status based on proposed relative metrics, which can provide guidance for precision agricultural
management [11–14].

Laser-induced chlorophyll fluorescence spectrometry (LICFs) serves as another remote sensing
technology for crop growth status monitoring and has attracted considerable attention from numerous
investigators [15–20]. Chlorophyll fluorescence can be efficiently applied in nutrient stress estimation
and photosynthetic ability monitoring. Subhash and Mohanan [21] analyzed the performance of
chlorophyll fluorescence for nutrient stress monitoring in rice and found that the ratios of fluorescence
intensity have considerable potential for remote sensing of stress effects in plants. Gunther et al. [22]
used the fluorescence intensity ratio F685/F730 (the fluorescence intensity at 685 nm divided by
that at 730 nm) to monitor chlorophyll concentration when evident reduction was not observed.
Yang et al. [23–25] compared the performance of published fluorescence metrics for LNC estimation
and discussed the effect of fluorescence parameters combined with multivariate analysis on the
accuracy of LNC monitoring. Buschmann [26] utilized the chlorophyll fluorescence intensity ratio
F690/F735 to analyze the changes in chlorophyll concentration and found that it was linearly related
to fluorescence concentration. These investigations displayed the potential of chlorophyll fluorescence
for LNC monitoring.

However, understanding of the effect of kernel function or internal parameters of multivariate
analysis on the LNC estimation is still limited. In addition, the fluorescence index is restricted by the
fluorescence intensity ratio chosen. Thus, the main aims of this study are (1) to analyze the effect of
kernel function of multivariate analysis on the accuracy of LNC estimation and select the optimal
internal parameters; and (2) to discuss the performance of the proposed fluorescence index based on
the slope characteristics of fluorescence spectrum for LNC estimation.

2. Materials and Methods

2.1. Materials

Wuhan City in the province of Hubei, China, was selected and served as the experimental area in
this study. The variety of paddy rice was Victory Indica, which was seeded on 30 April, 2015. According
to the advice of the local farm extension service, the most optimal dose of N fertilization was 180 kg/ha.
During the entire growth period, four (0, 120, 180, and 240 kg/ha) N fertilization levels of urea were
used in the experimental fields. Each experimental area had an absolute block design so that the ridges
of the field were enclosed in plastic films to avoid water leakage, with three replications under the
same cultivation conditions. Furthermore, other management processes were conducted according
to the advice of the local farm extension service. Paddy rice foliar samples, which were the second
leaves from the top, were fully expanded and destructively sampled by randomly cutting nine leaves
with three replicates for each experimental field. A total of 81 foliar samples were obtained for each
fertilization level, and the number of total samples was 324. Then, the fluorescence spectrum of each
foliar sample was measured. All foliar samples were collected on 24 July 2015, which corresponded to
the tillering stage [23,27].
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2.2. Fluorescence Spectrum Measurement

The laser-induced fluorescence (LIF) system was built in our laboratory and consisted of an
excitation light source (excitation light wavelength is 355 nm, frequency is 20 Hz, and pulse width
is 5 ns). The fluorescence signal was collected through a convex lens and passed through an optical
fiber. Then, it was transferred to the spectrometer for analysis using a linear array ICCD camera
for detection. The detailed description of the instrument can be found in our previous study [23].
The spectral range of each foliar sample was 360–800 nm with 0.5 nm sample interval. In addition,
the standard Kjeldahl method was used to determine the LNC after the measurement of fluorescence
spectra [28]. The detailed standard Kjeldahl process can be found in reference [29].

2.3. Analytical Methods

Chlorophyll fluorescence is closely related to LNC, and the bands were mainly located in the
red and far-red regions. Then, some fluorescence intensity ratio indices were proposed to analyze
LNC changes. Therefore, a fluorescence index was introduced for LNC monitoring based on the slope
characteristics of fluorescence spectrum. The proposed fluorescence index was presented as follows:

K =
F(λi1, λex)− F(λi2, λex)

λi1 − λi2
/F(λi3, λex) (1)

where λex is the excitation light wavelength, and F(λi1, λex), F(λi2, λex), and F(λi3, λex) denote the
fluorescence intensities at fluorescence emission wavelengths λi1, λi2, and λi3, respectively. According
to previous researches, fluorescence characteristic peaks at 685 nm were mainly contributed by
chlorophyll a of Photosystem II, whereas those at 740 nm were contributed by the antenna chlorophyll
of Photosystems I and II. The fluorescence characteristics peaks were positively correlated to LNC.
In addition, the fluorescence characteristics at 460 nm were mainly denoted by the nicotinamide
adenine dinucleotide [23,30]. Therefore, λi3 was selected at 460 nm, and the fluorescence peak
characteristics were selected at 740 nm and 685 nm. In addition, a reference fluorescence signal
was selected at 640 nm. Then, a total of three fluorescence indices were calculated as follows:

K1 =
F740 − F685

∆λ1
/F460 (2)

K2 =
F740 − F640

∆λ2
/F460 (3)

K3 =
F685 − F640

∆λ3
/F460 (4)

Then, the performance of the proposed fluorescence indices was analyzed based on the
back-propagation neural network (BPNN) model for LNC estimation. The results were then compared
with the fluorescence ratios or extracted fluorescence characteristics through principal component
analysis (PCA) analyzed fluorescence spectrum. BPNN serves as a feedforward network and has been
widely used to solve non-linear problems due to its self-learning and self-adaption abilities [31,32].
A typical BPNN model comprises three layers including input, output, and hidden layers, each with a
few neurons. The BPNN model can modify weights of the neurons in response to the errors between
the target output values and truth-value until it is optimal. The detailed description of the BPNN
model can be found in this reference [32,33].

In addition, the effect of training function and hidden layer size on the accuracy of LNC estimation
was discussed. In this investigation, training functions were “traingd,” “traingdm,” “traingda,”
“traingdx,” “trainrp,” “traincgf,” “traincgp,” “traincgb,” “trainscg,” “trainbfg,” “trainoss,” “trainlm,”
and “trainbr,” which corresponded to the training methods “gradient descent,” “gradient descent with
momentum,” “gradient descent with adaptive learning rate,” “gradient descent with momentum and
adaptive learning rate,” “resilient gradient backpropagation,” “conjugate gradient backpropagation
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with Fletcher–Reeves restarts,” “conjugate gradient with Ploak–Ribiere restarts,” “conjugate gradient
with Powell–Beale restarts,” “scaled conjugate gradient,” “Broyden–Fletcher–Goldfarb–Shanno
quasi-Newton,” “one step secant,” “Levenberg–Marquardt,” and “Bayesian regulation”, respectively.

In the BPNN model, the fluorescence characteristics were divided into two datasets: 70% as the
training dataset to train the BPNN model and the remaining 30% as the testing dataset to validate
the BPNN model. The coefficient of determination (R2) between the predicted and measured LNC
and standard deviation (SD) were used to assess the performance of the proposed fluorescence index
for LNC estimation and the effect of internal parameter of the BPNN model on the accuracy of LNC
estimation. Each characteristic’s setting was repeated 60 times based on BPNN, and the average and
SD were calculated.

3. Results and Discussion

3.1. Relationship between the Proposed Fluorescence Index and LNC

The chlorophyll fluorescence spectrum shows a positive correlation with LNC. Thus,
the fluorescence characteristic peaks at 685 nm and 740 nm increased with the increasing of LNC.
However, the fluorescence peak at 685 nm is less intensive than that at 740 nm because the reabsorption
by the chlorophyll pigment at 685 nm is stronger than that at 740 nm [34]. Thus, the effect of LNC on
the fluorescence signal at 740 nm is more apparent than that at 685 nm. The relationship between the
fluorescence intensity at 740 nm and at 685 nm with the changing of LNC is shown in Figure 1.
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Figure 1. Relationship between the fluorescence characteristics peak intensity at 740 and 685 nm with
increasing leaf nitrogen concentration (LNC).

Figure 1 shows the changes of fluorescence peaks at 740 nm and 685 nm with increasing LNC.
The results show that the fluorescence peak intensity at 740 nm has a linear positive correlation with
fluorescence peak intensity at 685 nm with increasing LNC. R2 can reach up to 0.945. In addition,
the slope of linear regression analysis is 1.242, which means that the relative change of fluorescence
peak intensity at 740 nm is larger than that at 685 nm when the LNC increased. This shows that the
intensity of the fluorescence peaks at 740 nm and 685 nm are related to LNC. Therefore, the result
demonstrated that the proposed fluorescence index can be applied in the LNC monitoring. Then,
the relationship between the proposed fluorescence indices calculated using Equations (2)–(4) and
LNC was established and shown in Figure 2.
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Figure 2. Relationship between the proposed fluorescence characteristics and LNC. The solid line is
the linear regression analysis.

Figure 2 demonstrates that the proposed fluorescence index exhibited a closely positive linear
correlation with LNC. The R2 values are 0.508, 0.771, and 0.732 for fluorescence indices K1, K2, and K3,
respectively. K1 demonstrates that fluorescence intensity at 740 nm increases faster than that at 685 nm
with increasing LNC. K2 (R2 = 0.771) and K3 (R2 = 0.732) are superior to K1 (R2 = 0.508) for the
detection of a smaller change in LNC because K2 and K3 displayed larger slope and lower scatter
than K1. These results are consistent with those obtained by previous studies [35,36]. Therefore,
the proposed fluorescence index can be applied in LNC estimation.

3.2. LNC Estimation Based on PCA

The training process of the BPNN model is to modify and update the weight of each neuron until
the average sum squared error is optimal for all samples. However, the training function and the
hidden layer size will influence the performance of the BPNN model, which results in the different
accuracies of LNC estimation. In addition, different fluorescence characteristics were used to analyze
LNC to compare the performance of the proposed fluorescence index for LNC estimation. Thus,
the main fluorescence characteristics extracted by PCA were first used to estimate LNC based on the
BPNN model, and the changes of R2 between the predicted and measured LNC with hidden layer
sizes for different train functions are shown in Figure 3.



Appl. Sci. 2019, 9, 916 6 of 12
Appl. Sci. 2019, 9 FOR PEER REVIEW  6 

 

Figure 3. Performance of back-propagation neural network (BPNN) for LNC estimation based on 
fluorescence characteristics calculated by principal component analysis (PCA) varying with hidden 
layer sizes for different training functions. The black error bar represents one standard deviation of 
mean values. 

Figure 3 shows the changes of R2 between predicted and measured LNC with hidden layer size 
and different training functions based on fluorescence characteristics extracted through PCA. The 
black error bar represents one SD of mean values with 60 repetition times for each hidden layer size. 
The results show that the effect of hidden layer sizes on the LNC estimation can be ignored, and the 
training function is the major influencing factor by comparing the R2 values. By comparing the R2 
and SD values, the “trianrp,” “trainbr,” and “trainlm” are superior to other training functions for 
LNC estimation. The overall robustness of train function “trianrp” is the best (Figure 3e). However, 

Figure 3. Performance of back-propagation neural network (BPNN) for LNC estimation based on
fluorescence characteristics calculated by principal component analysis (PCA) varying with hidden
layer sizes for different training functions. The black error bar represents one standard deviation of
mean values.

Figure 3 shows the changes of R2 between predicted and measured LNC with hidden layer
size and different training functions based on fluorescence characteristics extracted through PCA.
The black error bar represents one SD of mean values with 60 repetition times for each hidden layer
size. The results show that the effect of hidden layer sizes on the LNC estimation can be ignored, and
the training function is the major influencing factor by comparing the R2 values. By comparing the
R2 and SD values, the “trianrp,” “trainbr,” and “trainlm” are superior to other training functions for
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LNC estimation. The overall robustness of train function “trianrp” is the best (Figure 3e). However,
the BPNN model with the “trainbr” serves as the training function, and the hidden layer size set to
three is optimal for LNC estimation based on the fluorescence characteristics extracted through PCA
as input parameters. R2 and SD are 0.828, and 0.032, respectively (Figure 3l).

3.3. LNC Estimation Based on Fluorescence Ratio

Fluorescence ratios served as the input parameters to train the BPNN model with different training
function and hidden layer sizes. The changes of R2 between the predicted and measured LNC with
hidden layer size for different training functions are shown in Figure 4.
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Figure 4 shows the changes of R2 with hidden size for different training functions by the BPNN
model based on fluorescence ratios. By comparing the R2 and SD values, the “trianrp,” “trainbr,”
“trainlm,” and “trainbfg” served as the training function in the BPNN model and exhibited high
R2 and low SD. In addition, the hidden layer size will influence the stability of the BPNN model
for LNC estimation. For fluorescence ratios serving as input parameter to train the BPNN model,
the optimal train function “trainlm” and hidden layer size of 4 are selected. R2 and SD are 0.807 and
0.026, respectively.

3.4. LNC Estimation Based on the Proposed Fluorescence Index

LNC estimation based on the proposed fluorescence index served as input parameter to train the
BPNN model. The performance of fluorescence index for LNC estimation is shown in Figure 5.
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Figure 5 shows the performance of fluorescence index for LNC estimation based on the BPNN
model. The black error bar denotes one SD of mean values with a repetition of 60 times. The effect of
hidden layer sizes on the accuracy of LNC estimation cannot be ignored when “traingd,” “traingdm,”
“traingda,” “traingdx,” “traincgf,” and “trainoss” were selected as training functions, which belonged
to gradient descent methods. The possible interpretation is that the fluorescence characteristics may
not be exhibited well as the gradient difference changed with the LNC in this investigation, when the
gradient descent methods were selected to train BPNN model. In addition, the selection of training
function may need to consider the number of input layers in BPNN model [37], and the detailed
causes need to be further studied in future work. Although hidden layer size has a small effect on
the accuracy of LNC estimation when the remaining training functions were selected in the BPNN
model, it exhibited better performance for LNC estimation with high R2 and low SD. The optimal
BPNN model parameter is achieved when “trainlm” serves as training function and the number of
hidden layers is set to five. R2 and SD are 0.819 and 0.023, respectively. The results show the promising
potential of proposed fluorescence index for LNC estimation.

3.5. Performance Analysis of Models

At present, LIF technology has been widely applied in remote sensing for monitoring the growth
status of vegetation. In this study, the effect of hidden layer sizes and train function of BPNN model on
the accuracy of LNC estimation was analyzed. The results demonstrated that the effect of the selected
training function on the accuracy of LNC estimation is more evident than that of the hidden layer sizes.
In this study, the minimum number of hidden layers is varying for different fluorescence characteristics
which may be related to the input layer sizes. The “trainrp,” “trainbr,” and “trainlm” of training
functions are superior to other training functions based on BPNN model for different fluorescence
characteristics. In addition, a fluorescence index based on the slope of fluorescence spectrum was
proposed and used to estimate LNC. For “traingd,” “traingdm,” “traingda,” “traingdx,” and “traincgf,”
the proposed fluorescence index (the mean of R2 are 0.407, 0.412, 0.626, 0.636, and 0.746 corresponding
to Figure 5a–d, and 5f, respectively) is superior to the fluorescence ratios (the mean of R2 are 0.342,
0.337, 0.596, 0.594, and 0.738 corresponding to Figure 4a–d, and 4f, respectively) and fluorescence
characteristics calculated by PCA (the mean of R2 are 0.239, 0.248, 0.517, 0.518, and 0.701 corresponding
to Figure 3a–d, and 3f, respectively) based on the gradient descent algorithm to train the BPNN model
for LNC estimation. In addition, the proposed fluorescence index exhibited better reliability and
stability with lower SD values than other fluorescence characteristics. The possible interpretation is
that the fluorescence index can efficiently eliminate the effect of background noise on the fluorescence
signal [38,39]. Fluorescence will be influenced by the fluctuation of environmental conditions and
the leaf or canopy chlorophyll concentration. Although the fluorescence characteristics calculated
based on PCA and fluorescence ratios cannot efficiently eliminate these influence factors, they can
improve the detection of the differences of the fluorescence characteristics of different LNCs. However,
the proposed fluorescence index based on the slope of fluorescence characteristic peaks can eliminate
the effect of background noise on fluorescence characteristics to a certain extent [38,40,41]. Thus, the
proposed fluorescence index exhibited promising potential due to its stability for LNC estimation.

In this study, the performance of different fluorescence characteristics for LNC estimation was
compared based on the BPNN model. In addition, the effect of hidden layer sizes and training function
of BPNN model on the accuracy of LNC estimation was analyzed. However, some limitations of this
investigation should be considered. For example, a method to confirm the minimum number of hidden
layers should be discussed, and as only the BPNN model was used in this research, other algorithms
also need to be considered. In addition, whether the proposed fluorescence index can eliminate the
effect of crop varieties or growth seasons on the fluorescence characteristics should be discussed in
future work.
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4. Conclusions

This study analyzed the performance of different fluorescence characteristics for LNC estimation
based on the BPNN model. The experimental results demonstrated that the proposed fluorescence
index is superior to the fluorescence ratios and fluorescence characteristics calculated by PCA based on
the BPNN model due to its stability and the promising potential for LNC estimation. In addition, the
effect of hidden layer sizes and training function of BPNN model on the accuracy of LNC estimation
was discussed. The results showed that the hidden layer size has a smaller impact on the accuracy of
LNC estimation than the selected training function of the BPNN model. The “trainrp,” “trainbr,” and
“trainlm” of train functions are the optimal and can be selected to train the BPNN model in this study.
However, to obtain a solid conclusion, more studies still need to be conducted with more algorithms,
crop cultivars, and a wider variation range of LNC in the forthcoming research.
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chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by
nitrogen deficiency. Plant Soil Environ. 2014, 60, 210–215. [CrossRef]

29. Wutzke, K.D.; Heine, W. A century of kjeldahl’s nitrogen determination. Z. Med. Lab. 1985, 26, 383–388.
30. Tremblay, N.; Wang, Z.; Cerovic, Z.G. Sensing crop nitrogen status with fluorescence indicators. A review.

Agron. Sustain. Dev. 2012, 32, 451–464. [CrossRef]
31. Goltsev, V.; Zaharieva, I.; Chernev, P.; Kouzmanova, M.; Kalaji, H.M.; Yordanov, I.; Krasteva, V.;

Alexandrov, V.; Stefanov, D.; Allakhverdiev, S.I. Drought-induced modifications of photosynthetic electron
transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation.
Biochim. Biophys. Acta 2012, 1817, 1490–1498. [CrossRef] [PubMed]

32. Buscema, M. Back propagation neural networks. Subst. Use Misuse 1998, 33, 233–270. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/jxb/erv456
http://www.ncbi.nlm.nih.gov/pubmed/26482242
http://dx.doi.org/10.1038/srep10088
http://www.ncbi.nlm.nih.gov/pubmed/25965027
http://dx.doi.org/10.1007/s11738-016-2113-y
http://dx.doi.org/10.1007/s11120-015-0121-1
http://www.ncbi.nlm.nih.gov/pubmed/25829027
http://dx.doi.org/10.1007/s11120-014-9969-8
http://www.ncbi.nlm.nih.gov/pubmed/24445618
http://dx.doi.org/10.1007/s11120-014-0024-6
http://www.ncbi.nlm.nih.gov/pubmed/25119687
http://dx.doi.org/10.1016/0034-4257(94)90126-0
http://dx.doi.org/10.1016/0034-4257(94)90122-8
http://dx.doi.org/10.3390/rs10091402
http://dx.doi.org/10.1371/journal.pone.0191068
http://www.ncbi.nlm.nih.gov/pubmed/29342190
http://dx.doi.org/10.1364/OE.25.003743
http://www.ncbi.nlm.nih.gov/pubmed/28241586
http://dx.doi.org/10.1007/s11120-007-9187-8
http://www.ncbi.nlm.nih.gov/pubmed/17525834
http://dx.doi.org/10.1016/j.isprsjprs.2011.05.002
http://dx.doi.org/10.17221/73/2014-PSE
http://dx.doi.org/10.1007/s13593-011-0041-1
http://dx.doi.org/10.1016/j.bbabio.2012.04.018
http://www.ncbi.nlm.nih.gov/pubmed/22609146
http://dx.doi.org/10.3109/10826089809115863
http://www.ncbi.nlm.nih.gov/pubmed/9516725


Appl. Sci. 2019, 9, 916 12 of 12

33. Samborska, A.I.; Alexandrov, V.; Sieczko, L.; Kornatowska, B.; Goltsev, V.; Magdalena, D.C.; Kalaji, H.M.
Artificial neural networks and their application in biological and agricultural research. Signpost Open Access
J. Nanophotobiosci. 2014, 2, 14–30.

34. Ramos, M.E.; Lagorio, M.G. True fluorescence spectra of leaves. Photochem. Photobiol. Sci. 2004, 3, 1063–1066.
[CrossRef] [PubMed]

35. Malenovsky, Z.; Mishra, K.B.; Zemek, F.; Rascher, U.; Nedbal, L. Scientific and technical challenges in remote
sensing of plant canopy reflectance and fluorescence. J. Exp. Bot. 2009, 60, 2987–3004. [CrossRef] [PubMed]

36. Farkas, D.L.; Gouveia-Neto, A.S.; Silva, J.E.A.; Costa, E.B.; Bueno, L.A.; Silva, L.M.H.; Granja, M.M.C.;
Medeiros, M.J.L.; Câmara, T.J.R.; Willadino, L.G.; et al. Plant abiotic stress diagnostic by laser induced
chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species. Int. Soc. Opt. Photonics
2010, 7568, 75680G–75688G.

37. Sun, J.; Yang, J.; Shi, S.; Chen, B.; Du, L.; Gong, W.; Song, S.L. Estimating rice leaf nitrogen concentration:
Influence of regression algorithms based on passive and active leaf reflectance. Remote Sens. 2017, 9, 951.
[CrossRef]

38. Ali, K.; Witter, D.; Ortiz, J. Multivariate approach to estimate colour producing agents in case 2 waters using
first-derivative spectrophotometer data. Geocarto Int. 2014, 29, 102–127. [CrossRef]

39. Yang, J.; Du, L.; Gong, W.; Shi, S.; Sun, J.; Chen, B. Analyzing the performance of the first-derivative
fluorescence spectrum for estimating leaf nitrogen concentration. Opt. Express 2019, 27, 3987–3990. [CrossRef]

40. Ortiz, J.D. Application of visible/near infrared derivative spectroscopy to arctic paleoceanography. IOP Conf.
Ser. Earth Environ. Sci. 2011, 14, 221–227. [CrossRef]
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