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Abstract: Investigation of the interaction of ultrashort laser pulses with magnetically ordered
materials has become a fascinating research topic in modern magnetism. Especially, the control
of magnetic order by sub-ps laser pulses has become a fundamentally important topic with a high
potential for future spintronics applications. This paper will review the recent success in optically
controlling the magnetic interactions in carrier-density-controlled ferromagnetic semiconductor EuO
doped with Gd ions. When the Gd concentration is low, the magnitude of the magnetic interaction
is enhanced by the irradiation of ultrashort laser pulses, whereas it is attenuated when the Gd
concentration is high. In ferromagnetic Eu1−xGdxO, we thereby demonstrate the strengthening as
well as the weakening of the magnetic interaction by 10% and within 3 ps by optically controlling the
magnetic exchange interaction. This principle—ultrafast optical control of magnetic interaction—can
be applied to future ultrafast opto-spintronics.

Keywords: ultrafast spin control; opto-spintronics; exchange interaction; europium oxide; ferromagnetic
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1. Introduction

Spintronics, also known as spin-electronics, utilizing the spin degree of freedom in addition
to the charge of electrons has attracted much attention in recent years from the viewpoint of
the creation of new driving principles of electric and magnetic devices and energy conservation
technology. While technical innovation in conventional semiconductor technology is approaching its
limit, spintronics can open new paths to further development and will create new devices that exceed
the limitations of conventional ones [1]. The important element in their development is how efficiently
one can control the electron spin. Up until now, magnetic fields have been used as the most popular
method for controlling the electron spin (or the magnetization of a magnetic material). In recent
years, however, alternative methods such as a spin polarized current, an electric field, and a pure spin
current, which are in principle not accompanied by Joule heating, are attracting much attention from
the viewpoint of low power consumption spin control.

On the other hand, the demand for an ever-increasing speed of manipulation in magnetic
information storage has triggered a search for new methods for control of the spin functionality
on the ultrafast timescale. Since the control speed of the spin by magnetic fields is already approaching
its limit, how fast the spin functionality can be manipulated is one of the most important issues in
modern technology. Under such circumstances, the recent development of ultrafast optical technology
has opened the way to control the spin by light. In particular, the use of ultrashort optical pulses
that are much shorter than the fundamental timescales such as spin-lattice relaxation or precession
times allows us to excite magnetic media and to study the spin dynamics after ultrashort optical
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excitations. These new possibilities have recently led to exciting results demonstrating changes
in the spin state on a sub-ps timescale [2]. For example, by the irradiation of ∼100 fs laser pulse
with various pulse shapes, ultrafast demagnetization in ferromagnetic metals [3–6], magnetization
reversal in ferrimagnetic (ferromagnetic) alloys [7,8], enhancement of magnetization in magnetic
semiconductors [9,10], generation of ferromagnetic order in strongly correlated electron systems [11],
and generation and control of spin waves in magnetic insulators [12] have been realized. In the first
place, in order to control the spin functionality on the ultrafast timescale, a strong magnetic interaction
of the large energy scale (effective magnetic field acting on spins) should be utilized. Therefore, the
use of exchange interaction or spin-orbit interaction might be desired for that purpose (Figure 1).
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possess both the electrical properties of semiconductors and the magnetic properties of magnets 
[14,15]. Recently, a multitude of extreme properties in EuO (or slightly carrier doped EuO) such as 
nearly 100% spin polarization in the ferromagnetic state [16–18], drastic insulator-metal transition 
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Figure 1. Characteristic energy and timescales of various magnetic phenomena. Timescales t are
determined by the interaction energies E via the Heisenberg relation t = h/E ( t(fs) ∼ 4.13/E(eV)).
Here, h = 4.13× 10−15 eV·s is Planck’s constant. The slowest dynamics is the domain-wall motion
whose typical timescale is few ns to hundred µs. Precession of magnetization occurs within 10–100 ps
and gets damped in sub-ns to tens of ns. Thus, the spin waves in ferromagnetic materials can propagate
within few hundreds of ps to tens of ns before it gets damped out. Elementary interactions in magnetism
such as the spin-orbit interaction (∼10 fs–1 ps) and the exchange interaction (∼10 fs) are related to
faster dynamics.

In this review paper, I will show that ultrafast strengthening or quenching of the ferromagnetic
order can be achieved via resonant photoexcitation in carrier-density-controlled ferromagnetic
semiconductor EuO doped with Gd ions (Eu1−xGdxO) [13]. The change of the magnetic order is
established within 3 ps and detected by nonlinear magneto-optical effects. Such spin dynamics
cannot be explained by a well-known three-temperature model. The associated spin dynamics is
explained by the interplay of chemically and optically generated carriers and the resulting dynamic
renormalization of the Ruderman-Kittel-Kasuya-Yoshida (RKKY)-like magnetic exchange coupling.
The change from ultrafast enhancement to quenching of ferromagnetism is marked by the crossover
from the predominantly semiconducting to the predominantly metallic doping range of Eu1−xGdxO.
Aside from the generalized insight into ultrafast spin as well as charge dynamics, a key requirement
for spintronics technology, our investigation provides guiding information for the selection and design
of materials for ultrafast optical control of magnetic interactions.

2. Ferromagnetic Semiconductor EuO

The target material for this study is europium oxide (EuO) which is known as a representative
ferromagnetic semiconductor. EuO, more generally, europium chalcogenides EuX (X = O, S, Se, and
Te), have long been attracting attention since its discovery in 1960s as magnetic semiconductors that
possess both the electrical properties of semiconductors and the magnetic properties of magnets [14,15].
Recently, a multitude of extreme properties in EuO (or slightly carrier doped EuO) such as nearly
100% spin polarization in the ferromagnetic state [16–18], drastic insulator-metal transition [19],
colossal magnetoresistance [20,21], pronounced linear and nonlinear magneto-optical effects [22–26],
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theoretical prediction of strain-induced ferroelectricity [27] have been attracting much attention from
the viewpoint of basic science and application. In fact, its structural and electronic compatibility
with Si, GaN, and GaAs make EuO a very attractive candidate for future semiconductor-based
spintronics applications [28–30]. In the past, it was difficult to precisely control the sample quality due
to undesirable oxidation and defects. With the recent developments of thin film fabrication technology,
however, it is now possible to prepare high quality EuO films with well-controlled carrier density [31].

Undoped EuO is a typical Heisenberg ferromagnet with the Curie temperature TC of 69 K.
The Eu2+ ions on a centrosymmetric cubic rock salt structure (Figure 2a) have strongly localized 4 f 7

electrons with 8S7/2 as the ground state (S = 7/2, L = 0) and the saturation magnetic moment as
large as 7 µB arises from the 4 f 7 spins. Due to the strong localization of the 4 f shell, the direct 4 f –4 f
exchange interaction with the nearest Eu2+ neighbors is not enough to explain the TC of EuO. Instead,
it has been predicted that the ferromagnetic order is driven by a virtual exchange mechanism [32].
According to this model, localized 4 f electrons are virtually excited into the empty 5d orbital and create
virtual magnetic excitons, and the excited 5d electron undergoes the intra-atomic 4 f –5d exchange
interaction with 4 f spins at the adjacent sites so that the magnetic exchange coupling Jex can be
mediated via the spatially more extended 5d orbitals (Figure 2b). This indirect exchange interaction is
considered to be stronger than the direct one. Therefore, it should be able to enhance the exchange
interaction by truly populating the 5d orbitals.
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Figure 2. (a) Crystal structure of EuO. (b) Exchange interaction in undoped EuO via virtual 4 f –5d
excitation. (c) Introduction of 5d electrons by chemical doping. (d) Introduction of 5d electrons by
4 f –5d photoexcitation. (e) Schematic of the spin- and energy-dependent density of states of undoped
EuO below TC and the introduction of 5d electrons by resonant 4 f –5d photoexcitation.

A typical way to enhance the exchange interaction is the introduction of carriers by chemical
doping [31,33]. For example, by substituting a part of Eu2+ ions (Eu2+: [Xe] 4 f 7) with magnetically
equivalent Gd3+ ions (Gd3+: [Xe] 4 f 7), spatially spread excess 5d electrons are introduced and expected
to enhance the exchange interaction (Figure 2c). Indeed, the magnetic properties of EuO drastically
change by the Gd doping (Figure 3a) and it has been clarified that the increase in the carrier density nc

due to the Gd doping leads to the increase of the exchange interaction Jex and as a result the increase
in TC (Figure 3b). Note that these dopant electrons do not form excitons, but rather occupy the Gd 5d
impurity orbitals, which in the metallic phase below TC merge with the Eu 5d/6s conduction band to
produce a long-range RKKY contribution to Jex.

Control of the exchange interaction should be possible even by photo-carrier doping (Figure 2d).
In undoped EuO, there is a band gap (∼1.2 eV at room temperature) between the Eu 4 f orbital and
the Eu 5d/6s orbital, and the 4 f –5d exchange interaction splits the 5d/6s orbital below TC (Figure 2e).
This situation raises the exciting possibility that an ultrafast enhancement of the exchange interaction
Jex may be driven by resonant optical pumping of electrons from the Eu 4 f 7 ground state to the
4 f 65d

(
t2g

)
magnetic exciton state (Figure 2e), since this turns the virtual magnetic exciton into a real
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one, promoting the magnetic order. In this way, the photoinduced charge dynamics results in an
effective time-dependent magnetic coupling between the Eu 4 f moments. Thus, the investigation of
photo-carrier doping effect into EuO is expected to provide a suitable stage for studying the ultrafast
optical control of magnetic interactions.
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Figure 3. Changes in static magnetic properties of ferromagnetic semiconductor Eu1−xGdxO films
by carrier doping [31]. (a) Temperature dependence of the magnetization in Eu1−xGdxO for some
characteristic Gd concentrations. (b) Carrier density nc dependence of the Curie temperature TC.
The inset shows the relation between Gd concentration and carrier density nc.

3. Experiments

Previous experiments on undoped EuO showed that the static conductivity was increased by the
irradiation of continuous laser beam [34] and the dynamic enhancement of magnetization by ultrashort
laser pulses was possible as demonstrated by means of time-resolved Faraday rotation [35]. In addition,
it has been reported that the spin orientation can be controlled by circularly polarized optical pulses
via the inverse Faraday effect in EuO [36] and EuTe [37], and the ultrafast dynamics and modulation
of the exchange interaction can be accessed using an all-optical technique in EuTe [38]. In this
study, ultrafast spin dynamics after the photoexcitation were investigated in carrier-density-controlled
ferromagnetic semiconductor Eu1−xGdxO films by using a pump-probe nonlinear magneto-optical
spectroscopy [39–42] (Figure 4a), as described below.
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in this study. The sample is excited by the pump pulse and the pump-induced changes in magnetic
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(MSHG). (b) Temperature dependence of the square root of the static MSHG intensity
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for undoped and 2.65% Gd-doped EuO (without pump irradiation). (c) The upper panel shows
magnetic-field dependence of the MSHG intensity at 10 K in undoped EuO. Data represented by closed
and open symbols were taken with decreasing and increasing fields, respectively. The lower panel
shows magnetization curve extracted from the data in the upper panel.

3.1. Sample Preparation

Epitaxial Eu1−xGdxO(001) films (x = 0–19.5%) with a thickness of ∼35 nm were grown under
adsorption-controlled conditions on double-side-polished YAlO3(110) single-crystal substrates by
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molecular-beam epitaxy. The films were protected against air by an amorphous silicon (a-Si) capping
layer with 10–20 nm in thickness and found to be free of oxygen vacancies within the resolution limit
of X-ray absorption spectroscopy. Uniform growth without secondary phases was confirmed by X-ray
diffraction, and the Gd concentration x was determined by prompt-gamma activation analysis and
X-ray absorption spectroscopy. The carrier density nc was estimated by Hall measurements and a
sharp rise in TC was observed at nc ∼ 1× 1019 cm−3 (Figure 3b). All Eu1−xGdxO films possess an
in-plane magnetic easy axis. Their physical properties were reported in detail in Ref. [31].

3.2. Pump-Probe Nonlinear Magneto-Optical Spectroscopy

3.2.1. Magnetization-Induced Second Harmonic Generation

Static and photoexcited magnetic properties of Eu1−xGdxO films were investigated by using
nonlinear optical techniques, especially optical second harmonic generation (SHG). Nonlinear optical
effects are associated with higher order optical susceptibilities and SHG, the frequency doubling of a
light wave in a material, is one of the simplest second-order nonlinear optical effects.

In the majority of cases, SHG is applied to non-centrosymmetric materials or to the surface or
interface of centrosymmetric materials where the space inversion symmetry is locally broken and
the strongest interaction by the electric-dipole transitions is expected [43–45]. An electromagnetic
light field E at frequency ω is incident on a crystal, inducing an oscillation of electric polarization P at
frequency 2ω, which acts as a source of a frequency-doubled light wave. This is expressed by:

Pi(2ω) = ε0χ
(2)
ijk Ej(ω)Ek(ω), (1)

with χ as the second-order nonlinear susceptibility and ISHG ∝ |P(2ω)|2 as intensity of the emitted
SHG wave. Following the Neumann principle, symmetry determines the set of tensor components
χ
(2)
ijk 6= 0 [46].

In centrosymmetric systems such as EuO, SHG is only allowed if higher-order multipole
contributions in the expansion of the electromagnetic field such as magnetic-dipole or
electric-quadrupole contributions are involved [47]. In magnetic semiconductor EuX, this leads
to [24,25,48–50]:

Pi(2ω) = ε0

(
χ
(i)
ijk + χ

(c)
ijk

)
Ej(ω)Hk(ω), (2)

where the time-invariant (i-type) tensor χ
(i)
ijk and the time-noninvariant (c-type) tensor χ

(c)
ijk are the

second-order nonlinear susceptibilities related to, in the leading order, crystallographic SHG and
magnetization-induced SHG (MSHG), respectively. Ej(ω) and Hk(ω) in Equation (2) denote the
j-polarized electric field and the k-polarized magnetic field of the fundamental light, respectively,
that induce the i-polarized SHG wave Pi(2ω).

For the SHG measurements in this study, the orientation of the samples was chosen such that
crystallographic contributions (χ(i)

ijk tensors) to the SHG signal are suppressed so that the coupling
to the magnetic order occurs free of background [24,46]. For this purpose, the Eu1−xGdxO films are
probed with light incident along one of the principal axes (k ‖ z) with the spontaneous magnetization
parallel to the x (y) direction. In this configuration, any i-type magnetic-dipole SHG are forbidden so
that it is expected that the SHG signal has a purely magnetic origin. In this case, the MSHG intensity
IMSHG is written by:

IMSHG ∝ (Jex·M)2, (3)

which is proportional to the square of the exchange interaction Jex and the magnetization M [13].
The MSHG signal was measured in a normal-incidence transmission geometry under an in-plane
magnetic field of 50 mT, which was applied to sustain a single-domain magnetic state, and separated
from the incident fundamental light by short-pass filters and a monochromator and detected with a
photomultiplier tube.
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It is known that EuO shows a large temperature-dependent spectral shift of the absorption due
to the exchange splitting between the spin-up and spin-down states of the 5d orbitals [51]. Previous
experiments revealed [24] that at 2}ω = 2.60 eV, the interference by temperature-dependent linear
absorption effects is avoided. We therefore chose it as the MSHG probe energy. Although SHG in the
electric-dipole approximation is forbidden in EuO due to the centrosymmetry as mentioned above,
pronounced MSHG signals are observed (Figure 4b). The obtained MSHG signal well reflects the
magnetic properties of the samples and disappears exactly at TC, which confirms its purely magnetic
origin. Neither crystallographic SHG from the Eu1−xGdxO film nor SHG from the a-Si capping layer
and the YAlO3 substrate contribute to the net signal, which reveals SHG to be a background-free probe
of the magnetic state of the Eu1−xGdxO in the a-Si/Eu1−xGdxO/YAlO3 heterostructure. This contrasts
with the results on EuSe and EuTe films grown on BaF2 substrates where SHG signals not coupling to
the magnetic order were present, presumably because of the (111) orientation of the corresponding
films [48,49].

The MSHG signal coupling linearly to the magnetization can be also seen in the magnetic
field measurements. The upper panel of Figure 4c shows the magnetic field dependence of the
MSHG intensity at 10 K in undoped EuO. The MSHG intensity varies by one order of magnitude
with the change of magnetic field. Different minima in field increasing and decreasing runs lead
to a butterfly shape. Considering that the MSHG intensity is proportional to the square of the
magnetization, the dependence of the magnetization on the applied magnetic field is extracted and
shown in the lower panel of Figure 4c. The result reveals a pronounced hysteresis and reproduces
direct magnetization measurements.

3.2.2. Time-Resolved Magnetization-Induced Second Harmonic Generation

The experimental pump-probe set-up is shown in Figure 4a. The output of a Ti:sapphire
regenerative amplifier system at 800 nm (1.55 eV) with a pulse width of∼ 130 fs and a repetition rate of
1 kHz was divided into two beams. One beam was used for resonant pumping of the 4 f 7–4 f 65d

(
t2g

)
transition at 1.55 eV (Figure 2e). The absorption length of EuO at this photon energy is ∼100 nm so
that the entire film was excited. The other beam was introduced into an optical parametric amplifier
and the output was frequency-converted to 954 nm (1.30 eV). This light was used for probing the
time evolution of the ferromagnetic order by MSHG at 477 nm (2.60 eV). By tuning the time delay ∆t
between the pump pulse and the probe pulse, ultrafast spin dynamics caused by the resonant optical
pumping can be measured.

3.3. Experimental Results

3.3.1. General Properties of Photoinduced Spin Dynamics

First, typical results of the photoinduced spin dynamics are presented and its microscopic
mechanism will be discussed. Figure 5a shows a time evolution of the photoinduced change of

the MSHG intensity normalized by the value before photoexcitation, ∆IMSHG

IMSHG = IMSHG(on, ∆t)−IMSHG(off)
IMSHG(off) .

The data were taken at 77 K on EuO doped with 2.65% Gd (TC ~119 K). The excitation density of the
linearly polarized pump pulse is ∼380 µJ/cm2. Following the photoexcitation at ∆t = 0, a continuous
increase of the MSHG intensity up to +30% at 3 ps is observed. This is followed by a continuous
decrease passing zero at 40 ps and −25% at 3 ns.

On the basis of the results, the photoinduced increase and decrease of the MSHG intensity can
be explained as follows. First, as is clear from the temperature dependence of

√
IMSHG in Figure 4b,

which reflects that of magnetization, before photoexcitation the direction of localized 4 f spins is
not fully aligned at 77 K due to a relatively high temperature (left panel in Figure 5b). When this
magnetic state is irradiated with pump pulse, the excited 5d electrons spread to the adjacent Eu sites,
and the thermally fluctuating localized 4 f spins are partly aligned ferromagnetically through the
intra-atomic 4 f –5d exchange interaction, which leads to the increase of macroscopic magnetization
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(∆M > 0) (middle panel in Figure 5b). Considering that the energy of the intra-atomic 4 f –5d exchange
interaction is ∼0.1 eV [32], which corresponds to a time of ∼40 fs, an instantaneous increase of the
MSHG intensity after the photoexcitation might be expected in contrast to the strikingly different time
of ∼3 ps. We have, however, to take into account that the magnetic exchange coupling is mediated via
the RKKY interaction. The time τ0 required to coherently establish its enhancement in the photoexcited
region can be estimated from the time it takes the electronic correlation to spread through the crystal.
The relevant distance is the RKKY wavelength, and the propagation velocity is the group velocity of
the magnetic exciton. The latter is reduced with respect to the conduction electron group velocity
by the ratio m∗e /m∗h of the effective masses of the 5d/6s conduction electrons (m∗e) and of the heavy
holes in the 4 f band (m∗h), which together form the magnetic exciton. The ratio m∗h/m∗e was taken to be
equal to the inverse ratio of the respective bandwidths and was extracted from literature data [52] to
be ∼4× 103. In addition, the low excitation energy within the conduction band of ∆E ∼ 0.5 eV and
the small wavenumber associated to this energy allows us to assume the conduction band as parabolic.
Here, ∆E is the difference between the pump photon energy }ωpump and the 4 f –5d/6s gap energy

Egap. With τ0 = h
4∆E ·

m∗h
m∗e

we thus obtain a build-up time τ0 of ∼8 ps, which is in reasonable agreement
with the measured value of ∼3 ps.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 14 

 
Figure 5. (a) Time evolution of the photoinduced change of the MSHG intensity normalized by the 
value before optical excitation, ∆𝐼ୗୌୋ/𝐼ୗୌୋ at 77 K for EuO doped with 2.65% Gd. The excitation 
density of the pump pulse is ~380 μJ/cm2. The inset shows a magnified view of the ultrafast increase 
of the MSHG signal. Solid lines are guides to the eyes. (b) Schematics of ultrafast alignment of 
localized 4𝑓  spins by resonant 4𝑓 − 5𝑑  photoexcitation and subsequent demagnetization 
processes. 

On the basis of the results, the photoinduced increase and decrease of the MSHG intensity can 
be explained as follows. First, as is clear from the temperature dependence of √𝐼ୗୌୋ in Figure 4b, 
which reflects that of magnetization, before photoexcitation the direction of localized 4𝑓 spins is not 
fully aligned at 77 K due to a relatively high temperature (left panel in Figure 5b). When this magnetic 
state is irradiated with pump pulse, the excited 5𝑑 electrons spread to the adjacent Eu sites, and the 
thermally fluctuating localized 4𝑓  spins are partly aligned ferromagnetically through the intra-
atomic 4𝑓 − 5𝑑  exchange interaction, which leads to the increase of macroscopic magnetization 
(∆𝑀 > 0) (middle panel in Figure 5b). Considering that the energy of the intra-atomic 4𝑓 − 5𝑑 
exchange interaction is ~0.1  eV [32], which corresponds to a time of ~40  fs, an instantaneous 
increase of the MSHG intensity after the photoexcitation might be expected in contrast to the 
strikingly different time of ~3  ps. We have, however, to take into account that the magnetic 
exchange coupling is mediated via the RKKY interaction. The time 𝜏  required to coherently 
establish its enhancement in the photoexcited region can be estimated from the time it takes the 
electronic correlation to spread through the crystal. The relevant distance is the RKKY wavelength, 
and the propagation velocity is the group velocity of the magnetic exciton. The latter is reduced with 
respect to the conduction electron group velocity by the ratio 𝑚∗ୣ/𝑚୦∗  of the effective masses of the 5𝑑/6𝑠 conduction electrons (𝑚∗ୣ) and of the heavy holes in the 4𝑓 band (𝑚୦∗ ), which together form 
the magnetic exciton. The ratio 𝑚୦∗ /𝑚∗ୣ was taken to be equal to the inverse ratio of the respective 
bandwidths and was extracted from literature data [52] to be ~4 × 10ଷ . In addition, the low 
excitation energy within the conduction band of ∆𝐸~0.5 eV and the small wavenumber associated 
to this energy allows us to assume the conduction band as parabolic. Here, ∆𝐸 is the difference 
between the pump photon energy ℏ𝜔୮୳୫୮ and the 4𝑓 − 5𝑑/6𝑠 gap energy 𝐸ୟ୮. With 𝜏 = ସ∆ா ∙ ∗∗  

we thus obtain a build-up time 𝜏 of ~8 ps, which is in reasonable agreement with the measured 
value of ~3 ps. 

The ensuing decrease of MSHG intensity on the ns timescale is associated with the 
demagnetization (∆𝑀 < 0) by the heating of the spin system through the transfer of the optical 

(a)

(b) Before photoexcitation

Δt < 0

H

Δt ∼ 3000 ps (ΔM < 0)

After photoexcitation

Δt ∼ 0 ps (ΔM > 0) 

4f 7

4f 6

5d 1

M
M

M

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

ΔI
 M

S
H

G
 / 
I M

S
H

G

403020100-10
Time delay (ps)

300020001000

Eu1-xGdxO (Gd: 2.65%)
 
 

                    T = 77 K

0

3210-1

4f 7

Figure 5. (a) Time evolution of the photoinduced change of the MSHG intensity normalized by the
value before optical excitation, ∆IMSHG/IMSHG at 77 K for EuO doped with 2.65% Gd. The excitation
density of the pump pulse is ∼380 µJ/cm2. The inset shows a magnified view of the ultrafast increase
of the MSHG signal. Solid lines are guides to the eyes. (b) Schematics of ultrafast alignment of localized
4 f 7 spins by resonant 4 f –5d photoexcitation and subsequent demagnetization processes.

The ensuing decrease of MSHG intensity on the ns timescale is associated with the
demagnetization (∆M < 0) by the heating of the spin system through the transfer of the optical
excitation energy from the electron system to the lattice and the spins (right panel in Figure 5b).
The observed slow relaxation is consistent with the empirical thermal demagnetization time [53]
inferred from the magnetocrystalline anisotropy constant of EuO [54], and the decrease of the MSHG
intensity is consistent with the laser-pulse heating calculated from the absorption coefficient and the
heat capacity of EuO [55].
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3.3.2. Carrier-Density-Dependent Ultrafast Spin Dynamics

Having interpreted a microscopic model of photoinduced spin dynamics at a relatively high
temperature, the question now is how much the magnitude of the magnetic interaction has changed by
the photoexcitation and how is the relationship between the spin dynamics and the carrier density nc.
To simplify this investigation, the corresponding dynamics were measured at 10 K where the magnetic
moment is fully saturated at 7 µB per Eu2+ ion. Hence, referring to relation (3), the nonthermal changes
of the MSHG intensity is associated to the changes of Jex.

Figure 6 shows the time evolution of the photoinduced changes of the MSHG intensity at 10 K for
Gd concentrations between 0.013% and 19.5%. The excitation density of the pump pulse is∼130 µJ/cm2

for all traces, which roughly corresponds to ∆nc ∼ 1× 1019 cm−3 carriers excited by photoexcitation.
A common behavior observed for all samples is the decreasing MSHG intensity on a ns timescale.
As mentioned above, this is caused by the thermal destabilization of the magnetic order mediated
by the spin-lattice relaxation. A prolonged positive signal (∆IMSHG/IMSHG > 0), especially observed
for x = 0.25%, is related to the stability of photoenhanced ferromagnetic state, as described below.
The MSHG response on the ps timescale strongly depends on the Gd concentration. At the lowest
doping (x = 0.013%), an ultrafast increase of the MSHG signal is observed. It nicely confirms that our
nonlinear magneto-optical probe reflects a variation of Jex rather than that of the already saturated
magnetization. By increasing the Gd concentration, the magnitude of this initial increase becomes
progressively more pronounced and reaches a maximum near x = 0.25%. Higher Gd doping reduces
the magnitude of the initial enhancement, and at x > 5% an ultrafast decrease of the MSHG signal
is observed.
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Figure 6. Change of the MSHG intensity at 10 K in Eu1−xGdxO as a function of time delay and Gd
concentration (0.013% ≤ x ≤ 19.5%). The excitation density of the pump pulse is ∼130 µJ/cm2 for all
traces, which creates a photo-carrier density ∆nc ∼ 1× 1019 cm−3. The inset shows a magnified view
of the ultrafast increase and decrease of the MSHG intensity for x = 0.64% and x = 9.63%.

In order to illustrate this behavior, in Figure 7a the pump-induced change of the MSHG intensity
∆IMSHG/IMSHG at the fixed time delay ∆t = 3 ps is plotted as a function of Gd-dependent carrier
density nc. Here, nc has been derived for each Gd concentration x from the relation displayed in the
inset of Figure 3b. When the photoinduced change in the magnetization M is neglected, the relationship
of ∆IMSHG/IMSHG = 2∆Jex/Jex is established from the relation (3). To obtain insight into this relation,
it should be clarified how the photoinduced population of the 5d/6s band affects Jex. Figure 7b
shows ∆Jex/Jex obtained by increasing the equilibrium carrier density nc of the 5d/6s band by a fixed
value ∆nc ∼ 1× 1019 cm−3 which represents the photo-carrier density injected by the pump pulse
in this experiment. The relation between ∆Jex/Jex and ∆nc was derived by the relation between TC

and nc in Figure 3b, assuming that Jex is simply proportional to TC (∆Jex/Jex = ∆TC/TC). For low
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values of nc, ∆nc simply set the net carrier density to 1 × 1019 cm−3 which results in a constant
shift of ∆Jex. For high values of nc the increase of the net carrier density by ∆nc is negligible, and
so is ∆Jex. A pronounced change is observed at nc ∼ 1× 1019 cm−3, where the magnitude of the
exchange interaction is very sensitive to the change in the carrier density (Figure 3b). Figure 7b
reveals that the enhancement of Jex exceeds an impressive 10% in this region and well reproduces the
experimental results for nc - 1020 cm−3, and thus the characteristic increase of the MSHG intensity in
Figure 7a is closely related to the increase in the exchange interaction Jex caused by the introduction of
photoexcited carriers.
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Figure 7. Optical tuning of the exchange interaction Jex in carrier-density-controlled ferromagnetic
semiconductor Eu1−xGdxO. (a) Relation between nc and the photoinduced change of the MSGH
intensity at ∆t = 3 ps and at 10 K, extracted from the experiments in Figure 6. (b) Calculated result
of ∆Jex/Jex by adding a photoinduced carrier density ∆nc = 1× 1019 cm−3 to the Gd-dependent
carrier density nc of the conduction band. Here, ∆Jex/Jex was calculated using the curve in Figure 3b,
assuming that Jex is simply proportional to TC (∆Jex/Jex = ∆TC/TC ). (c) Theoretical calculation of
∆Jex/Jex based on the modification of the RKKY interaction by the photoinduced non-equilibrium
population of the 5d/6s conduction band.

4. Discussion

The observed carrier-density-dependent ultrafast spin dynamics can be explained more
qualitatively as follows. In the low-doped Eu1−xGdxO the carrier thermalization time is much longer
than the one in dense itinerant ferromagnets like Ni or Gd. Charge thermalization is slow because
it occurs by electron–electron scattering, the rate of which is proportional to carrier concentration.
In low-doped Eu1−xGdxO, the carrier concentration is by a factor of about 100 lower than that in
pure Gd. The carrier thermalization time in pure Gd equals 50–100 fs [56]. With this, the factor
of 100 leads to a prolonged carrier thermalization time of low-doped Eu1−xGdxO of 5–10 ps. It is
therefore concluded that the dynamics for the first few ps is dominated by a non-equilibrium charge
carrier distribution, that is, the three-temperature model (3TM) [57], where the coupled electron, spin
and lattice subsystems are each assumed to be in equilibrium at their respective temperatures, is not
applicable. Hence, for the first few ps after the photoexcitation, the 4 f electron population, which
is photoexcited into the state with 5d electron character, contributes to a stronger magnetic coupling
between the Eu 4 f spins. This coupling mechanism is in agreement with the experimental observations
on the low-doped samples.

On the other hand, as shown in Figure 7b, it does not explain the photoinduced decrease of the
MSHG intensity in the region where the carrier density is sufficiently high ( nc ∼ 1× 1021 cm−3).
In the picture of the 3TM, the optical pump pulse would, in addition to exciting the localized 4 f
electrons and creating the 4 f 65d

(
t2g

)
magnetic excitons, lead to the excitation of the chemically

doped carriers in the 5d/6s conduction band and to their thermalization at the elevated temperature
corresponding to the deposited energy. This would invariably reduce Jex since the ferromagnetic
coupling with electrons in the energetically higher band states becomes weaker because of their
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increased wavenumber. Furthermore, the increased temperature would directly contribute to
the demagnetization.

As shown in Ref. [52], an increase in the carrier density in the conduction band by chemical
or photo-doping strengthens its interaction with the Gd impurity band. This entails an energetic
downshift of the conduction band toward the Gd impurity band and, hence, a reduction of the 4 f –5d/6s
gap energy. This shift affects the 4 f –4 f RKKY exchange. Using the many-body renormalization theory
introduced in Ref. [52], the RKKY-like coupling for the non-equilibrium electron distribution was
calculated. The resultant ∆Jex/Jex is plotted in Figure 7c as a function of the carrier density nc.
According to the theory, the non-monotonic behaviors in Figure 7a,c can be understood as follows.
The density of photoexcited carriers is proportional to the spectral density at the energy }ωpump− Egap

addressed by the photoexcitation. Therefore, as Egap is reduced with increasing Gd doping and, thus,
increasing nc, more states can be populated with photoexcited carriers. The enhanced density of excited
carriers contributes to the increase of ∆Jex/Jex with nc. In contrast, for nc > 1020 cm−3, ∆Jex/Jex and
∆IMSHG/IMSHG get quenched to negative values for two reasons. First, with further downward shift
of the conduction band the energy mismatch }ωpump − Egap, and with it the wavenumber of the
photoexcited carriers, increases further. Thus, because of the oscillating dependence of the RKKY
coupling on the wavenumber, Jex turns over towards weaker ferromagnetic coupling. Second, with
the increasingly metallic nature, the electron–electron scattering time gets reduced, leading to ultrafast
thermalization and concomitant magnetization quenching, that is, conventional demagnetization
according to the 3TM begins to dominate. This is nicely reflected by the change of the build-up time
from ∼3 ps (manifestation of RKKY interaction) to ∼100 fs (thermalization according to the 3TM) in
the inset of Figure 6.

Finally, I will show the continuous tuning of the exchange interaction is possible by changing
the excitation density of the pump pulse. Figure 8a shows the excitation density dependence of the
change of the MSHG intensity at ∆t = 3 ps and at 10 K for selected Gd concentrations. Apart from the
result for x = 10.2%, where the decrease of ∆IMSHG/IMSHG due to the ultrafast demagnetization is
observed, the overall tendencies are roughly consistent with those of ∆Jex/Jex plotted in Figure 8b as a
function of the additional carrier density ∆nc. Here, the ∆nc dependence of ∆Jex/Jex was calculated by
increasing the equilibrium carrier density nc of the 5d/6s band for each Gd concentration. The largest
enhancement of ∆Jex/Jex is seen for x = 0.25% because Jex is very sensitive to the change of nc in this
doping region. This result corroborates the above discussion and provides a possibility to control the
exchange interaction on the sub-ps timescale in a well-controlled way.
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Figure 8. Continuous optical tuning of the exchange interaction Jex in ferromagnetic semiconductor
Eu1−xGdxO. (a) Excitation density dependence of the change of the MSHG intensity at ∆t = 3 ps and
at 10 K for selected Gd concentrations. Solid lines are guides to the eyes. (b) Calculated result of the
∆nc dependence of ∆Jex/Jex. Here, ∆Jex/Jex was calculated using the curve in Figure 3b, assuming
that Jex is simply proportional to TC (∆Jex/Jex = ∆TC/TC).
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5. Conclusions

In this review paper, I showed that ultrafast magnetic coupling dynamics can be tuned from
photoinduced enhancement to photoinduced quenching of ferromagnetic order in carrier-density-
controlled ferromagnetic semiconductor Eu1−xGdxO. The largest enhancement of the ferromagnetic
order and the crossover to quenching were observed around nc ∼ 1019 cm−3 and ∼1020 cm−3,
respectively. These behaviors are explained by a non-equilibrium theory that extends beyond the
established 3TM. In contrast to systems with a high carrier concentration like transition-metal,
rare-earth or certain diluted-magnetic-semiconductor ferromagnets, the sub-ps carrier dynamics
in low-doped Eu1−xGdxO is far from equilibrium due to a substantially longer electron thermalization
time. Our experimental results and their theoretical modelling not only demonstrate how to control the
stability of a ferromagnetic state on the ultrafast timescale, but also give a guide to the material selection
and design for the dynamical optical control of magnetic interactions: systems with a low density of
conduction band carriers (which is tunable) but with a high density of magnetic moments (unlike, for
example, in diluted magnetic semiconductors) are favorable candidates. Further advances in both
experimental and theoretical fields will provide a bright future for ultrafast spintronics applications.
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