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Abstract

:

This article starts with an introductory survey of previous work on breaking and restoring the electronic structure symmetry of atoms and molecules by means of two laser pulses. Accordingly, the first pulse breaks the symmetry of the system in its ground state with irreducible representation IRREPg by exciting it to a superposition of the ground state and an excited state with different IRREPe. The superposition state is non-stationary, representing charge migration with period T in the sub- to few femtosecond time domains. The second pulse stops charge migration and restores symmetry by de-exciting the superposition state back to the ground state. Here, we present a new strategy for symmetry restoration: The second laser pulse excites the superposition state to the excited state, which has the same symmetry as the ground state, but different IRREPe. The success depends on perfect time delay between the laser pulses, with precision of few attoseconds. The new strategy is demonstrated by quantum dynamics simulation for an oriented model system, benzene.
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1. Introduction


It is nowadays well established that a laser pulse can break the electronic structure symmetry of atoms or molecules (as in Refs. [1,2,3,4,5,6,7]), a process that it often followed by charge migration (as in Refs. [8,9,10,11,12,13,14,15,16,17,18]). Recently, we showed that one can employ a well-designed second laser pulse that restores the symmetry of the electronic structure after application of a first symmetry-breaking pulse [19,20,21]. In the molecular case, by “symmetry” we mean the molecular point group, e.g., D6h for benzene, or in general the group of all symmetry operations such as rotations, reflections, and inversions that map the initial electronic eigenfunction (or a set of degenerate eigenfunctions) on itself, with the characteristic phase factors that are called “characters”. The characters determine the irreducible representations (IRREP) for the given symmetry, e.g., benzene has IRREPg=A1g and various other IRREPe (e.g., E1u) in the electronic ground and excited states, respectively. Symmetry breaking means that the first laser pulse distorts the electronic wave function such that it can no longer be assigned to the original symmetry group. For example, in the case of benzene, the distorted electronic wave function can no longer be assigned to D6h symmetry. Likewise, symmetry restoration means that the second pulse re-shapes the wave function such that it can be re-assigned to the original symmetry group, irrespective of any possible changes of the IRREP. For example, in the case of benzene, symmetry restoration of electronic structure means that the electronic wave function can be re-assigned to D6h symmetry.



For reference, we use the next paragraph of this Introduction to explain our previous approaches to electronic structure symmetry breaking and symmetry restoration. This long paragraph also serves to introduce some important terminology that is employed in the rest of the paper. The following paragraph points to some related previous work. The remaining paragraphs define the goal of this paper, namely to develop a new strategy for breaking and restoring electronic structure symmetry.



The previous approaches to breaking and restoring electronic structure symmetry by two laser pulses have been demonstrated for two model systems, the 87Rb atom [19] and the oriented benzene molecule [19,20,21]. To achieve this goal, we designed two laser pulses centered at tb<0 and at tr=−tb>0, respectively. The time delay td=tr−tb between the pulses was chosen sufficiently long, and their durations sufficiently short such that, at the “central” time tc=(tb+tr)/2=0, the systems evolve in quasi-field-free environment.



At the same time, td must be chosen short enough such that effects of decoherence (e.g., due to nuclear motions [13,14,22]) are negligible. Specifically, the coherence time of benzene exceeds ten femtosecond [13,14]; we note in passing that this is significantly longer than for the benzene cation where it lasts for just a few femtoseconds [23]. This allows using the model of fixed nuclei to describe the laser induced electron dynamics. In our simulations, the nuclei of benzene were fixed at the global minimum structure of the electronic ground state with D6h symmetry, adapted from Refs. [17,24,25,26]. Initially, at time ti≪tb, the systems were in their highly symmetric electronic ground states, S0(3) and D6h for 87Rb and benzene, respectively. The first laser pulse then broke symmetry by partial population transfer from the ground state with initial irreducible representation IRREPg(=D(0) and A1g, respectively) to an excited state with different IRREPe≠IRREPg (specifically, IRREPe=D(2) and E1u, respectively). This created a superposition of the electronic ground and excited states that cannot be assigned to any IRREP (e.g., neither to IRREPg nor to IRREPe) of the original symmetry groups (S0(3) and D6h, respectively), but only to one of their subgroups. For example, the electronic structure of the 87Rb atom in the superposition state was anisotropic [19], and the electronic wave function of the superposition state of benzene had Cs [19,21] or C2v [20] symmetry, different from the initial isotropic S0(3) or D6h symmetries, respectively. Since the superposition state is not an eigenstate, it is of course non-stationary. Since the nuclear wave functions that are associated with the electronic ground and excited states overlap, the non-stationary superposition state represents charge migration in the applications of Refs. [19,20,21]. The period T=h/ΔE of charge migration depends on the energy gap ΔE=Ee−Eg between the levels Eg and Ee of the electronic ground and excited states. Typical values of ΔE are in the domain of several eV. The periods T of charge migration are, therefore, in the time domain from sub-fs to several fs. Specifically, for our applications to 87Rb and benzene, T=0.992 fs and 0.504 fs, respectively. The second laser pulse de-excited the superposition state back to the ground state [19,20]. Consequently, charge migration was stopped, and finally (at time tf=−ti) the systems were back to their initial symmetry groups—specifically, they were back to S0(3) and D6h, respectively. Moreover, the previous approaches [19,20] also re-establish the original IRREPg(=D(0) and A1g, respectively). Successful applications depended on two conditions: (i) The second laser pulse was designed as a circularly polarized copy [19], or as time-reversed linearly polarized copy [20] of the first pulse for symmetry breaking. By “copies” we imply that the two laser pulses must have the same, or time-reversed properties. For example, they have the same carrier frequencies ωb=ωr, the same maximum field strengths ϵb=ϵr and corresponding maximum intensities Ib=0.5ε0c0ϵb2=Ir (where ε0 and c0 denote the permittivity and speed of light in vacuo), the same ( e.g., Gaussian) shape functions with the same parameters for the durations τb=τr, the same carrier envelope phases ηb=ηr (usually set equal to zero), etc. (ii) The time delay td had to be chosen “perfectly” such that at the central time tc=0, the two components of the superposition states had the same or opposite phases. If this condition is not satisfied, i.e., if the second pulse is centered at tr′=tr+t′ with time t′ added to the “perfect” time tr, then at the final time tf′=tf+t′, the systems are left in the asymmetric superposition state, with non-zero populations Pg(tf′) and Pe(tf′)=1−Pg(tf′) of the two components for the ground and excited states. An important analytical result is [19,20]


Pe(tf′)=4Pg(tc)Pe(tc)12−12cos2πt′T,



(1)




where Pg(tc) and Pe(tc) are the populations of the ground and excited states at the central time, tc=0. Symmetry restoration in the ground state requires that Pg(tf′)=1 and Pe(tf′)=0. Obviously, Condition (ii) is satisfied if and only if t′=0 or t′=T,2T,3T, etc. In practice, one may allow small deviations from this ideal requirement, by the order of few percents of the period T. In the applications to 87Rb and benzene (where T=0.992 fs and 0.504 fs, respectively, see above), Condition (ii) thus requires “perfect” time delays, with precision of a few attoseconds. In Ref. [19], we developed robust numerical techniques for quantum dynamics simulations that fulfill this condition, with applications to the two model systems. The experimental feasibility is also presented in Ref. [19], by means of high-contrast Ramsey interferometry of the 87Rb atom.



In retrospect, one can find rather early examples in the literature of works involving electronic structure symmetry breaking and restoration, in particular in early work on Ramsey fringes [27,28], but the authors did not discuss the phenomenon. A more recent example comes from high harmonic generation (HHG). According to Corkum’s “simple man’s three step mechanism” [29], an atom or a molecule in the electronic ground state is first ionized by an intensive ultrashort laser pulse. In the second step, the same laser pulse accelerates the electron that was ejected in the first step, first by driving it away and then back to the ion. In the third step, the electron re-collides with the ion in a highly excited electronic state that decays back to the electronic ground state by spontaneous emission of HHG, see, e.g., Refs. [29,30,31,32,33]. In retrospective, this correspond to a kind of spontaneous symmetry restoration, although it was never recognized as such. The example of HHG is rewarding because it shows that restoration of electronic structure symmetry can be exploited for useful application. Laser control of electronic symmetry may also be used for chemical reactions [34,35,36,37] and for charge migration [10,17]. The efficiency of electronic symmetry restoration in HHG is rather low, however, because the probabilities of re-collision and spontaneous emission in the third step are rather small. Here, we aim at designing laser pulses that achieve close to 100% restoration of electronic structure symmetry. In a general perspective, the present development may thus be considered as contribution to quantum control [38,39,40].



The goal of this article is to develop a new strategy for restoration of electronic structure symmetry by means of the second laser pulse, after symmetry has been broken by a first pulse. For convenience, we employ the same mechanism of symmetry breaking by the first laser pulse as previously [19,20,21], namely by exciting the system from its electronic ground state to a superposition of the ground state and an excited state with IRREPe different from IRREPg. The purpose and the mechanism of the second laser pulse is, however, quite different from the previous de-excitation of the superposition state back to the ground state [19,20]: It excites the component of the ground state in the superposition state to the excited state, which means it prepares the excited state as a pure eigenstate with the same electronic symmetry as the original one. Its IRREPe is, however, different from the original IRREPg (e.g., in the case of benzene with symmetry D6h, the excited target state may have IRREPe=E1u, which is different from IRREPg=A1g). A special case of this strategy is already presented in Ref. [21]. There, the discovery is motivated by Equation (1), which yields Pe(tf′)=1 if Pg(tc)=Pe(tc)=0.5 and t′=T/2 or 3T/2,5T/2, etc. (Note that the work in Ref. [21] employs alternative definitions of time delays.) The requirement of equal populations Pg(tc)=Pe(tc)=0.5 called for the special design of the first laser pulse as so-called π/2 laser pulse [41]—in Ref. [21], this is a circularly polarized π/2 pulse as in Ref. [11,17]. Our new theory removes this restriction, i.e., symmetry may be broken by arbitrary first laser pulses, and, in any case, the second laser pulse is tailored such that it restores electronic structure symmetry in the excited eigenstate with IRREPe. The new approach was exemplified by quantum dynamic simulation for the oriented model benzene. We show that the new strategy requires different laser pulses for symmetry breaking and restoration, i.e., they are no longer (time-reversed) copies of each other, but they still require “perfect” time delays with attosecond precision.



Section 2 presents the model, the concept, the basic and extended theory and the methods. The results and discussions are in Section 3. The conclusions are in Section 4.




2. Model, Concept, Theory and Methods


This section is divided into three parts. In the first subsection, we introduce the model and present some general aspects of the theory, together with the necessary details of the theory for symmetry breaking by a laser pulse. This part mostly builds upon and is quite similar to the theory published in our previous work (see Section 1)—we call it the “basic” theory. It is included here for self-containment of this article. The second subsection describes the new strategy for breaking the symmetry of the electronic structure of the electronic ground state and for restoring it in an excited state with different IRREPe≠IRREPg. The third subsection presents the theory for the new strategy—we call it the “extended” theory.



2.1. Model and Basic Theory


Our model assumes that all nuclei are fixed at the global minimum structures of the molecules in the electronic ground state, as in the previous approaches (cf. Section 1). We consider the scenario of an oriented molecule with its center of mass at the origin of the laboratory frame. This frame has a right-handed Cartesian set of unit vectors e→x,e→y,e→z which are determined by the laser pulses. For example, in the present application to benzene, the laser pulses propagate along e→z with perpendicular circular polarizations that yield maximum field strength of the first laser pulse along e→x at time tb. The benzene molecule is oriented in the xy-plane of the laboratory frame, with two carbon nuclei on the y-axis, as in Refs. [17,24,25,26]. The laser carrier frequencies ωb=2πνb and ωr=2πνr correspond to wavelengths λb=c0/νb and λr=c0/νr, respectively, that are much longer than the molecular sizes. In the molecular domain that is of interest here, the electric fields of the laser pulses be considered as homogeneous.



The model Hamiltonian of the molecule interacting with the laser pulses is


H(t)=He−d→·ϵ→(t),



(2)




where


He=Te+Vc



(3)




is the electronic Hamiltonian that accounts for the kinetic energies Te of the electrons and for their intramolecular Coulomb interactions Vc with all particles (electrons and fixed nuclei). The scalar product d→·ϵ→(t) represents the semiclassical interaction of the electric dipole operator d→ and the electric field ϵ(t) of the two laser pulses that break and restore electronic structure symmetry.



The electronic eigenfunctions |Ψk⟩ and their energies Ek are calculated as solutions of the time-independent Schrödinger equation (TISE)


He|Ψk⟩=Ek|Ψk⟩.



(4)







The labels k denote sets of quantum numbers, which include the IRREPs. Specifically, k=g and k=e denote the electronic ground state (IRREPg) and the specific excited state (IRREPe) that constitute the superposition state which is prepared by the first laser pulse,


|Ψ(tc)⟩=cg(tc)|Ψg⟩+ce(tc)|Ψe⟩



(5)




with coefficients cg(tc) and ce(tc) at the central time tc=0 between the two laser pulses. The new strategy uses the second laser pulse to excite this superposition (Equation (5)) to the final state


|Ψ(tf)⟩=eiηef|Ψe⟩



(6)




with irrelevant phase factor eiηef for the phase ηef≡ηe(tf) of the excited state at t=tf. Preparation of the final state (Equation (6)) restores the original point group of the initial (t=ti) ground electronic state


|Ψ(ti)⟩=|Ψg⟩.



(7)







The inherent two-state scenario that leads from the initial ground state (Equation (7)) via the superposition state (Equation (5)) to the excited target state (Equation (6)) is justified in the beginning of Section 2.3. The laser driven electronic wave function |Ψ(t)⟩ is calculated as solution of the time dependent Schrödinger equation (TDSE)


iℏ∂∂t|Ψ(t)⟩=H(t)|Ψ(t)⟩



(8)




subject to the initial condition in Equation (7). Expanding the wave function |Ψ(t)⟩ in terms of a finite set of the eigenfunctions


|Ψ(t)⟩=∑kck(t)|Ψk⟩



(9)




yields the algebraic version of the TDSE


iℏddtc(t)=H(t)c(t),



(10)




with vector c(t) of the coefficients ck(t) and corresponding initial condition


ck(ti)=δgk,



(11)




where δgk denotes the Kronecker delta. The coefficients are in general complex-valued; they can be written as


ck(t)=Ck(t)eiηk(t)



(12)




with real valued amplitudes Ck(t) and phases ηk(t). The matrix elements of the Hamilton matrix H(t) are


Hkl(t)=⟨Ψk|H(t)|Ψl⟩=Ekδkl−d→kl·ϵ→(t)



(13)




with k→l transition dipole matrix element d→kl=⟨Ψk|d→|Ψl⟩. In the case of benzene, the diagonal matrix elements vanish, d→kk=0, for symmetry reasons.



The absolute squares of the coefficients ck(t) yield the populations, or the probabilities of occupying the eigenstate labeled k in the superposition (Equation (9)) at time t,


Pk(t)=|ck(t)|2=Ck2(t).



(14)







These probabilities are normalized,


∑kPk(t)=1.



(15)







In particular, the initial electronic ground state (Equation (7)) implies that Pk(ti)=δgk (cf. Equation (11)). The populations of the ground and excited states in the superposition (Equation (5)) at time tc after the first laser pulse are


Pg(tc)=|cg(tc)|2,Pe(tc)=|ce(tc)|2,



(16)




whereas all other coefficients and probabilities are equal to zero at time tc. The normalization in Equation (15) implies that the coefficients at time tc can be parameterized as


cg(tc)=cosα·eiηg(tc),ce(tc)=sinα·eiηe(tc).



(17)







The final populations are


Pk(tf)=δek



(18)




in accord with Equation (6).



The formal solution of the TDSE (Equation (10)) with the initial condition in Equation (11) is


c(t)=U(t,ti)c(ti)=T^e−i∫titdt′H(t′)/ℏc(ti),



(19)




where U(t,ti) is the matrix representation of the unitary operator for propagating the electronic wave function |Ψ(t)⟩ from the initial time ti to t, and T^ is the time-ordering operator. In practice, the algebraic TDSE (Equation (10)) is propagated numerically, using the methods which have been developed in Ref. [19]. The coefficients at the central and final times, i.e., after the first and second laser pulses are thus


c(tc)=U(tc,ti)c(ti),



(20)






c(tf)=U(tf,ti)c(ti)=Ur(tf,tc)Ub(tc,ti)c(ti).



(21)




In the second part of Equation (21), we have separated the evolution operator U(tf,ti) into two parts for symmetry breaking and restoration by the first and second laser pulses,


U(tf,ti)=Ur(tf,tc)Ub(tc,ti)



(22)




where


Ub(tc,ti)=U(tc,ti)



(23)




and


Ur(tf,tc)=T^e−i∫tctfdt′H(t′)/ℏ.



(24)







If the time delay between the two laser pulses is prolonged by additional time t′ for quasi-field-free evolution, as discussed for Equation (1), we obtain by using the Schrödinger picture


U(tf′,ti)=Ur(tf′,t′)Uf(t′,tc)Ub(tc,ti)=Ur(tf,tc)Uf(t′,tc)Ub(tc,ti)



(25)




where tf′=tf+t′, and Uf(t′,tc) is the propagator for the free evolution. It is diagonal, with matrix elements [19,20]


Uf(t′,tc)kl=e−iEkt′/ℏδkl.



(26)







In the second part of Equation (25), we exploit the fact that the effect of the second laser pulse with additional time delay t′−tc during the time-shifted period from t′ to tf′ is the same as the effect of the original second laser pulse without additional time delay during the period from tc to tf.



We close this subsection by stating some general results for the matrix representation of the evolution operator for symmetry breaking. The laser pulse for symmetry breaking transforms the initial state (Equation (7)) to the superposition (Equation (5)) of the ground (g) and excited (e) states. Let us list the molecular eigenstates in the order g,e,e′,e″... The corresponding order of the coefficients is c(t)=(cg(t),ce(t),ce′(t),ce″(t),…)⊺. Then, Ub(tc,ti) takes block diagonal form


Ub(tc,ti)=Ubge(tc,ti)00Ubnge(tc,ti)



(27)




where


Ubge(tc,ti)=cosα·eiηg(tc)−sinα·e−iηg(tc)sinα·eiηe(tc)cosα·e−iηe(tc)



(28)




is the 2×2 block matrix for propagating states g and e from initial time ti to tc, and Ubnge(tc,ti) is the block matrix for propagating all other (“non-ge”) states. The first column of Ubge(tc,ti) is imposed by Equation (17), while the second column is a consequence of the unitarity of Ubge(tc,ti). The form of Ubnge(tc,ti) is irrelevant for the present application because the first laser pulse does not transfer population from the initial ground state to any other excited states e′,e″,… at the central time tc.




2.2. Conceptual Background for the New Symmetry Restoration Strategy


After the first laser pulse has broken the symmetry of the initial electronic ground state (Equation (7)) by exciting it to the superposition state (Equation (5)), our new strategy suggests that the second laser pulse should restore symmetry by transferring the superposition state (Equation (5)) to the excited state (Equation (6)). The net result of the combined first and second laser pulses is thus to excite the ground state (Equation (7)) to the target state (Equation (6)). It is well known that complete population transfer can be achieved by a resonant π-pulse [41,42]. This suggests the concept which can be written symbolically as


firstlaserpulse+secondlaserpulse=resonantπ−pulse.



(29)







Equation (29) should be read as condition for the second laser pulse: It should be designed such that the sum of the two pulses is a resonant π-pulse. This condition holds irrespective of the polarizations of the laser pulses, i.e., they may be linearly x- or y-polarized, or circularly right (+) or left (−) polarized. The expressions for linearly [41] and circularly [42] polarized resonant π-pulses are similar. They all have in common that the x- and/or y-components of the electric field of the pulse that propagates along e→z are written as amplitude ϵ0 ( = the maximum field strength) times a shape function s(t) (where maxs(t)=1), times cosinusoidal or sinusoidal functions cosω(t−tref)+ηCEP or sinω(t−tref)+ηCEP where ω is the carrier frequency, tref is a reference time, and ηCEP is the carrier envelope phase (CEP); additional information on the consequences of different laser polarizations is provided at the end of this subsection. The resonance condition means that the photon energy ℏω matches the energy gap between the levels of the excited and ground states,


ℏω=Ee−Eg=h/T.



(30)







Here, we must emphasize that the reference time and the CEP of resonant π-pulses are time-independent,


tref=const,ηCEP=const.



(31)







That means that the first and second laser pulses in Equation (29) must have the same reference time and the same CEP. Mathematical formulations of the two conditions in Equations (29) and (31) are worked out below.



There are various ways of realizing the conditions in Equations (29) and (31). Below, we demonstrate a rather simple example that serves as proof-of-principle, and also as a reference for extensions of the present approach. Specifically, we consider the case of circularly right (+) polarized laser pulses with


tref=tb,ηCEP=0.



(32)







For our proof-of-principle, the second laser pulse is designed such that its electric field at maximum intensity points along e→x, just like the first laser pulse. We show below that the condition in Equation (32) is then equivalent to the requirement


td=tr−tb=NT,N=1,2,3,…



(33)




or


tr=−tb=NT/2,N=1,2,3,….



(34)







This means that during the delay time td between the peaks of the laser pulses, the system undergoes an integer number N of periodic cycles of charge migration. Our specific example employs N=9 periods T between the laser pulses. We also derive an equivalent alternative condition, namely the difference between the phases of the coefficients cg(tc)=Cg(tc)eiηg(tc) and ce(tc)=Ce(tc)eiηe(tc) of the superposition state, Equations (5), (12) and (17) at the central time tc=(tb+tr)/2=0 should satisfy


Δη(tc)mod2π=(ηe(tc)−ηg(tc))mod2π=−π/2ifN=1,3,5,…(odd)+π/2ifN=2,4,6,…(even).



(35)







Some important aspects of the concept are illustrated in Figure 1, with application to the oriented model benzene as an example. Initially (t=ti), the system is in its electronic ground state |Ψg⟩ with symmetry D6h and IRREPg=A1g. This is documented by the one-electron density labeled “A1g” at the bottom of Figure 1. The first circularly right (+) polarized laser pulse centered at t=tb breaks symmetry by exciting the ground state (Equation (7)) to the superposition state (Equation (5)) of the ground state and an excited state |Ψe⟩ with different IRREPe—here this is one of the lowest two degenerate excited states with IRREPe=E1u. This excitation is symbolized by the first red arrow in Figure 1. The superposition state (Equation (5)) at the central time tc is written symbolically as “A1g−iE1u” ( =A1g+e−iπ/2E1u) in Figure 1, in accord with the phase condition in Equation (35) for the case of N=9 periods T between the peaks of the laser pulses at tb and tr. The symmetry of the superposition state is Cs, a sub-group of D6h that contains nothing but the identity and the reflection at the molecular plane—all other symmetry operations of D6h are destroyed by the first laser pulse.



The superposition state (Equation (5)) represents charge migration as indicated by the two curved arrows in Figure 1. Two snapshots of the one-electron densities during charge migration are also illustrated in Figure 1—the first one corresponds to the superposition “A1g−iE1u” for the time t=tc=0 (or periodically for t=T,2T,3T, etc.), the second one is for “A1g+iE1u” at time t=T/2 (or for t=3T/2,5T/2, etc.). The second laser pulse excites the component cg(tc)|Ψg⟩ of the ground state in the superposition state (Equation (5)) to the excited state |Ψe⟩ with the same symmetry D6h as the ground state, but with different IRREPe=E1u (cf. Equation (6)); one can also say symbolically that it transforms the superposition state “A1g−iE1u” to the excited state “E1u”, as illustrated by the second red arrow in Figure 1. The target state |Ψe⟩ is illustrated by its one-electron density at the top of Figure 1. One readily recognizes its D6h symmetry—the same as for |Ψg⟩. Close inspection reveals, however, that the density of |Ψe⟩ is slightly different from the density of |Ψg⟩—this is associated with the different IRREPe≠IRREPg.



Successful preparation of the target state |Ψe⟩ depends on perfect timing of the second laser pulse, i.e., it must be centered at t=tr=−tb=NT/2, or at t=tr+T,tr+2T,tr+3T, etc., which means it must be fired precisely at tr(=9T/2 in the present application), or precisely after one, two or more full cycles of charge migration (see Equations (33) and (34)). Any other attempts to restore symmetry during non-integer multiples of the period T of charge migration are useless. Such unsuccessful attempts are indicated by the arrows that are crossed out in Figure 1.



The x- and y-components of the electric fields of the laser pulses are also sketched in Figure 1, together with the products ϵbsb(t) and ϵrsr(t) of the field amplitudes times the shape functions which are modeled as Gaussians,


sb(t)=e−(t−tb)2/2τb2,sr(t)=e−(t−tr)2/2τr2.



(36)







Our “proof-of-principle” employs the same parameters for the durations,


τb=τr=τ,



(37)




but different field strength ϵb≠ϵr. More specifically, we show that, to satisfy the condition in Equation (29), the field strength of the second pulse must be larger than for the first pulse, ϵb>ϵr, as illustrated in Figure 1. Figure 1 also shows that the y-components are equal to zero at the times tb and tr of maximum intensities, i.e., at these instants, the laser pulses point along the same direction e→x.



We close this subsection by adding information about the consequences of the different polarizations of the first laser pulse for cases where the excited state in the superposition (Equation (5)) is degenerate. Here, this is explained for the example of benzene’s doubly degenerate excited state with IRREPe=E1u. As shown in Ref. [17], the laser polarization may be used as a control knob for selective excitation of specific target states |Ψex⟩≡|ΨE1ux⟩,|Ψey⟩≡|ΨE1uy⟩ or |Ψe+⟩≡|ΨE1u+⟩,|Ψe−⟩≡|ΨE1u−⟩ out of benzene’s lowest set of degenerate eigenstates with IRREPe=E1u. Specifically, linearly x- and y-polarized pulses excite |Ψg⟩ to |Ψe⟩=|Ψex⟩ and |Ψey⟩, respectively. This selectivity is due to the symmetry rules for the x- and y-components of the transition dipole matrix elements [17,24,25,26]


d≡dx,gx=⟨Ψg|dx|Ψex⟩=dy,gy=⟨Ψg|dy|Ψey⟩≠0,dx,gy=⟨Ψg|dx|Ψey⟩=dy,gx=⟨Ψg|dy|Ψex⟩=0.



(38)







Circularly right (+) or left (−) polarized laser pulses excite |Ψg⟩ to


|Ψe+⟩=12|Ψex⟩+i|Ψey⟩,



(39)




and


|Ψe−⟩=12|Ψex⟩−i|Ψey⟩,



(40)




respectively. The corresponding x- and y-components of the transition dipole matrix elements are [17]


dx,g+=⟨Ψg|dx|Ψe+⟩=d2,dx,g−=⟨Ψg|dx|Ψe−⟩=d2,dy,g+=⟨Ψg|dy|Ψe+⟩=id2,dy,g−=⟨Ψg|dy|Ψe−⟩=−id2.



(41)








2.3. Extended Theory for the New Strategy


For the “proof-of-principle”, we apply the general theory of Section 2 to the new strategy, using a specific form of the electric fields of the circularly right (+) laser pulses that break the symmetry D6h of the electronic ground state (IRREPg=A1g) of benzene, and restore it in the excited state (IRREPe=E1u). Adapting the derivations in Ref. [42] and using the conditions in Equations (32) and (33), we obtain


ϵb→(t)=ϵbx(t),ϵby(t),0=ϵbsb(t)·cosω(t−tb),sinω(t−tb),0,ϵr→(t)=ϵrx(t),ϵry(t),0=ϵrsr(t)·cosω(t−tr),sinω(t−tr),0=ϵrsr(t)·cosω(t−tb),sinω(t−tb),0.



(42)







The temporal and the spectral profiles of the intensities of the laser pulses are Gaussian,


Ib(t)=0.5cε0|ϵb(t)|2=0.5cε0ϵb2e−(t−tb)2/τ2,Ir(t)=0.5cε0|ϵr(t)|2=0.5cε0ϵr2e−(t−tr)2/τ2,



(43)






Ib(E)=0.5cε0|ϵb(E)|2=0.5cε0ϵb2e−(E−(Ee−Eg)))2τ2/ℏ2,Ir(E)=0.5cε0|ϵr(E)|2=0.5cε0ϵr2e−(E−(Ee−Eg)))2τ2/ℏ2.



(44)







The spectral profiles (Equation (44)) are shown in Figure 2, together with the levels of the lowest electronic states of benzene, and their IRREPs. These energies have been calculated by means of the CASSCF(6,6) level of quantum chemistry, with aug-cc-PVTZ basis. Apparently, the broad bandwidths of the laser pulses cover several energy levels, but the present target state is the only state with IRREPe=E1u+. All other states within the laser bandwidths have different IRREPs. The chosen circular polarizations of the present laser pulses then imply selective population transfer from the ground state (IRREPg=A1g) exclusively to the target state (IRREPe=E1u+)—this is indicated by the vertical arrow in Figure 2. All other transitions are dipole-forbidden—these are symbolized by vertical arrows that are crossed out in Figure 2.



The condition in Equation (29) for the sum of the two laser pulses then yields the electric field of the designated resonant π-pulse,


ϵπ→(t)=ϵπx(t),ϵπy(t),0=ϵbsb(t)+ϵrsr(t)·cosω(t−tb),sinω(t−tb),0.



(45)







Next, we invoke the two-state (g,e+) approximation, i.e., we assume that the laser pulses induce exclusively transitions between the ground state |Ψg⟩ and the selective excited target state |Ψe+⟩=|ΨE1u+⟩. Implicitly, this approximation makes use of the so-called rotating wave approximation (RWA) that excludes transitions from |Ψg⟩ to the degenerate excited state |Ψe−⟩=|ΨE1u−⟩. The validity of the RWA has been tested by excellent agreement of numerically accurate solutions of the TDSE (Equation (10)) with and without the RWA [19]. Moreover, the durations τ=τb=τr of the laser pulses imply sufficiently narrow widths Γ=0.5ℏ/τ that exclude dipole-allowed one-photon transitions to any other excited states. We assume that multi-photon processes such as ladder climbing to more excited states are negligible—the test of this assumption is left to future accurate model simulations. Using the two-state approximation with transition dipole matrix elements in Equation (41) for selective excitation from the ground state |Ψg⟩ to the target state |Ψe+⟩=|ΨE1u+⟩, we obtain the specific form of the 2×2 Hamilton matrix in Equation (13),


H(t)=Eg−ϵbsb(t)+ϵrsr(t)eiω(t−tb)d/2−ϵbsb(t)+ϵrsr(t)e−iω(t−tb)d/2Ee+.



(46)




The solution in Equation (19) of the TDSE (Equation (10)) with the initial condition in Equation (11) yields the coefficients [42]


cg(t)=cosdϵb∫titdt′sb(t′)+ϵr∫titdt′sr(t′)/2ℏe−iEg(t−tb)/ℏ,ce(t)=isindϵb∫titdt′sb(t′)+ϵr∫titdt′sr(t′)/2ℏe−iEe(t−tb)/ℏ=sindϵb∫titdt′sb(t′)+ϵr∫titdt′sr(t′)/2ℏe−iEe(t−tb)/ℏ+iπ/2.



(47)







In the following, we set Eg=0, for convenience. Equation (45) then simplifies to


cg(t)=cosdϵb∫titdt′sb(t′)+ϵr∫titdt′sr(t′)/2ℏ,ce(t)=isindϵb∫titdt′sb(t′)+ϵr∫titdt′sr(t′)/2ℏe−iΔE(t−tb)/ℏ=isindϵb∫titdt′sb(t′)+ϵr∫titdt′sr(t′)/2ℏe−2πi(t−tb)/T.



(48)







The new strategy aims at complete g→e population transfer by the two laser pulses, with exclusive population of the excited target state, Equation (18). Hence,


|ce(tf)|2=1



(49)




or equivalently


dϵb∫titfdt′sb(t′)+ϵr∫titfdt′sr(t′)/2ℏ=πd(ϵbτb+ϵrτr)/ℏ=πdϵπτπ/ℏ=π/2,



(50)




(cf. Equations (14) and (18)). In the first part of Equation (50), we use the result


∫−∞+∞dt′sb(t′)=2πτb∫−∞+∞dt′sr(t′)=2πτr



(51)




for Gaussian shape functions (Equation (36)) with parameters for the durations τb and τr, respectively. In the second part of Equation (50), we use the product ϵπτπ of the field amplitude times the parameter for the duration of the π-pulse that yields the same result as the combined two laser pulses, i.e., complete population transfer from |Ψg⟩ to |Ψe+⟩, with transition dipole matrix elements ⟨Ψg|dx|Ψe+⟩=d/2 and ⟨Ψg|dy|Ψe+⟩=id/2. Using Equation (50), the concept in Equation (29) can be rewritten as the constraint between the two pulses


ϵbτb+ϵrτr=ϵπτπ.



(52)







Since our proof-of-principle is for the special case of equal durations of the laser pulses (τb=τr=τπ=τ), Equation (52) simplifies to the condition


ϵb+ϵr=ϵπ.



(53)







Accordingly, if the reference field amplitude of the π-pulse is equal to ϵπ and the field amplitude of the first pulse is equal to ϵb, then the second laser pulse that restores symmetry should have the same shape and the same duration as the first pulse, and its field amplitude ϵr should “fill the gap” between ϵb and ϵπ.



As a summary, Equations (50)–(53) provide the proof-of-existence for the new strategy, i.e., if the first resonant right (+) circularly polarized laser pulse with field amplitude ϵb and with Gaussian shape function and with parameter τb for the duration breaks the electronic structure symmetry of the ground state, then one can employ the second resonant right (+) circularly polarized laser pulse with field amplitude ϵr=ϵπ−ϵb and with Gaussian shape function with the same parameter τr=τb for the duration in order to restore symmetry in the electronic excited state. The success depends on the condition in Equation (33), i.e., the time delay between the laser pulses must be equal to an integer number N of the periods T of charge migration, or on the equivalent conditions in Equations (31)–(35).



Finally, let us investigate the consequences for the new strategy if the conditions in Equations (31)–(35) are not satisfied, i.e., the second pulse is centered at tr′=tr+t′ with time delay td′=td+t′=NT+t′ due to additional quasi-field-free propagation from tc=0 to t′. For this purpose, we employ the expression (Equation (25)) of the evolution operator U(tf′,ti) in terms of the product Ur(tf′,t′)Uf(t′,tc)Ub(tc,ti) of the evolution operators for the first laser pulse, for quasi-field free evolution, and for the second laser pulse. In passing, this approach also yields an illuminating alternative proof of Equations (51)–(53). We need to determine the matrix representations of the time evolution operators Ur(tf′,t′),Uf(t′,tc) and Ub(tc,ti), or in the present two-state (g,e) approximation, the 2×2 matrices Urge(tf′,t′),Ufge(t′,tc) and Ubge(tc,ti). For this purpose, it is first helpful to determine the coefficients at the central time tc,


cg(tc)=cos12dϵb∫titcdt′sb(t′)/ℏ=cosπ2dϵbτb/ℏ,ce(tc)=isin12dϵb∫titdt′sb(t′)/ℏe−2πi(tc−tb)/T=isinπdϵbτb/ℏe−2πiN/2=isinπdϵbτb/ℏifN=2,4,6,…(even)−isinπdϵbτb/ℏifN=1,3,5,…(odd).



(54)







Gratifyingly, this is in accord with the general result, Equation (17), with parameters


α=πdϵbτbℏ



(55)




for the amplitudes, and


ηg(tc)=0,Δηe(tc)=ηe(tc)=−π/2ifN=1,3,5,…(odd)+π/2ifN=2,4,6,…(even)



(56)




for the phases and phase differences. The derivation of Equations (54)–(56) employs the conditions in Equations (33) and (34), i.e., the time delay between the two laser pulses must be equal to an integer number N times the period T for charge migration. The corresponding unitary matrix Ubge(tc,ti), Equation (28), for propagating the initial coefficients c(ti), Equation (11), to c(tc), Equation (54), is


Ubge(tc,ti)=cosα±isinα±isinαcosα.



(57)







The first column of the matrix in Equation (57) is imposed by the coefficients in Equation (54), the second column is due to the unitarity of Ubge(tc,ti). Likewise, the final coefficients ck(tf)=ce(tf)δke=eiηe(tf)δke≡eiηefδke imply the unitary matrix for propagating from ti to tf (cf. Equation (49)),


Uge(tf,ti)=eiηef0110



(58)




with irrelevant phase factor eiηef. The separation in Equation (22) of the evolution operator Uge(tf,ti) into two parts for symmetry breaking and restoration then yields the evolution operator for propagating from tc to tf,


Urge(tf,tc)=eiηef±isinαcosαcosα±isinα=±ieiηefcos(π/2−α)∓isin(π/2−α)∓isin(π/2−α)cos(π/2−α).



(59)







In the second part of Equation (59), we use the symmetry relations sinα=cos(π/2−α) and cosα=sin(π/2−α). The second part of Equation (59) for time propagation due to the second laser pulse thus takes the same form as Equation (57) for the first laser pulse, except for the different but irrelevant phase factor ±ieiηef. That means that the effect of the second laser pulse is formally equivalent to the first pulse, but the angle α must be replaced by π/2−α. Equation (52) shows that this substitution is equivalent to replacing ϵbτb by ϵπτπ−ϵrτr or, if one uses the same parameters for the laser durations, τb=τπ=τr then it is equivalent to replacing ϵb by ϵπ−ϵr. As anticipated, this requirement is equivalent to Equations (52) and (53).



Now, let us add the evolution operator for quasi-field-free evolution during the additional time from tc=0 to t′ between the laser pulses (cf. Equations (25) and (26)),


Ufge(t′,tc)=100e−iΔEt′/h=100e−2πit′/T≡100eiη′.



(60)







The modified final coefficients at time tf′=tf+t′ are then obtained as


cg(tf′)ce(tf′)=Urge(tf′,t′)Ufge(t′,tc)Ubge(tc,ti)10=±icosαsinα(1+eiη′)eiηef(cos2α+sin2α·eiη′)eiηef.



(61)







The modified final populations are


Pe(tf′)=|ce(tf′)|2=cos2α+sin2α·eiη′·cos2α+sin2α·e−iη′=1−2cos2αsin2α(1−cosη′)=1−2Pg(tc)Pe(tc)[1−cos(2πt′/T)].



(62)







Accordingly, the goal of symmetry restoration in the target excited state with population Pe(tf′)=1 is obtained at delay times td=tr−tb=NT between the laser pulses that correspond to integer numbers of periods of charge migration, or at delay times td′=td+t′ that are prolongated by or additional full periods T,2T,3T, etc. In all other cases where t′≠T,2T,3T, etc., the final population Pe(tf′) is less than 1, that means the final state remains a superposition of the ground and excited states with different IRREPg and IRREPe, i.e., the second pulse was unable to restore electronic structure symmetry, as illustrated in Figure 1.





3. Results and Discussions


This section has two parts. First, we apply the theory of Section 2 to demonstrate successful quantum control of breaking and restoring the D6h symmetry of the electronic structure of the model benzene in its electronic ground and excited states with different IRREPsA1g and E1u. This part consists of three steps: (i) the symmetry breaking by a circularly right (+) polarized laser pulse and the resulting periodic charge migration; (ii) the design of the laser pulse for symmetry restoration; and (iii) the quantum dynamics simulation of the laser driven symmetry restoration. The purpose of this first part is to provide a proof-of-principle of the new strategy that has been developed in Section 2, for the example of the model benzene. The second part presents an in-depth-investigation of the condition in Equation (33) for the time delay between the two laser pulses, td=NT, i.e., the time delay must be equal to an integer number of period T of charge migration. We show that this condition must be satisfied with precision of a few attoseconds. The results for both parts are documented in Figure 3. The layout of Figure 3 is the same as corresponding figures in Refs. [19,20,21], but the results are of course entirely different, i.e., Figure 3 documents a new mechanism of symmetry restoration, different from those of Refs. [19,20,21]. The values of the parameters of the laser pulses that are applied for the proof-of-principle are listed in the caption of Figure 3.



3.1. The Proof-of-Principle for Quantum Control of Symmetry Breaking and Restoration of Molecules in Electronic Ground and Excited States with Different IRREPs


Our proof-of-principle uses the concept and theory that are developed in Section 2, with application to the model benzene as described in Section 1 and Section 2. The proof consists of three steps that implement various results of Section 2. The presentation below documents the key results in a straightforward manner, with references to several key expressions, but without repetition of the derivation. The reader is expected to be familiar with the context developed in Section 2.



Step (i): The electronic structure of benzene in its initial ground state (IRREPg=A1g) is illustrated by a contour plot of its one-electron density in the molecular plane in Figure 3e. One readily recognizes its D6h symmetry.



The x- and y-components and the envelope of the electric field of the first circularly right (+) polarized laser pulse (Equation (42)) that breaks the D6h symmetry are shown in the left of Figure 3a. This pulse is centered at tb=−4.5T=−2.267 fs. Its parameters are chosen rather arbitrarily, within the frame of the general rules explained in Section 1 and Section 2. The pulse thus serves as “general” example, quite different from the special π/2 pulse that has been employed in Ref. [21]. Consequently, its effect of symmetry breaking and launching charge migration should also be considered as “general”, providing a “generic example” for the challenge of designing a second laser pulse that stops charge migration and restores symmetry. In other words, the present example lends itself for a rather general proof-of-principle.



The first laser pulse breaks D6h symmetry by preparing the superposition (Equation (5)) of the electronic ground and excited states with IRREPsA1g and E1u, here with probabilities Pg(tc=0)=0.7 and Pe(tc=0)=0.3 at central time tc=0 (cf. Equation (16)). The laser-induced increase of Pe(t) from the initial value zero to Pe(tc=0)=0.3 is documented in Figure 3b. The one-electron density of the superposition state (Equation (5)) at tc is illustrated in the first panel of Figure 3e. Symmetry breaking is obvious, i.e., the superposition state (Equation (5)) can no longer be assigned to the original D6h symmetry. Since it is not an eigenstate, it is non-stationary. This gives rise to periodic charge migration with period T, as illustrated in Figure 3f by five snapshots of the one-electron density at times t=0,T/4,T/2,3T/4,T. On first glance, these snapshots may suggest that the superposition (Equation (5)) may have C2v symmetry, but additional snapshots at arbitrary times t∈[0,T] reveal that the superposition (Equation (5)) evolves with Cs symmetry: the first laser pulse breaks all symmetry elements except the molecular plane as mirror plane. The challenge is thus to design the second laser pulse that stops charge migration and restores symmetry by transferring the superposition state (Equation (5)) to the excited target state (Equation (6)).



Step (ii): The second laser pulse for symmetry restoration is constructed according to the recipe derived in Section 2.2 and Section 2.3.



First, it should be circularly right (+) polarized, similar to the first laser pulse, Equation (42). The laser parameters of the two pulses are the same, with two exceptions.



Second, the pulse is centered at tr=−tb, and the time delay td between the two laser pulses must be equal to an integer number N of period T of charge migration. In the present case, we choose


td=tr−tb=9T,



(63)




that means


tr=−tb=4.5T;



(64)




compare with Equations (33) and (34). We note in passing that the conditions in Equations (63) and (64) imply the phase difference Δη(tc) mod 2π=±π/2 for the coefficients ce(tc) and cg(tc) of the superposition state (Equation (5)) at central time tc; see Equation (35) and the derivation in Equation (54). This result is confirmed in Figure 3d.



Third, the field strength ϵr is determined according to the rule in Equation (53),


ϵr=ϵπ−ϵb



(65)




where ϵπ is the field strength of a circularly right (+) polarized π-pulse with Gaussian shape,


ϵπ=π·ℏ2dτ,



(66)




in accord with Equation (50) (cf. Ref. [42]). The value of the parameter for the laser duration, τ=0.47 fs, together with the value of the transition dipole d=2.0576ea0, yields the field amplitude of the π-laser pulse, ϵπ=11.399×107 V/cm. Subtraction of the field amplitude of the laser pulse for symmetry breaking, ϵb=4.207×107 V/cm, then yields the field strength of the laser pulse for symmetry restoration, ϵr=7.192×107 V/cm. It is illuminating to compare the population transfers between the electronic ground and excited states, namely 0.30 and 0.70, which are achieved by these pulses, with the values 0.0037 for the weak field strengths ϵb=ϵr=4.42×106 V/cm that are employed in Ref. [19]. Assuming the weak field limit, the population transfers should increase linearly with intensity, i.e., one would expect the value 0.0037×(42.07/4.42)2=0.33 and 0.0037×(42.07/4.42)2=0.98. The deviations from the values 0.30 and 0.70 show that while the intensity of the pulse for symmetry breaking may still be considered as “weak”, the required high field strength of the pulse for symmetry restoration is well beyond that limit.



The predicted laser pulse for symmetry restoration is shown in Figure 3a as second pulse, together with the laser pulse for symmetry breaking as first laser pulse. As anticipated already in Figure 1, the rules in Equations (53) and (65) imply that the second pulse is a bit stronger than the first one.



Step (iii): As decisive effect of the laser pulse for the symmetry restoration designed in Section 2.2, Figure 3b documents the laser driven evolution of the population of the excited state Pe(t) in the superposition state (Equation (5)), from the value Pe(tc)=0.3 to Pe(tf)=1. This is a key result: it implies complete and exclusive population of the excited state with D6h symmetry and IRREPe=E1u. This provides the proof-of-principle, i.e., the well-designed (see Section 2.2) second laser pulse (Figure 3a) restores D6h symmetry by exciting the model benzene from the superposition state (Equation (5)) to the target state with IRREPe≠IRREPg. At the same time, it stops charge migration because the target state is an electronic eigenstate, i.e., it is stationary. The one-electron density of the target state is shown in Figure 3g. Its D6h symmetry is obvious. There are, however, tiny differences between the initial (Figure 3e) and the final (Figure 3g) electron densities—this is a consequence of the different IRREPsA1g and E1u of the initial and final states, respectively.




3.2. The Requirement of Attosecond Precision for the Proper Time Delay Between the Laser Pulses for Electronic Structure Symmetry Breaking and Restoration


The proof-of-principle (Section 3.1) employs the perfectly synchronized second laser pulse for symmetry restoration which has been designed according to the recipe derived in Section 2. In particular, its time delay with respect to the first laser pulse that breaks symmetry satisfies the condition in Equation (63), in accord with the general rule in Equation (33). In this subsection, we investigate the consequences of violations of the condition in Equation (63). For this purpose, let us assume that the second laser pulse is centered at


tr′=tr+t′



(67)




with additional time t′ between the laser pulses, that means with additional time for the molecule to evolve in quasi-field-free environment, from tc=0 to t′. The corresponding time delay is


td′=td+t′,



(68)




the new final time is


tf′=tf+t′,



(69)




and the new “central time” is


tc′=(tr′+tb)/2=tc+t′/2=t′/2.



(70)







Figure 3b shows the resulting time evolutions of the populations Pe(t) of the excited state in the superposition state (Equation (5)) for altogether sixteen different values of additional time, t′=kT/16, k=1,2,…,16. The results of this systematic investigation are obtained by solving the TDSE (Equation (10)) by the numerical techniques developed in Ref. [19]. Apparently, the vast majority of these examples yield final populations


Pe(tf′)≠1fort′=kT/16,k=1,2,…,15.



(71)







That means the molecule is left in a superposition state such as Equation (5), not only after the first pulse that means at tc′, but also after the second pulse at tf′. Hence, the final state is not a pure state, but it is “contaminated” by both the ground and excited states with different IRREPs, i.e., the second laser pulse was unable to restore symmetry.



Figure 3b also shows one exceptional case (k=16) where t′=T. In this case, the final population of the excited state is


Pe(tf′)=1fort′=T



(72)




implying symmetry restoration. The corresponding time delay


td′=tr′−tb=10T



(73)




is again an integer multiple of the period T for charge migration. The results in Equations (71)–(73) documented in Figure 3b thus confirm the condition in Equation (33), i.e., to achieve symmetry restoration, the time delay between the two laser pulses must satisfy the requirement td=NT or more generally


td′=NT.



(74)







The sixteen results for the final populations Pe(tf′) obtained in Figure 3b are plotted versus time delay td′, Equation (65), in Figure 3c, together with corresponding results for a broader range of time delays. Figure 3c also shows a comparison of these results, which are obtained by quantum dynamics simulations, with the analytical result in Equation (62). The agreement is seen to be almost perfect, the deviations are smaller than the graphical resolution. We consider this agreement as double triumph, both for the robustness of the numerical method for quantum dynamics simulation that has been developed in Ref. [19], and also for the analytical theory derived in Section 2.3.



According to Figure 3c and the analytical result in Equation (62), perfect symmetry restoration requires perfect time delays, Equations (33) and (74). In practice, one may allow small deviations from the ideal value Pe(tf′)=1, for example one may accept results Pe(tf′)>0.99 as “good enough” for “almost perfect symmetry restoration”. The limit Pe(tf′)>0.99 would allow small deviations Δtd′<0.035T from the ideal time delays. The present value of the period T=504 as thus implies that the time delay between the laser pulses should obey the condition in Equation (33) and (74) with accuracy of few attoseconds. Indeed, this time resolution was achieved experimentally by high-contrast Ramsay interferometry, which was thereby shown to be suitable for symmetry restoration [19].



Finally, Figure 3d documents the validity of the equivalent conditions in Equations (35) and (56) for the phase difference Δη(tc′) of the coefficients of the superposition state (Equation (5)) at the central time tc′, Equation (70). As anticipated, the values of Δη(tc′) mod 2π at the central times tc′=T/2,T,3T/2,2T, etc. and the corresponding time delays td′=9T,10T,11T,12T, etc. alternate according to −π/2,+π/2,−π/2,+π/2, etc. For any other values of the times tc′,td′ and the phase difference Δη(tc′) mod 2π, the second pulse does not allow symmetry restoration.





4. Conclusions


This paper presents a new strategy for the restoration of the symmetry of electronic structure by means of a well-designed laser pulse, after symmetry was broken by a first laser pulse, which excites the electronic ground state to a superposition of the ground state and an excited state with different IRREPs. The superposition state is non-stationary; it represents periodic charge migration with period T. Typical values of T for electronic superposition states are in the time domain from several hundred attoseconds to few femtoseconds. Symmetry is restored by the second laser pulse, which excites the superposition state to the excited state. The net effect of the two laser pulses can be summarized as an excitation of the electronic ground state to the excited state, with IRREPe≠IRREPg. This observation suggests that, as a necessary condition for this new type of symmetry restoration, the second laser pulse must be designed such that the sum of the first and second laser pulses add up to a π-pulse. There are many ways to satisfy this condition. In the present application to the model benzene, both laser pulses are designed as circularly right (+) polarized laser pulses, with the same Gaussian shapes, the same parameters for the duration, the same resonant carrier frequencies, the same carrier envelope phases, but with two different temporal centers and with different field strengths. Specifically, the time delay between the temporal centers of the two laser pulses must be equal to an integer number of periods T. This condition must be satisfied with precision of few attoseconds. The experimental feasibility of this high accuracy is demonstrated in Ref. [19]. The condition for the field strength of the second laser pulse is that the sum of the field strengths of the first and second laser pulses must add up to the field strength of the circularly polarized π-pulse that otherwise has the same parameters as the first and second pulses. One may thus consider the two laser pulses as “fractional π-pulses”. Previously, it has been shown that fractional π-pulses are useful for other purposes as well, e.g., for laser generation of hybrid orbitals [47].



The present proof-of-principle of the new strategy, together with the alternative previous strategies [19,20,21], should stimulate the search for alternative approaches to laser symmetry restoration. As a working hypothesis, the present concept should allow several extensions, e.g., the fractional π-pulse for symmetry restoration may be designed with weaker or stronger field strengths that are compensated by longer or shorter duration, respectively, or one might employ the carrier envelope phase as a control knob in order to compensate the effect of time delays with non-integer multiples of the period T. By extrapolation of the concept and derivations of this manuscript, the field of laser symmetry breaking and restoration leads into new territories of research that allow rich discoveries. From the experimental point of view, one should keep in mind that the present new concept of laser control from symmetry breaking via charge migration to symmetry restoration is general and should apply to many other rigid molecules—the present example of the benzene molecule should stimulate the search for candidates with more suitable parameters for experimental verification.
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Figure 1. The concept for symmetry breaking of the electronic ground state and symmetry restoration in an electronic excited state by two laser pulses according to the new strategy. (Bottom) One-electron density of the oriented benzene molecule in the ground state labeled A1g (symmetry D6h, irreducible representation IRREPg=A1g). The first circularly-polarized laser pulse is centered at time tb=−4.5T. It breaks symmetry by exciting the ground state to the superposition labeled “A1g−iE1u” of the ground state and an excited state with IRREPe=E1u. This laser excitation is symbolized by the first red arrow. The superposition state has symmetry Cs. (Middle) Periodic charge migration from “A1g−iE1u” via “A1g+iE1u” back to “A1g−iE1u”, with period T=504 as. This is symbolized by the two curved arrows, with snapshots of the one-electron densities for state “A1g−iE1u” (left) at central time t=tc=0 (and also at t=T,2T, etc.) and for state “A1g+iE1u” (right) at time t=T/2 (and also at 3T/2,5T/2, etc.) The second laser pulse centered at tr=4.5T restores D6h symmetry by transferring the superposition state to the excited state with IRREPe=E1u. This laser excitation is symbolized by the second red arrow. (Top) One-electron density of the excited target state labeled E1u. The time delay td=tr−tb=NT between the centers of the laser pulses must be equal to an integer number N of periods T of charge migration, with precision of few attoseconds. Here, N=9. Any attempts to restore electronic structure symmetry at delay times that correspond to incomplete cycles of charge migration are useless—this is indicated by the crossed-out arrows. The Gaussian shape functions (dashed lines) and the x- and y-components of the electric field (red and green continuous lines) of the circularly-polarized laser pulses are also sketched. All densities were created using detCI@ORBKIT [43,44,45] and plotted using Matplotlib [46]. 
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Figure 2. (Left) Electronic energy levels of the lowest states of benzene, with assignment of the IRREPs. The present circularly polarized laser pulses yield exclusive population transfer from the electronic ground state A1g to the excited target state E1u+, illustrated by the vertical arrow. All other transitions to excited states that are within the spectral width of the laser pulses with different IRREPs are dipole forbidden, symbolized by vertical arrows that are crossed out. The two-photon process at 16.42 eV is also found to be off-resonance. (Right) Spectral profile of the laser pulses of duration 0.47 fs (red line), including a potential two-photon contribution at ΔE=2ℏω=16.42 eV (grey line). 






Figure 2. (Left) Electronic energy levels of the lowest states of benzene, with assignment of the IRREPs. The present circularly polarized laser pulses yield exclusive population transfer from the electronic ground state A1g to the excited target state E1u+, illustrated by the vertical arrow. All other transitions to excited states that are within the spectral width of the laser pulses with different IRREPs are dipole forbidden, symbolized by vertical arrows that are crossed out. The two-photon process at 16.42 eV is also found to be off-resonance. (Right) Spectral profile of the laser pulses of duration 0.47 fs (red line), including a potential two-photon contribution at ΔE=2ℏω=16.42 eV (grey line).



[image: Applsci 09 00953 g002]







[image: Applsci 09 00953 g003 550]





Figure 3. Symmetry breaking of the electronic ground state of benzene labeled A1g (symmetry D6h, irreducible representation IRREPg=A1g) and symmetry restoration in an electronic excited labeled E1u (symmetry D6h, irreducible representation IRREPe=E1u) by two laser pulses according to the new strategy. (a) Gaussian envelopes (dashed lines) and the x- and y-components (red and green continuous lines) of the circularly right (+) polarized laser pulses centered at tb=−4.5T and tr=+4.5T with period T=504as of charge migration. The parameter of the circularly right (+) polarized laser pulses (Equation (40)) are ϵb=4.207×107V/cm,ϵr=7.192×107V/cm,ω=2π/T,T=504as,τb=τr=0.47fs,tb=−4.5T,tr=+4.5T. (b) Time evolution of the population of the excited state due to the first and second laser pulses shown in (a) for the case tr=+4.5T=2.267fs. The results for sixteen different times tr′=tr+t′ where t′=kT/16,k=1,2,…,16 are also shown. (c) Numerical results (continuous blue line) and analytical result (dotted red line, Equation (62)) for the final populations Pe(tf′) of the excited state at time tf′=tf+t′ versus delay time td′=tr′−tb, in units of the period T (top abscissa) or fs (bottom abscissa, as in (d)). The results coincide within graphical resolution. (d) Phase difference Δη(tc′)=ηe(tc′)−ηg(tc′) of the wave functions in electronic excited and ground states at the central time tc′=(tr′+tb)/2. (e) One-electron density of the electronic ground state of benzene labeled A1g. (f) Five snapshots of the one-electron density during periodic charge migration of the superposition of the ground state labeled A1g and the excited state labeled E1u during one period, from t=tc=0 to T. (g) One-electron density of the excited target state labeled E1u. All densities were created using detCI@ORBKIT [43,44,45] and plotted using Matplotlib [46]. 
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