
applied  
sciences

Article

Implementation of Shape Memory Alloy Sponge as
Energy Dissipating Material on Pounding Tuned
Mass Damper: An Experimental Investigation

Jie Tan 1,2, Jinwei Jiang 3,*, Min Liu 4, Qian Feng 1,2, Peng Zhang 5 and Siu Chun Michael Ho 3,*
1 Hubei Key Laboratory of Earthquake Early Warning, Institute of Seismology, China Earthquake

Administration, Wuhan 430071, China; tanjie@hust.edu.cn (J.T.); qfengwh@foxmail.com (Q.F.)
2 Wuhan Institute of Earthquake Engineering Co., Ltd., Wuhan 430071, China
3 Department of Mechanical Engineering, University of Houston, 4800 Calhoun, Houston, TX 77024, USA
4 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China; liumin@hit.edu.cn
5 Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116023, China;

peng.zhang47@dlmu.edu.cn
* Correspondence: jjiang7@uh.edu (J.J.); smho@uh.edu (S.C.M.H.);

Tel.: +1-713-743-4498 (J.J.); +1-713-743-4498 (S.C.M.H.)

Received: 29 January 2019; Accepted: 10 March 2019; Published: 14 March 2019
����������
�������

Abstract: Piping systems are important nonstructural components of most types of buildings.
Damage to piping systems can lead to significant economic losses, casualties, and interruption
of function. A survey of earthquake disaster sites shows that suspended piping systems are flexible
and thus prone to large deformation, which can lead to serious damage of the piping systems.
The single-sided pounding tuned mass damper (PTMD), which is an emerging vibration suppression
tool, has the potential to serve as a cost effective and non-invasive solution for the mitigation of
vibration in suspended piping systems. The operating frequency of the single-sided PTMD can be
tuned similarly to a tuned mass damper (TMD). The single-side PTMD also possesses high energy
dissipation characteristics and has demonstrated outstanding performance in vibration control.
One of the key factors affecting the performance of the PTMD is the damping material, and there
is a constant search for the ideal type of material that can increase the performance of the PTMD.
This paper explores the use of shape memory alloy (SMA) sponge as the damping material for two
types (spring steel and pendulum types) of PTMDs to mitigate the vibration of a suspended piping
system. The PTMDs are tested both in free vibration and in forced vibration. The results are compared
with no control, with a TMD control, and with a viscoelastic (VE) material PTMD control. The results
show that in free vibration tests, SMA–PTMDs attenuate the displacement of the piping system
significantly. The time to mitigate vibration (i.e., reduce 90% of the vibration amplitude) is reduced
to 6% (for spring steel type) and 11% (for pendulum type) of the time taken to mitigate vibration
without control. In forced vibration tests, the overall magnitudes of the frequency response are also
lowered to 38% (spring steel) and 44% (pendulum) compared to vibration without control. The results
indicate that SMA has the potential to be a promising energy dissipating material for PTMDs.

Keywords: vibration control; pounding tuned mass damper; PTMD; viscoelastic material; shape
memory alloy; SMA; suspended piping system

1. Introduction

Piping systems are crucial to the functionality of commercial and industrial buildings including
offices, shopping malls, hospitals, airports, and plants. The building piping systems consist of
water/gas pipes, ventilation, and cable conduits, which are mounted on overhead slabs. However,
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considering the significance to the operation of the building, the seismic safety of piping systems has
not received the attention it deserves. As a nonstructural component, piping systems are usually based
on empirical design and thus their design does not take potentially large deformations (e.g., which
may occur during an earthquake) into account. To date, there is no specific seismic design code for
bearing capacity including piping dynamic deformation. Thus, seismic safety of piping systems is a
noteworthy issue.

The historical earthquake disaster loss survey shows that the consequences of piping system
damages are multifaceted [1,2]. First, piping systems are important nonstructural components in
buildings, and consist of a considerable proportion of the total building investment [3,4]. Damage
to piping systems can therefore potentially result in drastic economic consequences. Second, the
destruction of a piping system can cause serious secondary disasters including flooding. Both in
the Hawaii earthquake (2006) [5] and the Chile earthquake (2010) [6], severe water damage occurred
subsequently to piping system damage. Furthermore, the destruction of the piping system can cause
the failure of function, which is unacceptable for key infrastructures including hospitals, airports,
water supply companies, and fire extinguisher systems. The 1994 Northridge earthquake was a
convincing example. After the earthquake, hundreds of patients had to be evacuated due to the
disrupted functionality of 13 hospitals [7]. More than 100 fires were ignited and were not extinguished
in time due to the destruction of fire protection systems [8]. In the San Fernando Valley, 80,000 to
100,000 people were out of water for five days due to over 3000 leaks in the water supply piping
system [9].

The disaster loss investigation reports indicate that suspended piping systems with high flexibility
have the most serious seismic damage [7]. In practical engineering, there are two types of suspended
piping systems: one is suspended by single rods at intervals (as shown in Figure 1a), the other
one is supported by trapeze hangers (as shown in Figure 1b). Both types of piping system possess
high mechanical flexibility, which can lead to large deformation (i.e., strain) due to seismic loadings.
The direct consequence of large deformation is structural damage caused by the collision of the piping
system with adjacent components or equipment [10]. In addition, differential deformation and stress
concentration are other damage types that can occur in the piping system [10]. Thus, reducing the
seismic responses of the piping system can greatly improve the safety of the entire building system.
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Figure 1. Two types of suspended piping systems: (a) A single rod piping system; (b) trapeze hangers
supporting a suspended piping system.

In new buildings, seismic braces are added to limit the deformation of the piping system.
The seismic braces secure the piping system at the price of having the piping systems possibly
enduring large internal forces [11,12]. However, for existing buildings, the overhead space can be
filled with various equipment and facilities, which can complicate the installation of seismic braces
within the limited space. Compared to seismic braces, passive dampers have the distinct advantage
of reducing the vibration motions of piping system to an acceptable range. Passive dampers are
widely used in the vibration control of industrial piping systems in a variety of complex environments.



Appl. Sci. 2019, 9, 1079 3 of 16

In the Arctic Circle, tuned mass dampers (TMDs) were applied to mitigate wind-induced vibration of
approximately 30,000 spans of pipelines. The displacement reduction factor offered by the TMD ranged
from 1.5 to 7 depending on the wind conditions [13]. Due to their cost effectiveness and minimal
need for maintenance, metal dampers of various shapes (X-shape, V-shape) are used as supports for
nuclear plant piping systems to reduce their seismic-induced displacements [14,15]. Friction dampers
are another substitute for piping system supports [16–18]. In the study by Suzuki et al. [17], with
steel-steel friction supports, the displacement of the pipe was reduced by 90% under both broad-band
and narrow-band excitations, and the acceleration was reduced by 50% and 80% respectively. However,
these damper systems are mostly used in industrial infrastructure, and are rarely used for building
piping systems (e.g., commercial and residential).

In the field of civil engineering vibration control, passive control [19–22], semi-active
control [23–25], active control [26–28], and hybrid control [29–32] have been extensively studied
and demonstrated. In particular, passive control is the most widely used type of control system due
to its simple structure, easy maintenance and high reliability [33–35]. The pounding tuned mass
damper (PTMD) is a new type of passive damper. In order to dissipate energy, the PTMD utilizes
the pounding of a mass against an energy dissipating material. The natural frequency of the PTMD
can be tuned to that of the host structure in order to more efficiently dissipate energy [36]. Some
of the notable advantages of the PTMD are the simplicity of the design and the robustness of the
device. The simplicity of the design allows the PTMD to be easily adapted to different conditions
and usages; and since the PTMD is robust and can maintain its performance for long periods of
time, the need for maintenance is reduced. In recent years, PTMD has been extensively studied
for implementation in different types of facilities [37–40], including frame structures [41], subsea
jumpers [42,43], power transmission towers [44], etc. In a previous study by the authors [45], two
types of PTMDs (spring steel type and pendulum type) associated with viscoelastic (VE) material
were designed. The results indicated that VE–PTMDs performed well in suppressing the vibration
of a suspended piping system. With their hysteretic behavior [46], shape memory alloys (SMAs)
are another popular energy dissipating material used in control systems [47–51]. As will be further
discussed in the following sections, SMAs have unique material properties originating from their
transition from martensite to austenite states. The phase change is highly hysteretic and is a source of
energy damping, leading to the unique superelasticity and shape memory effect of SMAs. This phase
change can be manipulated by controlling the temperature of the SMA [52–56], such as through an
electrical current [57]. Many researchers have taken advantage of this unique property to develop
adaptive TMDs in active and semi-active control schemes to enhance the damping capabilities of the
TMDs [58–61]. However, SMAs have been never used in a PTMD before. Based on the demonstrated
damping characteristics of SMAs, the PTMD may benefit in terms of increased performance from the
integration of SMAs into its design.

In this paper, two types of PTMDs are employed to suppress the vibration of suspended piping
systems. Unlike the previous experiments [45], the energy dissipating material is changed from VE
material to shape memory alloy (SMA). The SMA–PTMDs are tested in free vibration and forced
vibration, and the control performances are compared with a TMD control and a VE–PTMD control.
The results show that SMA achieves a desirable equivalent damping coefficient to effectively suppress
the vibration of the suspended piping system.

2. Pounding Tuned Mass Damper (PTMD) and Energy Dissipating Material

The earliest PTMD was proposed by Song et al. [36], on the basis of the TMD device, which
consisted of a secondary mass and a swing arm and two delimiters covered with viscoelastic materials.
Figure 2a shows the schematic of the double-sided PTMD. The double-sided PTMD has two vibration
control mechanisms: when the excitation is small, the tuned mass will vibrate within the two delimiters
as a traditional TMD; when the excitation exceeds a certain level, the tuned mass will collide with the
viscoelastic material on the surface of the delimiter, dissipating the kinetic energy of the system. These
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two vibration control mechanisms can enhance the vibration control effectiveness and robustness of
the damper [38,42,43].

In 2017, Wang et al. [37] innovatively proposed the single-sided PTMD, which contained only one
delimiter, as shown in Figure 2b. When the secondary mass was in the initial equilibrium state, it was
in contact with the delimiter. Thus, the mass could only move in one direction relative to the delimiter.
Due to the collision of the mass with the delimiter, the corresponding frequency of the system would
become twice the original frequency, as shown in Equation (1),

fPTMD = 2 fTMD =

√
k/m
π

(1)

where fPTMD and fTMD are the frequencies of the single-sided PTMD and conventional TMD,
respectively, and k and m are the stiffness and mass of the damper. A notable advantage of the
single-sided PTMD is that the gap between the mass and the delimiter is no longer a design parameter
and the collision occurs at a position that could dissipate the maximum kinetic energy. The effectiveness
of single-sided PTMD has been demonstrated by theoretical analysis and experimental studies [37,62].

1 
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Figure 2. Schematic of (a) double-sided pounding tuned mass damper (PTMD); (b) single-sided PTMD.

Due to the simultaneous viscous and elastic characteristics, VE materials are popular in vibration
mitigation and energy dissipation [63–65]. Both in the PTMD studies of Song [36] and Wang [37], VE
materials were used as energy dissipating material. The performance in previous experiments proves
that VE materials are suitable as an energy dissipating material for PTMD [45,66,67].

Shape memory alloys (SMAs) were discovered relatively recently [68–70], and uniquely possess
both a shape memory effect (SME) and superelasticity, both of which give SMAs a highly hysteretic
stress–strain relationship [71,72]. The significant hysteresis in the stress–strain relationship of SMAs
makes them an ideal candidate for implementation in passive vibration control [73–76]. Applications
include control of stay cables [77,78], isolation bearings [79–84], and frame braces [85,86]. Due to its
high damping capacity, SMA is an ideal energy dissipating material in passive control. In theory, it is
feasible to use SMA as pounding energy dissipating material for PTMD.

In this paper, the SMA is chosen as energy dissipating material for single-sided PTMD to improve
its vibration control performance. To better understand the effectiveness of SMAs in energy dissipation,
the vibration control effects of single-sided SMA–PTMDs are studied, and the results are compared
with TMD and VE–PTMDs tested in a previous study conducted by the authors [45]. The PTMDs
are employed to suppress the same suspended piping system under the same excitation conditions.
In order to improve the readability and continuity of the article, the piping system and the experimental
setup are presented again in this paper.

3. Modal Analysis of a Suspended Piping System

A galvanized water pipe is used as the experimental suspended piping system for testing the
performance of PTMDs. The pipe with two fixtures is connected by two vertical steel bars to an
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aluminum beam (1220 mm, 80 mm, 40 mm), as shown in Figure 3a. The length of the steel pipe is
1133 mm; the outer and inner diameters are 115 mm and 110.8 mm, respectively. The steel bars used to
suspend the pipe are 195 mm in length and 6.35 mm in diameter. The total mass of the pipe, bars, and
fixtures is 9.3 kg.

By applying a small impact load to the pipe, it can be found that the fundamental vibration
mode is in the lateral direction. To determine the dynamic characteristics of the piping system, a finite
element (FE) model is developed in the ABAQUS interface (Dassault Systems, Velizy-Villacoublay,
France) [87]. The results of the FE analysis show that the first and the second mode shapes of the
piping system consist of lateral and longitudinal motions, respectively. The mode shapes are shown
in Figure 3b,c and the corresponding frequencies are 2.54 Hz and 8.14 Hz, respectively. The lower
frequency lateral motion also experiences the larger displacement. Therefore, the lateral movement of
the piping system is selected as the target motion for experimental studies.
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To verify the results of the FE model and also estimate the piping system viscous damping,
a damped free vibration test is conducted. An initial displacement is applied to the middle of the pipe,
and the displacement response of the pipe is recorded. With the help of the fast Fourier transform (FFT),
the primary frequency of the piping system is 2.55 Hz, which is slightly different from the FE result
(2.54 Hz). The slight difference between the obtained frequencies may be due to minor, unavoidable
differences between the real and simulated model. The closeness of the obtained frequencies, on the
other hand, demonstrates the accuracy of the FE analysis. Through the logarithmic decrement method,
the damping ratio of the piping system is estimated to be 0.58%.

4. Experimental Setup

In the previous study by the authors [45], the TMD and VE–PTMDs were tested for the vibration
control of the same piping system. For comparison, in this experiment, the mass and the swing arms
of PTMD are identical to the previous study [45], except that the VE material is replaced by an SMA
sponge. Figure 4 shows these two different energy dissipating materials. The shape memory alloy wire
is manipulated into a cuboid shaped sponge and used as an energy dissipating layer. Its dimensions
are 48 mm, 20 mm, and 10 mm, respectively. The mass used in the TMD and PTMDs is a 0.403 kg
cylindrical steel block, and the corresponding mass ratio is 4.33%. The mass ratio is a key parameter
of TMD, and is often designed to be in the range of 1~5%. To determine an appropriate mass ratio
for TMD, the feasibility of the actual engineering application and the required vibration control effect
should be taken into consideration.

To achieve the pounding between the mass of the PTMD system and the pipe, a fixture tightly
sleeved around the pipe is precisely machined, and the PTMD is mounted on the fixture, which is
installed at the middle of the pipe, as shown in Figure 5a. Spring steel type and pendulum type are both
tested, as shown in Figure 5b,c. In single-sided PTMD, the collision occurs at the equilibrium position
and the frequency is doubled after the collision [37]. Thus, the frequency of the swing arm–mass
system of the PTMD should be half of the piping system’s frequency (2.55 Hz), which is 1.28 Hz. When
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pounding occurs, the swing arm–mass system will vibrate at 2.55 Hz and will thus be tuned to the
frequency of the piping system. The natural frequency of the swing arm–mass system is tuned to
1.28 Hz through trial and error adjustments to the length of the swing arm. Results show that the
target frequency is achieved when the length of the spring steel and the length of the nylon rope are
170 mm and 128 mm, respectively. The detailed parameters of the PTMDs are listed in Table 1.
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Table 1. Parameters of PTMDs (pounding tuned mass dampers).

PTMD (Spring steel type)

Frequency of the spring steel–mass system 1.28 Hz
Component Description Value

Spring steel Material Spring steel
Dimensions (mm) 170 × 6.5 × 0.4

PTMD (Pendulum type)

Frequency of the pendulum–mass system 1.28 Hz
Component Description Value

Nylon rope Material Nylon
Length (mm) 128

Mass for PTMDs
Material Steel

Weight (kg) 0.403
Energy dissipating material SMA 48 × 20 × 10 (mm)

During the experiment, a laser displacement sensor (MX1A-A, IDEC Sensors, Tokyo, Japan) with
a range of ±40 mm is installed at a separate table not coupled to the piping system to record the
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displacement response of the piping system. The sampling frequency of the laser sensor is set to
200 Hz. In the forced vibration experiment, a high-power DC motor (DC-158A, AVIC, Beijing, China)
with a rotating arm is used as the excitation source. A bungee cable is used to connect the pipe and
the rotating arm. In order to ensure excitation in the horizontal direction only, a pulley is installed
to turn the bungee cable by 90 degrees. A wide range of excitation frequencies can be achieved by
changing the motor’s angular speed. Figure 6a,b show the experimental setup of the forced excitation
system and the data acquisition system, respectively. The power supply (CSI3020SW, CircuitSpecialists,
Tempe, AZ, USA) is used to change the rotating speed of the motor, and the data is collected by the
laser sensor through a laptop and a data acquisition card (NI USB X Series 6361, National Instruments,
Austin, TX, USA).
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5. Results and Discussion

In this section, two types (spring steel type and pendulum type) of SMA–PTMDs are employed to
suppress the vibration motions of the suspended piping system both in free vibration and in forced
vibration. In the previous study [45], the performances of TMD and VE–PTMDs on suppressing the
vibration of the piping were experimentally compared. In this paper, the effectiveness of SMA–PTMDs
is verified by the comparative results of the piping system without a control, with a TMD control, and
with a VE–PTMD control.

It is notable that the mass and the swing arm (spring steel) of the TMD are the same as that of the
spring steel type PTMDs. The damping of the TMD is very small (0.06%) due to the lack of auxiliary
damping and the low damping capacity of the spring steel. The TMD is not optimally designed for two
reasons. First, the TMD and PTMDs (spring steel type) have the same configurations except that in the
PTMDs, the mass collides with the energy dissipating material. Both the TMD and PTMDs are tested
to suppress the vibration of the same suspended piping system. By this approach, the effect of the
pounding on the resulting damping can be compared directly. Secondly, achieving a specific amount
of damping for TMDs (i.e., the optimum damping) is challenging. The desired level of damping
in the PTMD is accomplished by adjusting the level of pounding between the mass and the energy
dissipating material and is free of maintenance. In this aspect, the TMD and PTMDs are kept at the
same complexity to compare their vibration mitigation performance.

5.1. Suppression of Free Vibration

During free vibration tests, an initial displacement is applied to the piping system, and the
displacement response is recorded. Figure 7 illustrates the time domain displacement curves of the
piping system under the control of TMD and PTMDs. For a clear comparison, the initial displacement
of the free vibration is 20 mm for all conditions and the time from the initial displacement to decay
to 10% of the initial displacement (2 mm) is defined as the control time. Figure 7a illustrates the
displacement response of the piping system subject to free vibration with and without TMD control.
The control times are 26.5 s (without control) and 48.8 s (with TMD control), and the corresponding
damping ratios are 0.58% and 0.29%, respectively. As shown in Figure 7b,c, when VE–PTMDs are
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employed, the vibration attenuation is more pronounced. The control times are 1.6 s (with spring steel
type VE–PTMD) and 2.85 s (with pendulum type VE–PTMD), respectively, and the corresponding
system damping ratios are 10.4% and 5.6%.

Figure 7d,e show the free vibration responses of the piping system with spring steel type
SMA–PTMD control and with pendulum type SMA–PTMD control, respectively. The beating
phenomenon is observed for both types of SMA–PTMDs, and is different from the smoothly decaying
trend of vibration intensity with VE–PTMDs control. The responses of the SMA–PTMDs are similar,
and only one beat cycle is observed. First, the displacements decay rapidly to zero, then slightly
increase, and then decrease gradually. From visual observation, when an instantaneous displacement
is applied to the piping system, the SMA–PTMD worked immediately with strong poundings. When
the displacement decayed rapidly to zero, the displacement of the mass of the PTMD is observed to be
large. The beating suggests the transferal of energy between the piping system and the mass of the
PTMD. Following the approach to zero displacement, the impact of the mass onto the pipe induces a
small increase in the displacement. Finally, successive collisions between the mass of the PTMD and
the pipe attenuate the displacement of the pipe to zero.
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Figure 7. Experimental results of free vibration: (a) With tuned mass dampers (TMD); (b) with spring
steel type VE–PTMD; (c) with pendulum type VE–PTMD; (d) with spring steel type SMA–PTMD;
(e) with pendulum type SMA–PTMD.



Appl. Sci. 2019, 9, 1079 9 of 16

For comparison, the results of free vibration tests are summarized in Table 2. As seen, after
installing the TMD, the control time is extended from 26.5 s to 48.8 s, which is 184% of that without
control. The response with TMD is worse when compared to the case of without control because
the TMD is not optimally designed [88,89]. The addition of the mass, which has a low damping
ratio, decreases the overall damping ratio of the entire assembly. Since the TMD is not optimized, the
damping ratio stays at a low value. From the Den Hartog analysis [90], this is because the TMD’s
auxiliary damping is too small, and it is far from the optimal damping. Thus, the TMD cannot
dissipate energy effectively and lead to a continual, mutual transmission of energy between the pipe
and the TMD. This is the reason for the beating phenomenon and the extension of the control time.
In contrast, the control effects of four PTMDs are evident. The control times are from 1.6 s to 2.9 s, which
correspond to 6% to 11% of the corresponding time of the piping system without control. This shows
that all four PTMDs effectively and efficiently suppress the displacement response of the piping system
during the free vibration. With the TMD control, the system damping ratio is reduced from 0.58%
to 0.29%; however, the damping ratios are increased significantly with PTMD control (4.0%~10.4%).
The damping ratios of the PTMDs are 6.9~17.9 times larger than when there is no control. This shows
the effectiveness of when pounding is introduced to increase damping. It should be noted that in
addition to rapidly suppressing the vibrations of the piping system, the PTMDs also greatly reduce
the amount of strong cycles of vibration. In other words, the system rapidly reaches lower levels of
vibration within the first few cycles of vibration, although the time needed to fully suppress vibrations
takes longer.

Table 2. The results of free vibration.

Conditions Time (20 mm to 2 mm) Damping Ratio

Without Control 26.5 s 0.58%
With TMD Control 48.8 s 0.29%

With PTMD Control
VE

Spring Steel 1.6 s 10.4%
Pendulum 2.85 s 5.6%

SMA
Spring Steel 2.5 s 4.9%
Pendulum 2.9 s 4.0%

5.2. Suppression of Forced Vibration

In forced vibration experiments, a high-power motor with a rotating arm is used to generate
a quasi-harmonic excitation. The rotating arm of the motor is connected to the middle of the pipe
via a bungee cable, and the bungee cable passes through a pulley to keep the excitation horizontal.
The excitations of different frequencies are achieved by adjusting the voltage of the motor and changing
the rotational speed of the arm. These kinds of quasi-harmonic excitations have also been used in other
pipe tests [38,42,66].

The frequency response curves of the piping system are plotted by recording the steady-state
displacement amplitudes over different excitation frequencies of forced vibration. Figure 8 describes
the frequency responses of the piping system under the conditions of the piping system without
control, with the TMD control, with the spring steel type VE–PTMD control, with the pendulum
type VE–PTMD control, with the spring steel type SMA–PTMD control, and with the pendulum type
SMA–PTMD control.
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Figure 8. Experimental results of forced vibration.

The resonant frequency of the piping system is measured to be 2.57 Hz, and the maximum
displacement of the system at the resonant condition is 18.90 mm. After the addition of TMD, the
frequency response curve of the piping system has two peaks, which are on each side of the original
resonant frequency, as shown in the green line of Figure 8. The new system’s resonant frequencies
are 2.12 Hz and 3.02 Hz, and the corresponding magnitudes of vibration are 16.98 mm and 12.86 mm.
The blue line and red line are frequency responses of the piping system with the spring steel type
VE–PTMD control and with the pendulum type VE–PTMD control. Both curves have only one peak,
the resonant frequencies are both 2.46 Hz, and the corresponding magnitudes of vibration are 9.72 mm
and 9.24 mm, respectively.

The magenta line and the cyan line represent the frequency responses of the piping system
with the spring steel type SMA–PTMD control and with the pendulum type SMA–PTMD control.
Similar to the case with the TMD control, both the curves have two magnitude peaks. The peak
frequencies of the response with the spring steel type SMA–PTMD are 2.38 Hz and 2.83 Hz, and
the corresponding magnitudes are 7.67 mm and 8.39 mm, respectively, as shown by the magenta
line in Figure 8. Two peaks of the frequency response with the pendulum type SMA–PTMD control
(the cyan line) are 2.36 Hz and 2.75 Hz, and the corresponding magnitudes are 5.93 mm and 7.26 mm.
At the resonant frequency of the piping system (2.57 Hz), the control effect of the spring steel type
SMA–PTMD (3.91 mm) is slightly better than that of the pendulum type SMA–PTMD (5.0 mm).

In order to understand the effectiveness of SMA–PTMDs at the resonant frequency (2.57 Hz),
a lock–release experiment of the PTMD mass is conducted. First, the mass of the PTMDs is locked,
and the PTMD and the piping system become one system. At the resonant frequency excitation, the
whole system reaches the maximum displacement response. At this point, the constraint of the mass
is released and the PTMD starts working. Figure 9 shows the displacement responses of the piping
system before and after the mass of the PTMDs is released. After the mass of the PTMDs is released, the
mass collides with the pipe, and the displacement of the pipe is rapidly reduced. After this transient
process, the displacement of the pipe tends to be stable. In the entire frequency domain, the maximum
displacement responses of the piping system with the SMA–PTMDs controls occur at 2.83 Hz (spring
steel type) and 2.75 Hz (pendulum type). Figure 10 compares the maximum displacement response
without control and with the SMA–PTMDs control. The maximum displacement response with the
pendulum type SMA–PTMD control (7.26 mm) is slightly better than that of with the spring steel type
SMA–PTMD control (8.39 mm). From a practical perspective, this small difference suggests that in this
case, both types of SMA–PTMDs essentially have a similar performance. A minor tuning of either type
may cause the performance to become even closer. This close difference was also observed in the prior
study with VE–PTMDs [45], suggesting that these two designs have a nearly equal performance in
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vibration suppression, and the user is free to choose a design that may better suit their engineering
requirements (e.g., available materials).
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Figure 9. Experimental results of forced vibration when the mass of the SMA–PTMD is released
mid-vibration: (a) Spring steel type; (b) pendulum type.
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Figure 10. Comparison of resonant vibration with SMA–PTMDs: (a) Spring steel type;
(b) pendulum type.

For comparison, the results are summarized in Table 3. With the TMD control, 97% of displacement
is reduced at the resonant frequency (2.57 Hz). However, the reduction comes at the cost of the
formation of two new peak regions surrounding the original natural frequency. All four PTMDs,
especially the SMA–PTMDs, considerably reduce the displacement responses across the entire
frequency domain. From small to large, the amount of vibration reduction can be ordered as: 49%
(spring steel type VE–PTMD), 51% (pendulum type VE–PTMD), 56% (spring steel type SMA–PTMD),
and 62% (pendulum type SMA–PTMD). At the resonant frequency (2.57 Hz), the displacements of the
piping system are 0.54 mm (TMD), 8.99 mm (spring steel type VE–PTMD), 7.89 mm (pendulum type
VE–PTMD), 3.91 mm (spring type SMA–PTMD), and 5.00 mm (pendulum type SMA–PTMD). These
experimental results demonstrate that the proposed SMA–PTMDs are more effective than VE–PTMDs
given the same configuration (i.e., piping system).

Table 3. The results of forced vibration.

Conditions Resonant Frequency and Corresponding
Maximum Displacement

Displacement
Reduction Ratio
Across the Entire

Frequency Domain

Displacement
and Reduction

Ratio at Resonant
Frequency

Without Control 2.57 Hz 18.90 mm - -
With TMD Control 2.12 Hz, 3.02 Hz 16.98 mm, 12.86 mm 10% 0.54 mm/97%

With PTMDs
control

VE
Spring Steel 2.46 Hz 9.72 mm 49% 8.99 mm/52%
Pendulum 2.46 Hz 9.24 mm 51% 7.98 mm/58%

SMA
Spring Steel 2.38 Hz, 2.83 Hz 7.67 mm, 8.39 mm 56% 3.91 mm/79%
Pendulum 2.36 Hz, 2.75 Hz 5.93 mm, 7.26 mm 62% 5.00 mm/74%
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6. Conclusions

The main novelty of this research is development of the shape memory alloy–pounding tuned
mass damper (SMA–PTMD) that uses the SMA material to accelerate energy dissipation in a pounding
tuned mass damper. In this study, two different types of PTMDs (spring steel type and pendulum
type) are equipped with a shape memory alloy sponge to suppress the vibration of a suspended piping
system. The SMA–PTMDs are tested in both free vibration and forced vibration cases. To investigate
the influence of energy dissipating material (SMA) on the PTMD device, the SMA–PTMD results are
compared with those of a previous study by the authors [45], which consists of a TMD control and a
VE–PTMDs control.

In the free vibration experiment, the beating phenomenon is observed in the responses of the
pipe with the SMA–PTMDs control. The control times are reduced from 26.5 s (without control) to
2.5 s (spring steel type) and 2.9 s (pendulum type). The damping ratios are increased from 0.58%
(without control) to 4.9% (spring steel type) and 4.0% (pendulum type). SMA–PTMDs suppress the
vibration of the piping system effectively. Both the shortened time and the increased damping show
that SMA–PTMDs suppress the vibration of the pipe effectively and efficiently. In the forced vibration
experiment, the frequency responses of the piping system under the control of SMA–PTMDs have
one peak on each side of the piping system’s resonant frequency which are different compared to the
single peak frequency responses under the control of VE–PTMDs. By comparing the damping effects
of the same types of SMA–PTMDs and VE–PTMDs, it can be observed that SMA material considerably
improves the performance of PTMDs both across the entire frequency domain and especially at the
resonant frequency.

The results presented in this paper demonstrate the ability of SMA–PTMDs to suppress the
vibration of a suspended piping system effectively and efficiently for both free vibration and forced
vibration. The numerical model of SMA as a pounding energy dissipating material has not been
studied in this paper and will be the subject of future work. Additionally, the nonlinearity of SMA in
collision also requires more detailed research.
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