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Simple Summary: A fast frequency sweep strategy that takes advantage of the segmentation of the
device under analysis into simple building blocks is presented.

Abstract: The characterization of communication devices in a certain frequency band can be
accelerated if a fast frequency sweep technique is used instead of a discrete frequency sweep. Existing
fast frequency sweep techniques are either complex or specific for a certain electromagnetic solver.
In this work, a new fast frequency sweep method is proposed that consists in segmenting the device
under analysis into simple building blocks. Each building block is characterized with a generalized
(multimode) circuital matrix whose elements present a simple and flat frequency response that is
interpolated using natural cubic splines with very few points. In this way, the response of each block
along the whole frequency band is obtained efficiently and accurately with as many frequency points
as desired. Then, the circuital matrices of all the blocks are cascaded and the circuital matrix of the
whole device in obtained. The new fast frequency sweep was successfully applied to the analysis
of different types of devices (all metallic rectangular waveguide filter, dielectric loaded rectangular
waveguide filter, and substrate integrated waveguide filter). The computational times were reduced
to 15% or 19%, depending on the device, when compared with a discrete frequency sweep using the
same electromagnetic solver.

Keywords: electromagnetic analysis; fast frequency sweep; microwave filters; substrate integrated
waveguide; rectangular waveguide

1. Introduction

Characterizing the performance of communications devices in a certain frequency band can be
done by discretizing the frequency band into a number of discrete points, and repeatedly characterizing
the response of the device in each one of these points. However, if the response of this device is complex,
many points are needed to properly characterize the response, and thus this discrete frequency sweep
becomes a time consuming process.

Therefore, fast frequency sweep techniques are necessary to speed up the simulation process.
A fast frequency sweep technique must provide an accurate response of the device with small error
when compared with the discrete frequency sweep response, and it must do so consuming as little
time as possible.
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Many fast frequency sweep techniques have been proposed in the technical literature. In [1],
the asymptotic waveform evaluation (AWE) and the complex frequency hopping (CFH) techniques
are both used for performing a fast frequency sweep in the analysis of substrate integrated
waveguides (SIW).

In the asymptotic waveform evaluation [2—4], the whole frequency response is approximated
from the computation of the accurate response in only one single frequency point inside the bandwidth
of interest. A Padé approximation to a reduced order rational polynomial is performed, and this
approximation is used to interpolate over the whole frequency band with a certain degree of accuracy.
The AWE technique has also been applied for the fast calculation of the radar cross-section [5], to the
solution of general mixed circuit and electromagnetic problems with a full-wave method of moments
solver [6], and to the characterization of an arbitrary two-dimensional dielectric waveguide using the
tangential-vector finite-element method (TVFEM) [7].

However, the desired bandwidth in which the device has to be characterized is frequently so
wide that it is not possible to get an accurate approximation from a single point. A possible solution to
this problem is to use more than one point to develop such approximation. The main drawback of
this strategy is that it is difficult to find the appropriate points for these partial AWE sub-expansions.
To find these points, the complex frequency hopping (CFH) technique [8,9] can be used. Applying this
technique can guarantee that the approximation will be as good as desired. The width of the analyzed
frequency range will not affect the precision of the results, but the cost will be proportionally increased,
since the accurate response of the device will have to be computed in more than one discrete point
(as many as necessary to obtain accurate results).

As the authors of this work already experienced when implementing the AWE and the
CFH techniques in [1], these techniques are complex and difficult to implement. Thus, a more
straightforward fast frequency sweep would be desirable.

Another fast frequency sweep technique is the vector fitting technique [10], which approximates
the frequency response by a rational function and replaces a set of starting poles with an improved
set of poles via a scaling procedure. This technique can approximate complex functions, but, as in
the case of AWE and CFH, it also requires complex computations in order to obtain the poles of the
approximated rational function.

Other fast frequency sweep techniques have also been presented, such as the balanced truncation
proper orthogonal decomposition (BT-POD) [11], which uses an adaptive frequency sampling method
that allows a speed-up of 16 times when compared with discrete sweep, although this is a technique
that is dependent on the electromagnetic solver, and can only be used in conjunction with the
BT-POD. The same happens with the fast sweep technique presented in [12], which presents an
adaptive multi-point method that chooses several frequency points called expansion frequencies for
implementing a reduced order model in a finite element solver. The methods in [11,12] are intrusive,
requiring access to the frequency-dependent system representation.

Segmenting the structure into simple blocks is a common strategy used by many authors to speed
up the analysis of complex microwave devices [13-16]. Each building block (i.e., inverters, resonant
posts, empty transmission lines, etc.) is characterized by its generalized (multimode) scattering or
admittance matrix, and then all these matrices are cascaded with well-known methods such as the
ones presented in [17-20]. Once all the circuital matrices have been cascaded, a global circuital matrix
that characterizes the whole structure, is obtained. The segmentation procedure is independent of the
electromagnetic solver used for the characterization of each building block. Even different solvers can
be used for characterizing different individual building blocks.

In this work, we present a simple, non-intrusive, and solver independent fast frequency sweep
technique, which takes profit of the segmentation of the structure under analysis into simple
constitutive blocks. Each one of these simple blocks typically presents a simple frequency response
that can be easily interpolated with very few frequency points.
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In [1], the structure was already segmented into simple blocks. However, the fast frequency sweep
(either using AWE or CFH) was applied to the complex and quickly changing frequency response
of the whole filter. Thus, if the device was a filter with a high number of cavities, the frequency
response became more complex, and the approximation with only one frequency point with AWE
became less accurate. Thus, CFH needed to be used, and the number of sub-domains and frequency
points where the exact solution had to be computed increased with the complexity of the frequency
response (i.e., with the number of filter cavities). The same would have happened if vector fitting
would have used.

In this work, a different strategy is proposed. The idea is to take profit of the fact that the
individual building blocks (inversors, empty lines, resonant posts, etc.) have simple frequency
responses regardless of the number of building blocks that compose the whole structure, and therefore
regardless of the complexity of the frequency response of the whole device. Thus, the strategy
consists of applying a simple fast frequency sweep scheme, such as spline interpolation, to the
computation of the frequency response of each one of the elements of the multimodal circuital matrix.
Thus, an approximated, but very accurate, mutimodal circuital matrix of each building block is
obtained in as many frequency points as desired. Finally, all these matrices are cascaded, and the
scattering parameters of the whole device is obtained. With this procedure, the total simulation time is
significantly reduced.

To the best knowledge of the authors, this is the first time that the segmentation of the structure
into simple building blocks is used to implement a fast frequency sweep. The result is a technique that
can be applied to accelerate any simulation technique; that is not intrusive, and thus does not require
access to the frequency dependent part of the simulator; and that is simple to implement, regardless of
the complexity of the whole frequency response of the device, since the simple building blocks will
always present simple frequency responses.

To test the performance of this new fast frequency sweep technique, it was applied to the
computation of the frequency response of several devices: an all-metallic coupled cavities filter in
rectangular waveguide, a coupled cavities filter in rectangular waveguide with dielectric posts loading
each resonator, and finally a coupled cavities filter in substrate integrated waveguide (SIW). These
devices were selected to have a wide variety of possible simple building blocks (irises, dielectric posts,
and metallic vias), in order to ensure that the method produces good results in all cases. All this type
of building blocks present simple frequency responses, but some simpler than others. Thus, depending
on the building block, a different (but small in all cases) number of points (three, four or five) was used
for the spline interpolation of the frequency response of the building blocks. In all cases, an accurate
result with very little computational cost was obtained.

2. Fast Sweep with Segmentation and Spline Interpolation

To perform the fast sweep, we use an electromagnetic solver to compute the multimodal circuital
(n,m)
i

parameter of a given building block that relates the mth mode accessing the building block by the jth
access port and the nth mode exiting by the ith access port. Let f, with p € [1,-- -, P] be the frequency
points where the electromagnetic solver is used to accurately compute the scattering parameters of

each building block.

Therefore, the value of Sl.(jn’m) (fp) is known in P points along the operational frequency band.
glmm)

g)

is to accurately interpolate this function and estimate its value in any point inside the frequency band.
In this work, we have chosen the cubic spline in order to perform the interpolation.

In mathematics, a spline [21] is a special function defined piecewise by polynomials. To per form
the interpolation, splines are preferred to the use of a single polynomial for all the domain because they
yield similar results when using low degrees, and they avoid the Runge’s phenomenon of oscillations

matrix of each building block in a reduced number of frequency points. Let S be the scattering

is not a very complex function since it characterizes a simple building block. Now, the problem
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at the edges that happens with polynomials for high degrees. Another advantages of splines are the
ease of representation and computation.
Among all splines, the cubic spline [22] is the most frequently used due to the optimum

compromise between accuracy and simplicity, so this is the choice adopted in this work. Let SAl.(;i’m) (f)

be the spline function that interpolates and approximates Sl(-"' ) Therefore, S(]-n ) (f) is defined as
a different cubic polynomial in each interval [f1, f2], [f2, fal, ..., [fp—1, fp). Let A;;11(f) be the cubic

polynomial that represents SAlgf’m) (f) in the interval [f;, fi11].

Ap(f)  felfif
SA(n,m) (f) _ :142,3(]() fE [f2/f3] (1)
Ap-1p(f) f € [fr-1,fp

Each piece A;;1(f) (i €[1,---,P—1]) of S:E;l’m) (f) is defined as a cubic polynomial of the form

Aiina(f) = (A-t)yi+tiyin
+ (1 —t) (a;(1—t;) +bit;) ()
where

o [ 3

h fix1—fi ©)

yi = 51(}1”") (fi) )

a; = ki(firn—fi) = Wis1 —vi) %)

bi = —kiy1 (fir1 — fi) + i1 — vi) (6)

The coefficients k; (i € [1,---, P]) are P unknowns that must be determined. To do so, the first
and second derivatives of the cubic polynomials are derived

i(1—t;) + bit;
Al _ y1+1 + 1 — 2t az( i iti
LT e A e
b; — a;
+4(1 - l 7
O, 7
b; — 2a; + (a; — b;)3t
A/‘/‘ — 2 1 1 1 1 (8)
1,1+1(f) (fi+1 _ fl,)Z
The continuity of the first derivatives of each pair of contiguous Cubic polynomials is ensured due
to the way the cubic polynomials have been defined, since A;_, ;(fi) = A}, (fi) = ki.

To determine the value of the coefficients k;, the continuity of the second derivatives of each pair
of contiguous cubic polynomials is enforced

Al () = AlLa(f) i€l2,---,P=1] )

This gives the following P — 2 equations

1 1 kig1
Fm 2k (2 + i) Y iy

= Yi-1 Yit1—Yi . .
=3 (e + i) il P (10)
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Two more equations are still needed to determine the P unknowns. In the case of natural splines,
the choice is to enforce that the second derivative at the extremes of the interpolation domain be zero,
that is

2(f) = 0 (11)
Ap 1 p(fr) = 0 (12)
which gives the following two equations
2kq n ka _ 32 —w)
h=fi (-hf) (a=f)?
kp_1 2kp _ 3lyp—yr) (13)

(fp—fr1)*  fp—fr (fp — fr-1)?

The P — 2 equations of Equation (10) and the two equations of Equation (13) constitute a
linear system of P equations with P unknowns. The solution of this system are the coefficients k;
(i€l,---,P]). With those coefficients, all the cubic polynomials A; ;1 (f) are completely determined,

and the approximation SAi(;Z’m) (f) of the element ngn’m) (f) of the generalized scattering parameter,
as defined in Equation (1), is accomplished using only the information of P discrete frequency points.

The number of discrete points P used to approximate the response of each building block depends
on the complexity of the block. As shown in Section 5, even with complex building blocks, such as a
resonant post, it is enough to use only five points (P = 5). With simpler building blocks, P can be even
smaller. This small number of points is possible even for long and complex devices, such as coupled
cavities filters with many resonant cavities, thanks to the segmentation into simple building blocks
and the approximation with splines of the individual response of each block, instead of approximating

the response of the whole device.

3. Coupled Cavities Filter in Rectangular Waveguide

The performance of the fast frequency technique proposed in this work was first tested with the
analysis of an all-metallic coupled cavities filter in rectangular waveguide technology. The layout of
this filter is shown in Figure 1. The filter was designed for a Chebyshev frequency response centered
at 15 GHz, with a bandwidth of 450 MHz, and a ripple of 0.02 dB in the pass band. To test the accuracy
and speed of the fast frequency technique for different sizes of the whole device, the filter was designed
for different numbers of resonators R, with R varying within 3-9.

I I I3 ly

t t t

‘ ‘

t t

Figure 1. Layout of an all-metallic coupled cavities filter in rectangular waveguide. The filter has been
design for different number of resonant cavities R. In all cases, the width of the guide is 4 = 15.7988 mm,
the height is b = 7.8994 mm, and the length of the inductive irises is f = 2 mm. Below, the remaining
dimensions for different filter order R are listed.

1. R=3:w;=wy=8314mm, wy, =wz=>5787 mm, l; =13 =9.990 mm, 1, = 11.201 mm
2. R=4: w; =ws =8178 mm, wp = wy = 5551 mm, w3 = 5.124 mm, |; = I = 10.152 mm,
12 = 13 =11.503 mm
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3. R=5 wj=wg=8.114 mm, wp = w5 = 5457 mm, w3 = wy =4.959 mm, |; =15 =10.217 mm, 1, =14
=11.581 mm, I3 = 11.733 mm

4. R =6:w; =wy=28.072mm, wy = wg = 5.404 mm, w3 = ws = 4.887 mm, wy =4.813 mm, 1] =1g =
10.258 mm, I, =15 = 11.618 mm, I3 = 14 = 11.793 mm

5. R =7 wy;=wg=8.043 mm, wy = wy =5.370 mm, w3 = wg = 4.850 mm, wy = ws = 4.753 mm,
I =1, =10.285 mm, 1, =15 = 11.639 mm, 13 =I5 = 11.818 mm, 14 = 11.845 mm

6. R =8 w;=wg=28.030 mm, wy =wg =5.349 mm, w3 = wy = 4.829 mm, wy = wg = 4.725 mm,
ws =4.703 mm, |} =1g =10.298 mm, 1, =1y = 11.652 mm, 13 = I = 11.832 mm, 14 = I5 = 11.866 mm

7. R =9: wqy=wqp=8.028 mm, wyr = wg = 5.343 mm, w3z = wg = 4.820 mm, w4 = wy = 4.710 mm,
w5 = wg =4.678 mm, 1; =19 = 10.300 mm, 1, = 1g = 11.655 mm, 13 = I; = 11.837 mm, 14 = 14 =
11.875 mm, 15 = 11.883 mm

To implement the fast frequency technique, the filter had to be segmented into simple building
blocks, as shown in Figure 2. In this case, these building blocks were either empty sections of
rectangular waveguide (labeled as Line i in Figure 2) or H-plane inductive irises (labeled as Iris i in
Figure 2). The generalized scattering matrix (GSM) of the empty line sections could be computed
analytically [23], and the GSM of the irises had to be obtained using a numerical method. In this case,
the mode matching method described in [24] was used, although any other method could also have
been used. The fast frequency sweep procedure was not affected by the particular choice of analysis
methods used for computing the scattering matrices of the building blocks, thus its performance
would be the same if other simulators were used for obtaining these matrices. The GSM matrix of each
building block had to be multimodal, because high order modes were excited inside each building
block and they were not completely attenuated (and cannot be discarded) at the reference planes,
which were located very near to the adjacent building blocks. Thus, the GSM elements were Sl(j”’m) (f),
with two accessing ports (i.e.,, with i = j = 1,2), and with N and M modes considered at the input
and output ports (n € [1,---,N|, m € [1,---,M]). For the analysis of the coupled cavities filter,
N = M = 11 was chosen to produce accurate results.

4 NN\ AY Y AY Y AY Y AY Y ~\
LI |_| |_| L]
Line 1 Line 2 Line 3 Line 4 Line 5 Line 6
M [ [ ] B
< I\ __J\ AU AU AU AU I\ __J\ AU AU J
Iris 1 Iris 2 Iris 3 Iris 4 Iris 5

Figure 2. Segmentation of the coupled cavities all-metallic filter in rectangular waveguide into simple
building blocks (empty line sections and irises).

First, the GSM of the building blocks was computed using a discrete frequency sweep of
Ny = 500 points, and next all the GSM were cascaded (using, for example, the method in [20]) obtaining
the frequency response of the whole filter in each one of these 500 frequency points with full accuracy.
This took 2.808 s for R = 4 cavities, and 5.298 s for R = 9 cavities. To implement the fast frequency
sweep, the number of discrete frequency points P had to be chosen. P had to be as small as possible to
reduce the computation time at maximum, without compromising the accuracy.

To properly choose the correct value for P for this type of filter, the fast frequency sweep was
implemented for different values of P. This means that the GSM of each building block was computed
only for P points linearly spaced in the frequency band of interest, and then the spline approximation

PN

SZ.(]."’m) (f) of Equation (1) was used to estimate the frequency response of each element of the GSM
in the 500 frequency points of the discrete sweep. This was extremely fast since it only required the
evaluation of the cubic polynomials of Equation (2). Finally, the GSM of all the building blocks were
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cascaded and the GSM of the whole filter was obtained. The fast frequency sweep was implemented for
different values of P for R = 4 and for R = 9 filter cavities. Results are shown in Tables 1 and 2. These
tables list the computation time of the fast frequency sweep, the comparison with the computation
time of the discrete sweep, and the mean squared error between the reflection coefficient of the fast
and discrete sweep, computed as follows:

Nf | cfast discrete 2
Gfast( £y _ g :
error — 3 IS ) = ST (5) "
i=1 Ny

If P = 2, the error was too big, and results were inaccurate. For P > 3, the error was small
enough to get very accurate results. This is because the frequency response of the irises was very
flat, and it could be approximated with very few points. To illustrate this, the frequency response of
some elements of the GSM for the first and second irises of the filter are plotted in Figure 3. The real
and imaginary parts of these elements computed with mode matching is depicted for the 500 discrete
frequency points with solid line. For comparison, the same frequency response but approximated
with splines with P = 3 is also plotted. The three points used to compute the coefficients of the cubic
polynomials of the spline approximation are depicted as big blue dots. It can appreciated that the
frequency response was very flat, and that the spline interpolation was highly accurate with P as
small as 3.

Tables 1 and 2 also prove that the fast frequency sweep required only around 15% of the
computation time required by the discrete frequency sweep. This time slightly increased as P increased,
which was the reason for choosing a value of P as small as possible without compromising the accuracy.

T T T T T -0.05
"IlIIIIIIIII-IIIIIIIIIII"
051 i [ R e O N . e m N e e )
7Real(S§}1’1>) 7R,eal(51(?2’1))
=4 +R,oal(Sfll’l)) aprox T 01f +R,ead(S%l)) aprox =
s o) Imag(s} ;") i Tmag(5;'3")
+Imag(51(_l{l)) aprox +Imag(5g’1)) aprox
€
—0.5 Wﬂi -0.15 MD
‘ | | | | Il | | | | |
14.6 14.8 15 15.2 15.4 14.6 14.8 15 15.2 15.4
Frequency (GHz) Frequency (GHz)
(a) Iris number 1. S&’l) (b) Iris number 2. sz’l)
0.2 T 0 T
T N ORRIRAAR '.IIIIIIIIIII-IIIIIIIIIII"
0.1 — Real(S$%”) s -0.05 |- — Real(SY) |
& —— Real(SS{s)) aprox =, ——Real(S{;"") aprox
) Imag(Séi’S)) w' Imag(S;}zl'l))
0 +Imag(5‘£i’3)) aprox . -0.1 +Imag($§]21‘”) aprox :
l"’_‘+“‘+0+0+0—¢.0—0—0~0—0—¢_¢+¢_._¢+‘b
Orsssnnsnssn@uunnnnnnnnnn®
—0. | | | | Il | .1 | | | | Il
01 14.6 14.8 15 15.2 15.4 015 14.6 14.8 15 15.2 15.4
Frequency (GHz) Frequency (GHz)
. (33) . (11,1)
(c) Iris number 2. 557 (d) Iris number 1. S5,

Figure 3. Comparison between accurate and approximate scattering parameters of different blocks of
the coupled cavities filter (R = 9), and different combinations of input and output ports and modes.
Big dots show the points used for spline approximation. In this case, using three points was enough for
high accuracy results.
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Table 1. Error and CPU time evolution for the all-metallic filter (R = 4 cavities) as the number of

frequency points for the fast sweep (P) increases. Discrete sweep used 500 points and took 2.808 s.

P Fast(s) CPU Time Fast/Discrete Error

2 0.4179 14.8841% 7974.2 x 10~°
3 0.4292 15.2847% 76.4445 x 10~°
4 0.4472 15.9268% 1.6391 x 10~°
5 0.4459 15.8801% 0.2448 x 10°
6  0.4498 16.0170% 0.0901 x 10~°
7 0.4558 16.2319% 0.0378 x 10°
8 0.4594 16.3597% 0.0190 x 10~
9 0.4635 16.5045% 0.0099 x 10~°
10 04731 16.8472% 0.0054 x 10°

Table 2. Error and CPU time evolution for the all-metallic filter (R = 9 cavities) as the number of

frequency points for the fast sweep (P) increases. Discrete sweep used 500 points and took 5.298 s.

P Fast(s) CPU Time Fast/Discrete Error

2 0.8272 15.6154% 10,507.4 x 10~°
3 0.8486 16.0180% 98.2219 x 10~
4 0.8817 16.6428% 2.2199 x 10~°

5 0.8709 16.4387% 0.2460 x 10~°

6 0.8858 16.7192% 0.1199 x 10~¢

7 0.8992 16.9728% 0.0550 x 10~°

8 0.9294 17.5429% 0.0239 x 10~°

9 0.9370 17.6849% 0.0100 x 10~°

10 09411 17.7639% 0.0051 x 10~°

Figure 4 compares the discrete and fast frequency sweep responses of the whole filter with R =9

cavities. As expected, the fast frequency response was highly accurate with P = 3.

0000000000000 00000000

—— |Sll| fast

—— |521| fast

— |S11| discrete

— | S21| discrete

0 4
)
S —10f
=}
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E 20
=}
g
el
£ 30
=
g t
3
2 40
(0]
~
—50
14.7

14.9 15

Frequency (GHz)

152 153

Figure 4. S-parameter comparison between fast sweep and discreet sweep for the nine-cavity filter.

P =3.

The same comparison was made for different number of filter orders. The results are shown in
Figure 5 and 6. It can be observed that the fast sweep required approximately 16% of the computation

time required by the discrete sweep, even for high filter orders.
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Figure 5. Computation time of discrete and fast frequency sweeps for the all-metallic coupled cavities

filter for different filter orders R.

% CPU time fast vs. discrete sweep
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3

4

5 6

Number of cavities in the filter

Figure 6. Percentage of computation time of the fast frequency sweep when compared with the discrete

sweep for different filter orders R.

4. Coupled Cavities Filter in Rectangular Waveguide Loaded with Circular Dielectric Posts

To test the fast frequency technique with a device with more complex building blocks than in
the all-metallic filter, a coupled cavities filter with dielectric resonators in rectangular waveguide

was analyzed.

The geometry of the filter is shown in Figure 7. Each resonant cavity was loaded with a cylindrical
dielectric post. The dielectric posts reduced the size of the filter, at the expense of increasing the
insertion losses. The filter was designed for a four-pole Chebyshev frequency response centered
at 11 GHz and with a bandwidth of 300 MHz, thus the filter had four resonant cavities, and four

dielectric posts.

I

)

ly

wr

Wy

w5

Figure 7. Layout of the dielectric loaded filter in rectangular waveguide: 2 = 19.05 mm, { = 2 mm,
r=231mm, & = 195, w; = ws = 13.014 mm, wp, = wy = 8.141 mm, w3 = 8780 mm, l; =4 =
8.04 mm, and [, = I3 = 12.585 mm.
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The segmentation of the filter into simple building blocks is illustrated in Figure 8. In this case,
there were three types of building blocks. Besides sections of empty lines and irises, in this filter,
there were also dielectric posts. As in the previous filter, the GSM of the empty lines were obtained
analytically [23], and the GSM of the irises were obtained with mode matching [24]. The GSM of the
dielectric posts could be computed using, for example, the hybrid mode matching method in [25].
Here, N = M = 11 modes were used to compute the GSM of all building blocks.

- AY o Ya A 4 N N\ \ 4 A

L

1] L
Line 2
/|

. J\\ J\L . . J/ —/ L J

Iris1 Post1l Iris2 Post2 1Iris3 Post3 Iris4 Post4 Irisb5

Line 1

(= )

Figure 8. Segmentation of the dielectric loaded filter into simple blocks (empty lines, irises,
and dielectric posts).

The frequency response of the dielectric posts was not as flat as the response of the irises. For that
reason, the adequate value of P might be different from in the previous filter. Table 3 shows the
performance of the fast frequency sweep for different values of P for the dielectric loaded filter. As can
be observed, the error was bigger than in the case of the all-metallic filter. It can also be observed that
the percentage of computational time of the fast sweep when compared with the discrete sweep was
around 9%, which is smaller than in the all-metallic filter. This was due to the higher computational
cost of the dielectric posts, which means there was a greater gain in computational cost with the fast
sweep. The error was reduced as P increased (and the computational time was slightly increased).
The exact value of P from which the results were accurate can be better derived from the results
in Figure 9. In that figure, the approximate frequency response of the element Sgll’l) of the GSM for
the first dielectric post of the filter is depicted for different values of P. That appré)ximate frequency
response was compared with the accurate result. It can be appreciated that the frequency response
was more complex than that of the iris, and therefore in this case P = 5 points had to be used to get an
accurate approximation with splines. Besides, as shown in Table 3, the error decreased very quickly for
P =3 and P = 4, but was stabilized for P > 5, thus P = 5 was a good compromise between accuracy
and efficiency.

Figure 10 shows the frequency response of other elements of the GSM with P = 5, proving that
with P = 5 all responses were well approximated.

Table 3. Error and CPU time evolution for the filter with dielectric posts (four cavities) as the number
of frequency points for the fast sweep (P) increases. Discrete sweep used 500 points and took 6.729 s.

P Fast CPU Time Fast/Discrete Error

3 0.5527 8.2142% 253.1607 x 103
4  0.5882 8.7405% 36.3357 x 103
5 05985 8.8942% 8.0251 x 103

6 0.6082 9.0387% 2.6643 x 1073

7  0.6231 9.2593% 1.0457 x 1073

8 0.6365 9.4587% 0.4098 x 103

9 0.6515 9.6818% 0.2005 x 103

10 0.6604 9.8148% 0.1011 x 1073

Figure 11a,b shows the frequency response of the whole filter with, respectively, P = 4 and
P = 5. With four points for the spline approximation, the frequency response of the posts was not
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approximated with enough accuracy, and when all the GSM were cascaded and the response of the
whole filter was obtained, there were differences between the discrete and the fast sweep, as can be
observed in Figure 11a. However, when P = 5 was used, the accuracy was good enough and both fast
and discrete sweep were in good agreement, as shown in Figure 11b.
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Figure 9. Comparison between accurate and approximate Sgll’l) of the first dielectric post of the
dielectric loaded filter for different number of discrete points P. Big dots show the points used for
spline approximation.
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Figure 10. Comparison between accurate and approximate scattering parameters of different blocks
(posts) of the coupled cavities filter with dielectric posts, and different combinations of input and
output ports and modes. Big dots show the points used for spline approximation (five points in
this case).
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Figure 11. Comparison of the frequency response with fast and discrete sweep for the dielectric loaded
filter with P = 4 and P = 5 points for the spline approximation.

5. Coupled Cavities Filter in Substrate Integrated Waveguide

Finally, the fast sweep method was tested with the analysis of a coupled-cavity filter using
substrate integrated waveguide (SIW) technology [26]. The substrate integrated waveguide was a
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rectangular waveguide synthesized in a dielectric substrate with circular metallic vias that acted as
the lateral walls of the waveguide. The layout of the SIW filter is shown in Figure 12. In this case,
the building blocks were made of metallic vias, as depicted in Figure 13. Some blocks were constituted
by vias that form an empty SIW line, and others by vias that form a coupling iris.

G§OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO L

Aeq

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO r

Figure 12. Layout of the eight pole SIW filter: w = 10.8430 mm, s = 1.5 mm, d = 1 mm, /; = 8.2821 mm,
I =9.3734 mm, I3 = 9.6392 mm, Iy = 9.6943 mm, w; = 6.1832 mm, w, = 4.6753 mm, w3 = 4.2710 mm,
wy = 4.1763 mm, and w, = 4.1534 mm.
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Figure 13. Eight coupled-cavity SIW filter. Segmentation into constitutive blocks (empty lines,
and irises).

The filter was designed to have a Chebyshev response centered at 11 GHz and a bandwidth of
1 GHz. The filter haf eight resonant cavities.

In this case, the GSM of the building blocks was obtained with the numerical method
described in [1], which uses a hybrid method of moments and mode matching method.
Here, N = M = 31 modes were used.

To find the value of P that provides with accurate results, a study was performed, as in the
previous examples, of the variation of the computational time and the error between fast sweep and
discrete sweep responses as a function of P. The result is shown in Table 4. It can be observed in this
case that the computational times were significantly greater than in the previous examples, as the
structure under analysis was much more complex (many metallic vias). The time reduction of the fast
sweep when compared to the discrete sweep was smaller than in the first example, and similar to the
second one, probably due to the greater complexity of the frequency responses of the building blocks,
similar to the second example. The error was stabilized for P > 5. Thus, this could be a good choice
for P.

However, after studying the frequency response of the building blocks, it was observed that with
P = 4 the accuracy was good enough to properly approximate those responses with splines, although
P = 5 could also be a good choice. Figure 14 shows the frequency response of various elements
of the GSM of various blocks. In all cases, the response was well approximated with four points.
The response of the whole SIW filter for fast and discrete sweep is compared in Figure 15. A can be
observed, both responses were in good agreement, thus using four points was enough for this filter.
In this case, the discrete sweep took 88 s, and the fast sweep 6.8 s. Thus, the use of the fast sweep
reduced the computational time to the 7.7% of the time required by the discrete sweep.
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Table 4. Error and CPU time evolution for the SIW filter as the number of frequency points for the fast
sweep (P) increases. Discrete sweep used 500 points and took 88.54 s.

+(3,3)

1,1

P Fast CPU Time Fast/Discrete Error
3 6.8111 7.6923% 206.5028 x 103
4 7.4745 8.4415% 485913 x 1073
5 7.7130 8.7109% 3.2926 x 1073
6 7.2574 8.1963% 0.3573 x 1073
7 7.9938 9.0280% 0.1536 x 1073
8 8.9452 10.1025% 0.0720 x 1073
9 9.3161 10.5214% 0.0326 x 1073
10 9.5422 10.7767% 0.0134 x 1073
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Figure 14. Comparison between accurate and approximate scattering parameters of different blocks
of the SIW coupled cavities filter, and different combinations of input and output ports and modes.
Big dots show the points used for spline approximation. In this case, using four points was enough for
high accuracy results.
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The performance of the fast sweep technique presented in this work was compared to the
performance of the previous fast sweep techniques implemented in our research group (AWE [2]
and CFH [8]). Figure 16 shows the reflection coefficient of the SIW filter of Figure 12. This reflection
coefficient was calculated using the three fast sweeps. It can be observed that the AWE technique
approximated the response correctly near the central frequency, but it failed to do so in the extremes of
the frequency band. This was because AWE used only the central point to perform the approximation,
as already explained in the Introduction, and therefore was suitable only for narrow band responses.
In this case, AWE had to be substituted by CFH, which segmented the frequency band into several
intervals and used AWE inside each one of these intervals, thus increasing the computation time,
but producing accurate results. The reflection coefficient computed with the frequency sweep of
this work also provided accurate results (as proven in Figure 15). The computational time of these
three frequency sweep techniques is compared in Table 5. The fast frequency of this work, based on
segmentation, was much faster than CFH, providing equally accurate results.

0 o~ T
pummmmmmmag || —— [S11| This work e

—=—|Sy,| AWE "
—10- |S11] CFH py 1

750 Il Il Il
10 10.5 11 11.5 12

Frequency (GHz)

Reflection (dB)

Figure 16. Comparison of discrete sweep of this work with fast sweeps of AWE [2] and CFH [8].

Table 5. Comparison of fast frequency methods.

Method CPU Time

This work  4.004 s
AWE 4.8321s
CFH 36.8805 s

6. Discussion

In this work, a new fast frequency sweep technique is presented. It consists in segmenting the
device under analysis into simple building blocks, and characterizing each block with its generalized
circuital matrix. Since each element of that matrix presents a simple and flat response over the
frequency, it is approximated with very few points with natural cubic splines. The spline approximation
provides accurate response of the block along the frequency band with as many points as desired in a
very efficient way, thus saving computational time. The circuital matrices of all the blocks are then
cascaded, and the scattering parameters of the whole device are finally obtained.

To test the performance of the technique with devices that contain a wide variety of possible
building blocks, several types of devices were analyzed. All metallic and dielectric loaded filters in
rectangular waveguide, as well as a filter in substrate integrated waveguide were analyzed. Therefore,
the analyzed building blocks were empty lines, irises and dielectric posts in rectangular waveguide,
as well as metallized circular vias. Depending of the block, the complexity of the frequency response
differs, and a different number of points was needed for the spline approximation, but, in the worst
case, it was enough to use five points.

As a result, the new fast frequency provided accurate results with a time reduction that ranged
from 9% to 19%, depending on the device, when compared with the discrete frequency sweep with the
same electromagnetic solver.
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When compared to other fast frequency sweep techniques, such as AWE or CFH, the method of
this work performed much better.

It can be concluded that, if the structure is divided into the smallest possible building blocks
(such as empty lines, irises, dielectric posts, or metallic vias), the method is accurate and fast.
The smaller are the building blocks, the simpler is the frequency response of each individual block,
and the greater is the final accuracy using this fast frequency method. At the same time, when the
building blocks are very small, their scattering matrices can be reused for the same building block
appearing in another part of the structure, and the total computation time is reduced.

Although the fast frequency method was applied here to inline structures, it could also easily
be applied to more complex structures such as cross-coupled filters or folded dual-mode filters.
The difference is that, in those more complex structures, some individual blocks should be three- or
four-port devices (such as a three port Tjunction). However, even a T5junction has a simple frequency
response that can be easily approximated with splines with a small number of frequency points.

Author Contributions: Conceptualization, A.B.; Methodology, A.B., ].A.M. and H.E.; Software, A.B., J.A.M. and
H.E.; Formal analysis, A.B., ].A.M. and H.E,; Validation, A.B., ].A.M. and H.E.; Investigation, A.B., ], AM. and HE,;
Resources, A.B.; Writing—Original Draft Preparation, J.A.M.; Writing—Review and Editing, H.E.; Visualization,
A.B., ], AM. and H.E; Supervision, A.B. and H.E.; Project Administration, A.B.; and Funding Acquisition, A.B.
and H.E.

Funding: This research was funded by Ministerio de Economia, Industria y Competitividad, Spanish Government,
under Research Projects TEC2016-75934-C4-3-R and TEC2016-75934-C4-1-R.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

AWE Asymptotic waveform evaluation
CFH Complex frequency hopping
SIW Substrate integrated waveguide

TVFEM  Tangential-vector finite-element method
BT-POD  Balanced truncation proper orthogonal decomposition

CPU Central processing unit
GSM Generalized scattering matrix
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