Classification and Disposal Strategy of Excess Sludge in the Petrochemical Industry
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Analytical Methods
2.3. Strategy Description
3. Results and Discussions
3.1. Judgment of Hazardous Solid Waste Properties of Petrochemical Excess Sludge
3.1.1. Risk Analysis of Petrochemical Excess Sludge Leaching
Leaching Toxicity of Heavy Metal Elements in Petrochemical Excess Sludge
Leaching Toxicity Analysis of Organic Matter in Petrochemical Excess Sludge
3.1.2. Analysis of Flammability, Corrosivity and Reactivity of Petrochemical Excess Sludge
3.1.3. Analysis of Dioxins in Petrochemical Excess Sludge
3.2. Comprehensive Analysis of Risk of Petrochemical Excess Sludge
3.3. Analysis of Petrochemical Excess Sludge Disposal
Analysis of Mixed Landfill, Land Improvement and Greening Mud for Petrochemical Excess Sludge Landfill
3.4. Analysis of Solid Waste Landfill
3.5. Analysis of Petrochemical Excess Sludge Incineration
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Montagnaro, F.; Tregambi, C.; Salatino, P.; Senneca, O.; Solimene, R.J.F. Modelling oxy-pyrolysis of sewage sludge in a rotary kiln reactor. Fuel 2018, 231, 468–478. [Google Scholar] [CrossRef]
- Striūgas, N.; Valinčius, V.; Pedišius, N.; Poškas, R.; Zakarauskas, K. Investigation of sewage sludge treatment using air plasma assisted gasification. Waste Manag. 2017, 64, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Moško, J.; Pohořelý, M.; Zach, B.; Svoboda, K.; Durda, T.; Jeremiáš, M.; Šyc, M.; Václavková, Š.; Skoblia, S.; Beňo, Z. Fluidized Bed Incineration of Sewage Sludge in O2 /N2 and O2 /CO2 Atmospheres. Energy Fuels 2018, 32, 2355–2365. [Google Scholar] [CrossRef]
- Dolzynska, M.; Obidzinski, S. Effect of used cooking oil additive on sewage sludge combustion. Przem. Chem. 2017, 96, 1848–1851. [Google Scholar]
- Qin, L.-B.; Han, J.; Chen, W.-S.; Wang, G.-G.; Luo, G.-Q.; Yao, H. Simultaneous removal of SO2 and PAHs by adding calcium-based additives during sewage sludge incineration in a fluidized bed incinerator. J. Mater. Cycles Waste Manag. 2017, 19, 1061–1068. [Google Scholar] [CrossRef]
- Marchenko, O.; Demchenko, V.; Pshinko, G. Bioleaching of heavy metals from sewage sludge with recirculation of the liquid phase: A mass balance model. Chem. Eng. J. 2018, 350, 429–435. [Google Scholar] [CrossRef]
- Chernysh, Y.; Balintova, M.; Plyatsuk, L.; Holub, M.; Demcak, S. The Influence of Phosphogypsum Addition on Phosphorus Release in Biochemical Treatment of Sewage Sludge. Int. J. Environ. Res. Public Health 2018, 15, 1269. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.-H.; Du, J.-J.; Jiang, D.; Kong, L.-J.; Huo, W.-Y.; Liu, C.-M.; Wu, Q.-H.; Xu, X.-R. Insights into the simultaneous removal of Cr 6+ and Pb 2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism. Sci. Total Environ. 2018, 642, 505–515. [Google Scholar] [CrossRef]
- Khandaker, S.; Toyohara, Y.; Kamida, S.; Kuba, T. Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag. J. Environ. Manag. 2018, 222, 304–315. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.-S.; Donatello, S.; Cheeseman, C.; Wang, Q.; Poon, C.S.; Tsang, D.C. Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. Chem. Eng. J. 2018, 348, 74–83. [Google Scholar] [CrossRef]
- Prajapati, K.B.; Singh, R. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste. Bioresour. Technol. 2018, 263, 491–498. [Google Scholar] [CrossRef]
- Choi, J.-M.; Han, S.-K.; Lee, C.-Y. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. Bioresour. Technol. 2018, 259, 207–213. [Google Scholar] [CrossRef]
- He, P.; Poon, C.S.; Tsang, D.C. Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC). Constr. Build. Mater. 2017, 147, 519–524. [Google Scholar] [CrossRef]
- Wu, Q.; Cui, Y.; Li, Q.; Sun, J. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J. Hazard. Mater. 2015, 283, 748–754. [Google Scholar] [CrossRef]
- Alvarez, J.; Lopez, G.; Amutio, M.; Artetxe, M.; Barbarias, I.; Arregi, A.; Bilbao, J.; Olazar, M. Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. Fuel Process. Technol. 2016, 149, 169–175. [Google Scholar] [CrossRef]
- Lin, W.Y.; Ng, W.C.; Wong, B.S.E.; Teo, S.L.-M.; Baeg, G.H.; Ok, Y.S.; Wang, C.-H. Evaluation of sewage sludge incineration ash as a potential land reclamation material. J. Hazard. Mater. 2018, 357, 63–72. [Google Scholar] [CrossRef]
- Melo, T.M.; Bottlinger, M.; Schulz, E.; Leandro, W.M.; Filho, A.M.D.; Wang, H.; Ok, Y.S.; Rinklebe, J. Plant and soil responses to hydrothermally converted sewage sludge (sewchar). Chemosphere 2018, 206, 338–348. [Google Scholar] [CrossRef]
- Kchaou, R.; Baccar, R.; Bouzid, J.; Rejeb, S. The impact of sewage sludge and compost on winter triticale. Environ. Sci. Pollut. Res. 2017, 25, 18314–18319. [Google Scholar] [CrossRef]
- Bogusz, A.; Oleszczuk, P. Sequential extraction of nickel and zinc in sewage sludge-or biochar/sewage sludge-amended soil. Sci. Total Environ. 2018, 636, 927–935. [Google Scholar] [CrossRef]
- Dai, Q.; Wen, J.; Jiang, X.; Dai, L.; Jin, Y.; Wang, F.; Chi, Y.; Yan, J. Distribution of PCDD/Fs over the three product phases in wet sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2018, 133, 169–175. [Google Scholar] [CrossRef]
- Ko, J.H.; Wang, J.; Xu, Q. Impact of pyrolysis conditions on polycyclic aromatic hydrocarbons (PAHs) formation in particulate matter (PM) during sewage sludge pyrolysis. Chemosphere 2018, 208, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Wang, J.; Xu, Q. Characterization of particulate matter formed during sewage sludge pyrolysis. Fuel 2018, 224, 210–218. [Google Scholar]
- Zhang, Y.-F.; Zhang, S.-Y.; Mao, Q.; Li, H.; Wang, C.-W.; Jiang, F.-H.; Lyu, J.-F. Volatility and partitioning of Cd and Pb during sewage sludge thermal conversion. Waste Manag. 2018, 75, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ren, Q.; Na, Y. Influence of operating parameters on arsenic transformation during municipal sewage sludge incineration with cotton stalk. Chemosphere 2018, 193, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Bairq, Z.A.S.; Li, R.; Li, Y.; Gao, H.; Sema, T.; Teng, W.; Kumar, S.; Liang, Z. New advancement perspectives of chloride additives on enhanced heavy metals removal and phosphorus fixation during thermal processing of sewage sludge. J. Clean. Prod. 2018, 188, 185–194. [Google Scholar] [CrossRef]
- Qian, L.; Wang, S.; Xu, D.; Guo, Y.; Tang, X.; Wang, L. Treatment of municipal sewage sludge in supercritical water: A review. Water Res. 2016, 89, 118–131. [Google Scholar] [CrossRef]
- Lee, L.H.; Wu, T.Y.; Shak, K.P.Y.; Lim, S.L.; Ng, K.Y.; Nguyen, M.N.; Teoh, W.H. Sustainable approach to biotransform industrial sludge into organic fertilizer via vermicomposting: A mini-review. J. Chem. Technol. Biotechnol. 2018, 93, 925–935. [Google Scholar] [CrossRef]
- Liu, X.; Han, Z.; Yang, J.; Ye, T.; Yang, F.; Wu, N.; Bao, Z. Review of enhanced processes for anaerobic digestion treatment of sewage sludge. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 113, p. 012039. [Google Scholar]
- Camargo, F.P.; Tonello, P.S.; Santos, A.C.A.D.; Duarte, I.C.S. Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments—A review. Water Air Soil Pollut. 2016, 227, 433. [Google Scholar] [CrossRef]
- Suarez-Iglesias, O.; Urrea, J.L.; Oulego, P.; Collado, S.; Diaz, M. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. Rev. Sci. Total Environ. 2017, 584, 921–934. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, S.; Huang, F.; Li, X.; Shang, J.; Lai, J.; Liao, Y. Nitrogen and Phosphorus Removal by Activated Sludge Process: A Review. Mini-Rev. Org. Chem. 2017, 14, 99–106. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Solid Waste-Extraction Procedure for Leaching Toxicity-Sulphuric Acid & Nitric Acid Method; Chinese Environmental Protection Industry Standard. HJ/T299-2007; China Environmental Science Press: Beijing, China, 2007.
- Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity; Chinese National Standard. GB 5085.3—2007; China Environmental Science Press: Beijing, China, 2007.
- Solid Waste-Determination of Polychlorinated Dibenzo-P-Dioxins(PCDDs) and Polychlorinated Dibenzofurans(PCDFs)-Isotope Dilution HRGC-HRMS; Chinese Environmental Protection Industry Standard. HJ 77.3-2008; China Environmental Science Press: Beijing, China, 2008.
- Identification Standards for Hazardous Wastes-Identification for Toxic Substance Content; Chinese National Standard. GB 5085.6—2007; China Environmental Science Press: Beijing, China, 2007.
- Determination of Total Carbon, Hydrogen and Nitrogen Content in Coal-Instrumental Method; Chinese National Standard. GB/T 30733-2014; Standards Press of China: Beijing, China, 2014.
- Ultimate Analysis of Coal; Chinese National Standard. GB/T 476-2001; Standards Press of China: Beijing, China, 2001.
- Determination of Total Sulfur in Coal; Chinese National Standard. GB/T 214-2007; Standards Press of China: Beijing, China, 2007.
- Characterization of Waste. Halogen and Sulfur Content. Oxygen Combustion in Closed Systems and Deter; British Standard. BS EN 14582-2016; BSI standards Limited: London, UK, 2016.
- Solid Waste-Determination of Total Phosphorus-Ammonium Metamolybdate Spectrophotometric Method; Chinese Environmental Protection Industry Standard. HJ 712-2014; China Environmental Science Press: Beijing, China, 2014.
- Identification Standards for Hazardous Wastes-Identification for Corrosivity; Chinese National Standard; GB 5085.1—2007; China Environmental Science Press: Beijing, China, 2007.
- Identification Standards for Hazardous Wastes-Identification for Ignitability; Chinese National Standard. GB 5085.4—2007; China Environmental Science Press: Beijing, China, 2007.
- Identification Standards for Hazardous Wastes-Identification for Ignitability; Chinese National Standard. GB 5085.5—2007; China Environmental Science Press: Beijing, China, 2007.
- Identification Standards for Hazardous Wastes-Screening Test for Acute Toxicity; Chinese National Standard. GB 5085.2—2007; China Environmental Science Press: Beijing, China, 2007.
- Identification Standards for Hazardous Wastes-General Specifications; Chinese National Standard. GB 5085.7—2007; China Environmental Science Press: Beijing, China, 2007.
- Petroleum Coke(Green Coke); Petrochemical industry standard. NB/SH/T 0527-2015; China Petrochemical Press: Beijing, China, 2015.
- Standards for Pollution Control on Hazardous Waste Incineration; Chinese National Standard. GB 18484-2001; China Environmental Science Press: Beijing, China, 2001.
- Standards for Pollution Control on the Municipal Solid Waste Incineration; Chinese National Standard. GB 18485-2014; China Environmental Science Press: Beijing, China, 2014.
- Disposal of Sludge from Municipal Wastewater Treatment Plant-Quality of Sludge for Co-Landfilling; Chinese National Standard. GB/T 23485-2009; Standards Press of China: Beijing, China, 2009.
- Disposal of Sludge from Municipal Wastewater Treatment Plant-Quality of Sludge Used in Land Improvement; Chinese National Standard. GB/T 24600-2009; Standards Press of China: Beijing, China, 2009.
- Disposal of Sludge from Municipal Wastewater Treatment Plant-Quality of Sludge Used in Gardens or Parks; Chinese National Standard. GB/T 23486-2009; Standards Press of China: Beijing, China, 2009.
- Wei, F.; Teng, E.; Chen, L. Background characteristics of uranium and plutonium in soils in China and the eastern region. Shanghai Environ. Sci. 1991, 10, 37–39. [Google Scholar]
- Hua, Z.; Jianjun, F.; Youcai, Z. Geotechnical characterization of dewatered sewage sludge for landfilling. J. Tongji Univ. Nat. Sci. 2008, 3, 361–365. [Google Scholar]
- Lo, I.M.; Zhou, W.; Lee, K.M. Geotechnical characterization of dewatered sewage sludge for landfill disposal. Can. Geotech. J. 2002, 39, 1139–1149. [Google Scholar] [CrossRef]
- Koenig, A.; Bari, Q. Vane shear strength of dewatered sludge from Hong Kong. Water Sci. Technol. 2001, 44, 389–397. [Google Scholar] [CrossRef]
- Technical Code for Municipal Solid Waste Sanitary Landfill; Chinese National Standard. GB 50869-2013; China Architecture & Building Press: Beijing, China, 2013.
- Standard for Pollution on the Storage and Disposal Site for General Industrial Solid Wastes; Chinese National Standard. GB 18599-2001; China Environmental Science Press: Beijing, China, 2001.
- Wang, L.; Li, X.; Zhao, Y. Research on Sludge Drying and Incineration Technology; Metallurgical Industry Press: Beijing, China, 2010; pp. 8–9. [Google Scholar]
- Yasuda, K.; Yamagata, M.; Takahashi, F.; Kida, M. Emission behaviour and Hg speciation from waste incinerators. WIT Trans. Ecol. Environ. 2008, 109, 901–910. [Google Scholar] [Green Version]
- Fitzgerald, W.F.; Engstrom, D.R.; Mason, R.P.; Nater, E.A. The case for atmospheric mercury contamination in remote areas. Environ. Sci. Technol. 1998, 32, 1–7. [Google Scholar] [CrossRef]
Element | Leaching Concentration (mg/L) | Limit Value [34] (mg/L) | ||
---|---|---|---|---|
Ah | Bl | Cq | ||
Cu | 0.0348 | 0.0081 | 0.0130 | 100 |
Zn | 0.162 | 0.080 | 1.020 | 100 |
Pb | 0.009 | 0.004 | 0.003 | 5 |
Cd | 0.00006 | 0.0011 | 0.0008 | 1 |
Be | N.D. | N.D. | 0.0002 | 0.02 |
Ni | 0.0867 | 0.0160 | 0.1021 | 5 |
Ag | 0.0032 | 0.0005 | 0.0016 | 5 |
Ba | 0.066 | 0.339 | 2.618 | 100 |
Cr+6 | 0.004 | N.D. | N.D. | 5 |
Hg | N.D. | N.D. | N.D. | 0.1 |
As | 0.0011 | 0.0009 | 0.0026 | 5 |
Name | Leaching Concentration (mg/L) | Limit Value [34] (mg/L) | ||
---|---|---|---|---|
Ah | Bl | Cq | ||
Nitrobenzene | N.D. | N.D. | N.D. | 20 |
Dinitrobenzene | N.D. | N.D. | N.D. | 20 |
p-Nitrchlorobenzene | N.D. | N.D. | N.D. | 5 |
2,4-Dinitrochlorobenzene | N.D. | N.D. | N.D. | 5 |
Pentachlorophenol | N.D. | N.D. | N.D. | 50 |
Phenol | N.D. | N.D. | N.D. | 3 |
2,4-Dichlorophenol | N.D. | N.D. | N.D. | 6 |
2,4,6-Trichlorophenol | N.D. | N.D. | N.D. | 6 |
Benzopyrene | N.D. | N.D. | N.D. | <0.0003 |
Dibutyl phthalate | N.D. | 0.063 | N.D. | 2 |
Dioctyl phthalate | N.D. | N.D. | N.D. | 3 |
Polychlorinated biphenyl | N.D. | N.D. | N.D. | 0.002 |
Name | Leaching Concentration (mg/L) | Limit Value [34] (mg/L) | ||
---|---|---|---|---|
Ah | Bl | Cq | ||
Benzene | N.D. | N.D. | N.D. | 1 |
Toluene | N.D. | N.D. | N.D. | 1 |
Ethylbenzene | N.D. | N.D. | N.D. | 4 |
Xylene | N.D. | N.D. | N.D. | 4 |
Chlorobenzene | N.D. | N.D. | N.D. | 2 |
1,2-Dichlorobenzene | N.D. | N.D. | N.D. | 4 |
1,4-Dichlorobenzene | N.D. | N.D. | N.D. | 4 |
Acrylonitrile | N.D. | N.D. | N.D. | 20 |
Trichloromethane | N.D. | N.D. | N.D. | 3 |
Carbon tetrachloride | N.D. | 0.067 | N.D. | 0.3 |
Trichloroethylene | N.D. | N.D. | N.D. | 3 |
Carbon tetrachloride | N.D. | N.D. | N.D. | 1 |
Dioxins | I-TEF [35] | Measured Concentration (ng/kg) | I-TEQ (ng-TEQ/kg) | |||||
---|---|---|---|---|---|---|---|---|
Ah | Bl | Cq | Ah | Bl | Cq | |||
Polychlorinated dibenzofurans (PCDFs) | 2,3,7,8-TCDF | ×0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
1,2,3,7,8-PeCDF | ×0.05 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
2,3,4,7,8-PeCDF | ×0.5 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
1,2,3,4,7,8-HxCDF | ×0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
1,2,3,6,7,8-HxCDF | ×0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
2,3,4,6,7,8-HxCDF | ×0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
1,2,3,7,8,9-HxCDF | ×0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
1,2,3,4,6,7,8-HpCDF | ×0.01 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
1,2,3,4,7,8,9-HpCDF | ×0.01 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
OCDF | ×0.001 | 39.56 | 172.31 | 157.44 | 0.04 | 0.17 | 0.16 | |
Polychlorinated dibenzodioxins (PCDDs) | 2,3,7,8-TCDD | ×1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
1,2,3,7,8-PeCDD | ×0.5 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
1,2,3,4,7,8-HxCDD | ×0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
1,2,3,6,7,8-HxCDD | ×0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
1,2,3,7,8,9-HxCDD | ×0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
1,2,3,4,6,7,8-HpCDD | ×0.01 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | |
OCDD | ×0.001 | 158.31 | 192.05 | 106.83 | 0.16 | 0.19 | 0.11 | |
Total dioxin (PCDD/Fs) | — | — | — | — | 0.20 | 0.36 | 0.27 |
Element | Dried Cq Sludge (mg/kg) | Cq Sludge Ash (mg/kg) | Limit Value | ||
---|---|---|---|---|---|
Land Improvement [51] | Mixed Landfill Mud [50] | Greening Mud [52] | |||
Be | 0.877 | N.D. | — | — | — |
B | 8.35 | 28.23 | 100 | — | 150 |
Al | 6434.48 | 15,344.93 | — | — | — |
Sc | 2.65 | 2.73 | — | — | — |
Ti | 290.439 | 1065.99 | — | — | — |
V | 34.274 | 122.62 | — | — | — |
Cr | 24.71 | 96.24 | 600 | 1000 | 600 |
Mn | 164.189 | 518.72 | — | — | — |
Fe | 6806.09 | 24,049.88 | — | — | — |
Co | 4.824 | 18.86 | — | — | — |
Ni | 41.61 | 150.44 | 100 | 200 | 100 |
Cu | 18.33 | 67.70 | 800 | 1500 | 800 |
Zn | 628.958 | 2300.92 | 2000 | 4000 | 2000 |
Ge | 1.345 | 4.08 | — | — | — |
As | 86.723 | 301.03 | 75 | 75 | 75 |
Se | 598.41 | 719.43 | — | — | — |
Mo | 3.427 | 13.20 | — | — | — |
Sb | 53.207 | 175.39 | — | — | — |
Ag | 0.188 | 0.56 | — | — | — |
Cd | 0.287 | 0.99 | 5 | 20 | 5 |
Hg | 3.452 | 0.27 | 5 | 25 | 5 |
Pb | 9.715 | 38.69 | 300 | 1000 | 300 |
Th * | 0.50 | 1.77 | — | — | — |
U * | 1.59 | 5.90 | — | — | — |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Zhang, H.; Jiang, X.; Wang, Y.; Liu, Z.; Fang, S.; Zhang, Z. Classification and Disposal Strategy of Excess Sludge in the Petrochemical Industry. Appl. Sci. 2019, 9, 1186. https://doi.org/10.3390/app9061186
Guo L, Zhang H, Jiang X, Wang Y, Liu Z, Fang S, Zhang Z. Classification and Disposal Strategy of Excess Sludge in the Petrochemical Industry. Applied Sciences. 2019; 9(6):1186. https://doi.org/10.3390/app9061186
Chicago/Turabian StyleGuo, Lei, Hongzhe Zhang, Xueyan Jiang, Yan Wang, Zhengwei Liu, Shiping Fang, and Zhiyuan Zhang. 2019. "Classification and Disposal Strategy of Excess Sludge in the Petrochemical Industry" Applied Sciences 9, no. 6: 1186. https://doi.org/10.3390/app9061186
APA StyleGuo, L., Zhang, H., Jiang, X., Wang, Y., Liu, Z., Fang, S., & Zhang, Z. (2019). Classification and Disposal Strategy of Excess Sludge in the Petrochemical Industry. Applied Sciences, 9(6), 1186. https://doi.org/10.3390/app9061186